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Abstract—In this paper an ARIMA model is used for time-series 
forecast involving wind speed measurements. Results are 
compared with the performance of a back propagation type 
NNT. Results show that ARIMA model is better than NNT for 
short time-intervals to forecast (10 minutes, 1 hour, 2 hours and 4 
hours). Data was acquired from a unit located in Southern 
Andalusia (Peñaflor, Sevilla), with a soft orography (10 minutes 
between measurements). This feature is which makes 
performance of the ARIMA model and the NNT very similar, so 
a simple forecasting model could be used in order to administrate 
energy sources. The paper presents the process of model 
validation, along with a regression analysis, based in real-life 
data. 

Keywords-Short-term wind speed prediction; ARIMA; Neural 
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I.  INTRODUCTION 

The use of wind energy has been developed significantly 
throughout the world, in order to get the ideal for a future with 
electricity without pollution. But the integration of wind farms 
in the power networks has become an important problem for 
the unity of commitment and control of power plants in electric 
power systems. Wind is considered one of the weather 
variables which more difficult to be predicted. Intermittent in 
nature, the electricity produced in a wind farm is difficult to be 
short-term forecasted. It is even difficult in the next few hours 
and, in general, any benefits obtained from the wind farms is 
not optimal, and may be necessary to increase the power plant 
spinning reserve.  

Hence, the need to administer energy resources and the 
advent of alternative energy, particularly wind power, 
necessitate the use of advanced tools for short-term prediction 
of wind speed or what is the same thing, the wind production. 
End-users (independent power producers, electrical companies, 
system operator distribution, etc.) which recognize the 
contribution of wind forecast for a safe and economic operation 
of the network. Especially, in a liberalized electricity market, 
forecasting tools improve the position of wind energy 
compared with other available forms of generation. 

 

II. EXPERIMENTAL PROCEDURE AND  RESULTS 

A. ARIMA model: identification, estimation of parameters, 
validation and forecasting 

 

In this section we expose the procedure to obtain the 
possible models which better explain the time-series behavior. 

The original measurement time-series comprises 18,090 
data corresponding to wind speed in meters per second (m/s), 
acquired each 10 minutes. 

The first step is to establish the ARIMA model which best 
fits the time-series behavior. With this goal the autocorrelation 
coefficient and the partial autocorrelation coefficient are 
evaluated and depicted in Fig. 1.  

Fig.1. Original time-series, and autocorrelation functions for model 
identification. 

The autocorrelation coefficient shown in Fig. 1 decays as 
the time-lag increases. This conveys the idea, as suggested by 
Box and Jenkins [1], that it may possible an autoregressive 
model to fit the time-series; the partial autocorrelation graph 
confirms that we are in presence of an autoregressive model, 
because the partial autocorrelation cuts beyond a certain time-
lag, which by the way establishes the order of the model. More 
precisely, as the decay begins in the second lag, this is assumed 
as the order of the model. 



Fig. 2 shows the model prospecting results from the first-
derivative time-series. No model is concluded because both 
autocorrelation and partial autocorrelation coefficients decay to 
zero from the very beginning.  

 

Fig.2. Differentiated original time-series, and autocorrelation functions for 
model identification. 

 Fig. 3 shows the model prospecting results from the second-
derivative time-series. A possible model is an autoregressive-
integrated-moving average (2,2,0); because the decay in the 
partial autocorrelation graph from the second lag. A second 
possible model is (0,2,1), because the autocorrelation function 
decay from the first lag. The second index “2” is associated to 
the order of the integral. 

Fig.3. The original time-series, two times differentiated, and autocorrelation 
functions for model identification. 

In the estimation process, mistakes of the model computation 
have also been calculated and assessed, along with the values 
of the parameters. The values for the autoregressive 
coefficients are 0.9 and 0.1 (2,0,0). This is the easiest model to 
implement and the model with least computation-time, in the 
forecasting procedure. These are the reasons why we have 
selected this model. 

To assess the model the following 3 parameters have been 
selected. The Pearson correlation coefficient associated with 
the original N-point time-series (x ) and the forecasted series 
( x̂ ): 
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the Index Of Agreement (IOA), Willmot [2]: 
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Eqs. (1), (2) and (3) are the quality indexes or indicators used 
to assess models. 
 
Tables 1, 2 and 3 summarize the assessment results for the 
three selected models. Two situations are studied: considering 
null initial conditions (conditional) and conditioned to 
concrete initial values (non conditioned). These tables have 
been obtained from forecasting results and for a few horizons 
of prediction of 10 minutes, 1, 2 and 4 hours. 

 

TABLE I.  MODEL  ASSESSMENT  ARIMA (2,0,0).  

