Comparison of Models for Wind Speed Forecasting
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Abstract—In this paper an ARIMA model is used for time-seres
forecast involving wind speed measurements. Result@re
compared with the performance of a back propagationtype
NNT. Results show that ARIMA model is better than NNT for
short time-intervals to forecast (10 minutes, 1 hay 2 hours and 4
hours). Data was acquired from a unit located in Sathern
Andalusia (Pefaflor, Sevilla), with a soft orograply (10 minutes
between measurements). This feature is which makes
performance of the ARIMA model and the NNT very sinilar, so
a simple forecasting model could be used in ordeotadministrate
energy sources. The paper presents the process ofodel
validation, along with a regression analysis, baseé¢h real-life
data.
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l. INTRODUCTION

The use of wind energy has been developed significa
throughout the world, in order to get the ideal ddiuture with
electricity without pollution. But the integratiasf wind farms
in the power networks has become an important prokfior
the unity of commitment and control of power plaintglectric

power systems. Wind is considered one of the weathe

variables which more difficult to be predicted.dmhittent in
nature, the electricity produced in a wind farndii§icult to be
short-term forecasted. It is even difficult in thext few hours
and, in general, any benefits obtained from thedwarms is
not optimal, and may be necessary to increasedhermpplant
spinning reserve.

Hence, the need to administer energy resourcesttand
advent of alternative energy, particularly wind mow
necessitate the use of advanced tools for shon-peediction
of wind speed or what is the same thing, the wiratipction.
End-users (independent power producers, elect@abpanies,
system operator distribution, etc.) which recognittee
contribution of wind forecast for a safe and ecoitooperation
of the network. Especially, in a liberalized el@ity market,
forecasting tools improve the position of wind eyer
compared with other available forms of generation.

IIl.  EXPERIMENTALPROCEDUREAND RESULTS

A. ARIMA model: identification, estimation of parameters,
validation and forecasting

In this section we expose the procedure to obth# t
possible models which better explain the time-sdoiehavior.

The original measurement time-series comprises 908,0
data corresponding to wind speed in meters pemske(o/s),
acquired each 10 minutes.

The first step is to establish the ARIMA model whigest
fits the time-series behavior. With this goal theogorrelation
coefficient and the partial autocorrelation coeéffic are
evaluated and depicted in Fig. 1.

Fig.1. Original time-series, and autocorrelationctions for model
identification.
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The autocorrelation coefficient shown in Fig. 1 alec as
the time-lag increases. This conveys the ideauggested by
Box and Jenkins [1], that it may possible an ag@ssive
model to fit the time-series; the partial autockatien graph
confirms that we are in presence of an autoregressiodel,
because the partial autocorrelation cuts beyonertain time-
lag, which by the way establishes the order ofrtioelel. More
precisely, as the decay begins in the secondhagistassumed
as the order of the model.



Fig. 2 shows the model prospecting results fromfitse-
derivative time-series. No model is concluded beseaboth
autocorrelation and partial autocorrelation coédfits decay to
zero from the very beginning.

Differentiated time-series
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Fig.2. Differentiated original time-series, andaaatrrelation functions for
model identification.

Fig. 3 shows the model prospecting results froen gsbcond-
derivative time-series. A possible model is an mgoessive-
integrated-moving average (2,2,0); because theydecdhe
partial autocorrelation graph from the second lagsecond
possible model is (0,2,1), because the autocoiweldtinction
decay from the first lag. The second index “2” ss@ciated to
the order of the integral.

Second derivative of the time-series
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Fig.3. The original time-series, two times diffetiated, and autocorrelation
functions for model identification.

In the estimation process, mistakes of the modeiptation
have also been calculated and assessed, alongheittalues
of the parameters. The values for the autoregressi
coefficients are 0.9 and 0.1 (2,0,0). This is thsiest model to
implement and the model with least computation-timethe
forecasting procedure. These are the reasons whyave
selected this model.

To assess the model the following 3 parameters haee
selected. The Pearson correlation coefficient datsat with
the original N-point time-seriesx() and the forecasted series

(X):

G ~
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OxO%
the Index Of Agreement (I0A), Willmot [2]:
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and the RMSE:
3

Egs. (1), (2) and (3) are the quality indexes diidators used
to assess models.

Tables 1, 2 and 3 summarize the assessment régulthe
three selected models. Two situations are studiedsidering
null initial conditions (conditional) and conditied to
concrete initial values (non conditioned). Theseldgs have
been obtained from forecasting results and fomaHerizons
of prediction of 10 minutes, 1, 2 and 4 hours.

TABLE I. MODEL ASSESSMENTARIMA (2,0,0).
Conditional Non conditional
Forecasting | 10 1h 2h 4h 10| 1h 2h 4h
horizon min min
M 097 | 0.88| 0.80] 067 097 088 0.J9 0865
10A, 4 098 | 0.93| 0.88 079 0.9 093 0.89 080
RMSE 0.57 | 1.07] 1.31] 154 058 112 141 166
TABLE II. MODEL ASSESSMENTARIMA (2,2,0).
Conditional Non conditional
Forecasting | 10 1h 2h 4h 10| 1h 2h 4h
horizon min min
Mg 096 | 086 0.79] 063 09¢ 086 0.9 0p4
10A, 4 098 | 0.92| 0.88 079 098 092 088 08
RMSE 067 | 1.30| 163 2172 067 130 163 242




TABLE Il MODEL ASSESSMENTARIMA (0,2,1).
Conditional Non conditional
Forecasting 10 1h 2h 4h 10| 1h 2h 4h
horizon min min
M 093 | 0.78| 068 057 0.74 048 045 0p3
10A, 4 0.96 | 0.87| 081 0.72 0.83 0.0 056 040
RMSE 090 | 1.73| 21| 254 21% 409 439 6.p8

As a general remark, we can say that as the fdiegas
horizon increases, all quality indexes degenefdiss. indicates
that models are not valid for long term forecasti@n the
other hand the model (2,0,0) has the best qualitgx.

Fig. 4 shows the time-series forecasting resulisguthe
model ARIMA (2,0,0). Fig. 5 shows the regressiorha time
series in Fig. 4.

Original time-series vs Forecasted time-series
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Fig. 4. Original time-series and forecasted data.
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Fig. 5. Regression of the original time-series famelcasted data.

B. Neural networks

We used a layer of backpropagation networks in kwhic
employs three sampling techniques for conductirainiing
and validating them. These techniques have beeatsBap,
double cross-validation and 10 cross-validations.

The bootstrap analyses repeatedly subsamples Hath
set of training, which has the same size as thgrali data set
is obtained through a selection process with reghenent on
all available data. The data not selected for thet jtraining
became part of the overall validation, which mattessize of
the latter is not uniform.

The double cross-validation [3] is to choose twis £ data
available, one for training and another for test.

The 10 cross-validations [4] in which breaks dowe tata
set in 10 subsets disjunct. All data have been w@gesbme
moment so as to train to validate what we get aemeliable
estimate.

The algorithm backpropagation used for the learrtiag
been the method Levenberg-Marquardt [5] for being
numerical technical optimization most powerful araty fast
but has the disadvantage that requires a lot of angto run.
The number of employed has been hidden layers airit3
and we have made management of data for forecastitige
form of parent autoregressive dé¢gamples. This means that
for the prediction of the process in a timesedn previous
values of the process. Also normalize the datdhabthey are
in the interval [-1.1] so that training is faster.

The models Backpropagation neuronal network hawsbe
on one hand: the Bootstrap, the double cross-w@iand
the 10 cross-validations, all with an autoregressiv
management ofi = 6; and on the other hand: the same ones
but with a management af=12.

Tables 4, 5 and 6 summarize the assessment résuttse
three selected models, so much with= 6 as withn = 12,
These tables have been obtaineahtforecasting results and
for a few horizons of prediction of 10 minutes,2l,and 4
hours.

TABLE IV. MODEL ASSESSMENTBOOTSTRAR
n==6 n=12
Forecasting | 10 1h 2h 4h 10| 1h 2h 4h
horizon min min
oo 0.96 | 0.77| 059 043 09% 0.72 055 0p7
X, X

10A, 4 0.98 | 0.87| 0.75| 0.61 09f 0.83 0.J2 056
RMSE 0.67 | 1.54| 217/ 3.03 076 182 25 3p7




TABLE V. MODEL ASSESSMENT DOUBLE CROSSALIDATION .