 Conditional Non conditional 

Forecasting 
horizon 

10 
min 

1 h 2 h 4 h 10 
min 

1 h 2 h 4 h 

xxr ˆ,  0.97 0.88 0.80 0.67 0.97 0.88 0.79 0.65 

xxIOA ˆ,  0.98 0.93 0.88 0.79 0.98 0.93 0.89 0.80 

RMSE  0.57 1.07 1.31 1.55 0.58 1.12 1.41 1.66 

TABLE II.  MODEL  ASSESSMENT  ARIMA (2,2,0).  

 Conditional Non conditional 

Forecasting 
horizon 

10 
min 

1 h 2 h 4 h 10 
min 

1 h 2 h 4 h 

xxr ˆ,  0.96 0.86 0.79 0.65 0.96 0.86 0.79 0.64 

xxIOA ˆ,  0.98 0.92 0.88 0.79 0.98 0.92 0.88 0.78 

RMSE  0.67 1.30 1.63 2.12 0.67 1.30 1.63 2.12 

 



TABLE III.  MODEL  ASSESSMENT  ARIMA (0,2,1).  

 Conditional Non conditional 

Forecasting 
horizon 

10 
min 

1 h 2 h 4 h 10 
min 

1 h 2 h 4 h 

xxr ˆ,  0.93 0.78 0.68 0.57 0.74 0.48 0.45 0.23 

xxIOA ˆ,  0.96 0.87 0.81 0.72 0.83 0.60 0.56 0.40 

RMSE  0.90 1.73 2.1 2.56 2.15 4.09 4.39 6.28 

 

As a general remark, we can say that as the forecasting 
horizon increases, all quality indexes degenerate. This indicates 
that models are not valid for long term forecasting. On the 
other hand the model (2,0,0) has the best quality index. 

Fig. 4 shows the time-series forecasting results using the 
model ARIMA (2,0,0). Fig. 5 shows the regression of the time 
series in Fig. 4.  

Fig. 4. Original time-series and forecasted data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Regression of the original time-series and forecasted data. 

 

 

B. Neural networks 
 

We used a layer of backpropagation networks in which 
employs three sampling techniques for conducting training 
and validating them. These techniques have been: Bootstrap, 
double cross-validation and 10 cross-validations.  

 
The bootstrap analyses repeatedly subsamples data. Each 

set of training, which has the same size as the original data set 
is obtained through a selection process with replenishment on 
all available data. The data not selected for the joint training 
became part of the overall validation, which makes the size of 
the latter is not uniform. 

 
The double cross-validation [3] is to choose two sets of data 

available, one for training and another for test. 
 
The 10 cross-validations [4] in which breaks down the data 

set in 10 subsets disjunct. All data have been used at some 
moment so as to train to validate what we get a more reliable 
estimate. 

 
The algorithm backpropagation used for the learning has 

been the method Levenberg-Marquardt [5] for being a 
numerical technical optimization most powerful and very fast 
but has the disadvantage that requires a lot of memory to run. 
The number of employed has been hidden layers of 30 units 
and we have made management of data for forecasting in the 
form of parent autoregressive deep N samples. This means that 
for the prediction of the process in a time t used n previous 
values of the process. Also normalize the data so that they are 
in the interval [-1.1] so that training is faster. 

 
The models Backpropagation neuronal network have been, 

on one hand: the Bootstrap, the double cross-validation and 
the 10 cross-validations, all with an autoregressive 
management of n = 6; and on the other hand: the same ones 
but with a management of n = 12. 

 
Tables 4, 5 and 6 summarize the assessment results for the 

three selected models, so much with n = 6 as with n = 12. 
These tables have been obtained from forecasting results and 
for a few horizons of prediction of 10 minutes, 1, 2 and 4 
hours. 

TABLE IV.  MODEL  ASSESSMENT  BOOTSTRAP.  

 n = 6 n = 12 

Forecasting 
horizon 

10 
min 

1 h 2 h 4 h 10 
min 

1 h 2 h 4 h 

xxr ˆ,  0.96 0.77 0.59 0.43 0.95 0.72 0.55 0.37 

xxIOA ˆ,  0.98 0.87 0.75 0.61 0.97 0.83 0.72 0.56 

RMSE  0.67 1.54 2.17 3.03 0.76 1.82 2.5 3.57 

 



TABLE V.  MODEL  ASSESSMENT  DOUBLE CROSS-VALIDATION .  

 n = 6 n = 12 

Forecasting 
horizon 

10 
min 

1 h 2 h 4 h 10 
min 

1 h 2 h 4 h 

xxr ˆ,  0.95 0.65 0.47 0.28 0.93 0.68 0.46 0.33 

xxIOA ˆ,  0.98 0.76 0.66 0.51 0.96 0.81 0.62 0.52 

RMSE  0.69 2.34 2.79 3.61 0.89 2.03 3.3 3.88 

TABLE VI.  MODEL  ASSESSMENT  10 CROSS-VALIDATIONS .  

 n = 6 n = 12 

Forecasting 
horizon 

10 
min 

1 h 2 h 4 h 10 
min 

1 h 2 h 4 h 

xxr ˆ,  0.96 0.82 0.59 0.4 0.95 0.78 0.56 0.39 

xxIOA ˆ,  0.98 0.9 0.76 0.62 0.97 0.88 0.7 0.59 

RMSE  0.66 1.32 2.05 2.76 0.73 1.53 2.74 3.06 

 

 Fig. 6 presents a window of 100 records of length 
belonging to the results obtained by the models for a horizon 
of prediction of 10 minutes. Also the coefficient of correlation 
is indicated in the graph for every model with regard to the 
original series: 

Fig. 6. Original time-series and forecasted data with BPNN with n = 6. 

 

We have also realized the same graph using the same 
methods of re-sampling but now using an autoregressive 
management of n = 12, giving us the results showed in the 
figure 7: 

 

 

 

 
Fig. 7. Original time-series and forecasted data with BPNN with n = 12. 

 
C. Models Comparison 

 

As soon as we have selected the possible models who 
correspond with our information, so much the ARIMA as the 
BPNN, we realize a comparison of all of them to choose which 
or which are better. For it we realize the following procedure: 
first we apply a test ANOVA [6] which allows us to prove the 
equality of several averages, being based on an analysis of 
variability (to deduce if the void hypothesis or the alternative is 
fulfilled). In case the averages are different, we apply 
BONFERRONI's adjustment [7-8], which we are determined 
what model is better in the average. 

 
We realize 10 experiments for selected model obtaining 10 

information for every index of quality and model. We obtain a 
matrix for every index of 12 rows (models) for 10 columns 
(values of  indexes). 

 
Finally, models to comparing are: 

 
1) Bootstrap con n = 6. 
2) Bootstrap con n = 12. 
3) 2-fold Crossvalidation con n = 6. 
4) 2-fold Crossvalidation con n = 12. 
5) 10-fold Crossvalidation con n = 6. 
6) 10-fold Crossvalidation con n = 12. 
7) ARIMA (2,0,0) with conditional estimation. 
8) ARIMA (2,2,0) with conditional estimation. 
9) ARIMA (0,2,1) with conditional estimation. 
10) ARIMA (2,0,0) with not conditional estimation. 
11) ARIMA (2,2,0) with not conditional estimation. 
12) ARIMA (0,2,1) with not conditional estimation. 

 
We apply to every matrix the test ANOVA and obtain that 

for all  indexes, averages are different. 
 



We apply Bonferroni´s joust in different horizons of 
prediction which compares models two to two and we obtain 
which have the best average for every index. Tables 7, 8, 9 and 
10 show obtained results. 

TABLE VII.  HORIZON OF PREDICTION OF 10 MINUTES. 

Index Average Models 

xxr ˆ,  0,97 5   7  10  11  8 

xxIOA ˆ,  0,98 5   7  10  11  8  1 

RMSE  0,57 5   7  10 

TABLE VIII.  HORIZON OF PREDICTION OF 1 HOUR. 

Index Average Models 

xxr ˆ,  0,88 7  10  11  8   

xxIOA ˆ,  0,93 7  10  11  8 

RMSE  1,07 7  10 

TABLE IX.  HORIZON OF PREDICTION OF 2 HOURS. 

Index Average Models 

xxr ˆ,  0,80 7  10  11  8 

xxIOA ˆ,  0,89 7  10  11  8       

RMSE  1,32 7  10 

 

TABLE X.  HORIZON OF PREDICTION OF 4 HOURS. 

Index Average Models 

xxr ˆ,  0,67 7  10  11  8     

xxIOA ˆ,  0,80 7  10  11  8      

RMSE  1,55 7  10 

 

We verify which are models who repeat themselves in all the 
indexes and horizons. In this case only there are two models: 
ARIMA (2,0,0) with conditional estimation and ARIMA 
(2,0,0) with not conditional estimation. 
 
For the reasoning of Occam's razor we choose the model 
ARIMA (2,0,0) with conditional estimation for being the 
easiest to implement and the one that minor time of calculation 
needs. 

III.  CONCLUSIONS 

In this paper we have identified three ARIMA models 
which match the short term behavior of wind speed time-series. 
The model (2,0,0) exhibits the best performance. The 
validation has been done using three common quality indexes, 
based in correlation procedures. 

The models ARIMA compared with the neuronal networks 
have given a few very similar results but with a few very low 
times of calculation.  
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