Comparisons models BPNN with AR(12)
T T

n=6 n=12 20f
R=10095914 R=1095764 R=0.9726
Forecasting 10 1h 2h 4h 10| 1h 2h 4h
horizon min min
M 095 | 0.65| 047/ 028 093 068 046 0833

IOA,; | 098 | 076| 066 051 096 08T 062 052

Speed mis

RMSE 069 | 234 279 361 089 203 33 388

TABLE V1. MODEL ASSESSMENT10CROSSVALIDATIONS.
S —&— Sernie Original
n==6 n=12 %BuutstraiwwthAR(ﬂ}
—&— 2.Crossualidation with AR(12)
Forecasting 10 1h 2h 4h 10| 1h 2h 4h —#— 10-Crossvalidation with AR(12)
, , , \ | ; ; T PN
horizon min min 100 0 120 130 110 160 160 170 180 190 200
Number of records
roo 0.96 | 0.82| 0.59 0.4 0.94 0.78 0.5%6 0.B9
X, X

10A, 5 098 | 09| 076/ 062 097 088 O0f 0.p9
’ Fig. 7. Original time-series and forecasted data ®PNN withn = 12.

RVMISE | 066 | 1.32| 205 276 078 183 214 36

C. Models Comparison

Fig. 6 presents a window of 100 records of length _
belonging to the results obtained by the modelsaftworizon As soon as we have selected the possible models who
of prediction of 10 minutes. Also the coefficieritaorrelation ~ correspond with our information, so much the ARINA the

is indicated in the graph for every model with regéo the ~BPNN, we realize a comparison of all of them toas®which
original series: or which are better. For it we realize the followiprocedure:

first we apply a test ANOVA [6] which allows us poove the

Comparison madels BPHN with AR() equality of several averages, being based on alysimaf
o T ] variability (to deduce if the void hypothesis oe thiternative is
R o 5 Bootarap i RS fulfilled). In case the averages are different, \apply
18- R=098531 —&— 2-Crossvalidation with AR(6) | |
R=0097183

— % 10-Crossualidaton with AR() BONFERRONI's adjustment [7-8], which we are deteei
what model is better in the average.

We realize 10 experiments for selected model oioigih0
information for every index of quality and modeleVidbtain a
matrix for every index of 12 rows (models) for 16lumns
(values of indexes).

Speed mis

Finally, models to comparing are:

1) Bootstrap com = 6.
2) Bootstrap com = 12.
100 o 7 w0 u‘wNumwﬂs(urmmswéu m 0 W 2w 3) 2-fold Crossvalidation con = 6.
4) 2-fold Crossvalidation con = 12.
5) 10-fold Crossvalidation con= 6.
6) 10-fold Crossvalidation con= 12.
7) ARIMA (2,0,0) with conditional estimation.

We have also realized the same graph using the same 8) ARIMA (2,2,0) with conditional estimation.

Fig. 6. Original time-series and forecasted dath ®PNN withn = 6.

methods of re-sampling but now using an autoreiyess 9) ARIMA (0,2,1) with conditional estimation..
management oh = 12, giving us the results showed in the  10) ARIMA (2,0,0) with not conditional estimation.
figure 7: 11) ARIMA (2,2,0) with not conditional estimation.

12) ARIMA (0,2,1) with not conditional estimation.

We apply to every matrix the test ANOVA and obttiat
for all indexes, averages are different.



We apply Bonferroni’s joust in different horizond o
prediction which compares models two to two andol&ain
which have the best average for every index. Tahl&s 9 and
10 show obtained results.

TABLE VIl.  HORIZONOFPREDICTIONOF10MINUTES.
Index Average Models
Mes 0,97 5 71011 8
I0A, 0,98 57101181
RMSE 0,57 5 7 10
TABLE VIll.  HORIZONOFPREDICTIONOF1HOUR.
Index Average Models
M 0,88 7 10 11 8
|OAX;( 0,93 7 10 11 8
RMSE 1,07 7 10
TABLE IX. ~ HORIZONOFPREDICTIONOF2HOURS.
Index Average Models
Mo 0,80 71011 8
|OAX;( 0,89 7 1011 8
RMSE 1,32 7 10
TABLE X. HORIZONOFPREDICTIONOF4 HOURS.
Index Average Models
Mo 0,67 71011 8
I0A, ; 0,80 71011 8
RMSE 155 7 10

We verify which are models who repeat themselveallithe
indexes and horizons. In this case only there acerodels:
ARIMA (2,0,0) with conditional estimation and ARIMA
(2,0,0) with not conditional estimation.

For the reasoning of Occam's razor we choose thdelmo
ARIMA (2,0,0) with conditional estimation for beinthe
easiest to implement and the one that minor timeatdulation
needs.

[ll.  CONCLUSIONS

In this paper we have identified three ARIMA models
which match the short term behavior of wind spé®aeseries.
The model (2,0,0) exhibits the best performancee Th
validation has been done using three common qualityxes,
based in correlation procedures.

The models ARIMA compared with the neuronal network
have given a few very similar results but with & feery low
times of calculation.
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