
Highly Parallel Solver for Multi-scale Parquet
Quantum Modeling of Strongly Correlated

Materials?

S. Yang1, E. D’Azevedo2, H. Fotso1, M. Jarrell1, J. Liu1, T. Maier2, C. Sen2,
and K. Tomko3

1 University of Cincinnati, Cincinnati, Ohio, 45221, USA
2 Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA

3 Ohio Supercomputer Center, Columbus, Ohio, 43212, USA

Abstract. The parquet formalism to calculate the two-particle Green’s
functions of large systems requires the solution of a large, sparse, complex
system of quadratic equations. If Nf Matsubara frequencies are used for
a system of size Nc, and Newton’s method is used to solve the nonlinear
system, the Jacobian system has O(8Nt

3) variables and O(40Nt
4) com-

plex entries where Nt = NcNf . For Nt = 256, the nonlinear system has
over 134 million degrees of freedom and the sparse Jacobian will require
over 2.7 TBytes of memory. The Jacobian is too large to store but the
matrix-vector products can be computed directly. We are developing a
highly scalable parallel solver that uses both OpenMP and MPI to ex-
ploit the multicore nodes. We present initial scalability results on the
IBM BlueGene/P and IBM Opteron cluster that suggests the code can
be scaled to solve larger problems with Nt ≥ 512.

1 Introduction

The two-dimensional Hubbard model has been accepted in the community as a
minimum model to study the high-temperature superconducting cuprates. An
adequate solution of this model is extremely challenging, especially in the inter-
esting parameter regime of intermediate to strong coupling, where the Coulomb
repulsion between electrons is of the same order or stronger than the electronic
kinetic energy. Despite some recent success, our understanding of the properties
of this model in this regime is therefore still limited.
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The Hubbard Hamiltonian on a square lattice is written as

H =
∑
〈i,j〉

(ti,j − µ)c†i,σcj,σ + U
∑

i

ni,↑ni,↓ (1)

where c†i,σ (ci,σ) creates (destroys) an electron with spin σ on site i and ni,σ =
c†i,σci,σ is the corresponding occupation operator. The first term describes the
hopping of electrons between sites i and j and the second term stands for the
Coulomb repulsion U two electrons feel when residing on the same site.

Perturbation theory provides useful results only in the limits of either weak
or strong coupling, but fails in the interesting regime of intermediate coupling.
Methods employing resummations of Feynman diagrams to infinite order are
usually biased due to the particular choice of diagrams. Exact methods such as
Quantum Monte Carlo (QMC) and exact diagonalization are restricted to rela-
tively small system size due to the computational complexity. In principle, one
can imagine carrying out an analytical calculation which includes all the Feyn-
mann diagrams. This would theoretically yield exact results on the single-particle
and two-particle levels if one manages to include all relevant diagrammatic equa-
tions up to that level.

The parquet formalism is based on a two-particle self-consistent theory, where
all the relevant physical conservation rules are preserved as well as the crossing
symmetries at two-particle level are obeyed. It is based on the following four
diagrammatic equations. To simplify the formalism, we consider systems that
preserve the spin SU (2) symmetry. We denote k ≡ (k, iωn) and v ≡ (k, ivn)
with ωn = (2n + 1) πT and vn = 2nπT . In the following, r is used as a general
label for r = d, m, s, t which label the particle-hole density and magnetic channels
(d and m), and the particle-particle singlet and triplet channels (s and t). All
indexes are in modulo arithmetic so that a negative index such as −k is equal
to mod (Nt − k, Nt).

– The Dyson equation

G−1 (k) = G−1
0 (k) + Σ (k) (2)

– The Schwinger-Dyson equation

Σ (k) = −
(

T

N

)2
U

2

∑
k′,v

G (−k′ + v) G (k′) G (−k + v) Fs (v)−k′,−k , (3)

– The Bethe Salpeter equation

Fr (v)k,k′ = Γr (v)k,k′ +
∑
k′′

Fr (v)k,k′′ χ0
r (v)k′′ Γr (v)k′′ ,k′ (4)

for r = d, m, s, t and with

χ0
r (v)k′′ = G

(
k

′′
)

G
(
k

′′
+ v

)
, r = d, m

χ0
r (v)k′′ = −1

2
G

(
k

′′
)

G
(
k

′′
+ v

)
, r = s, t

(5)
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– The Parquet equation

Γ ph
d (v)k,k′ = Λph

d (v)k,k′ −
1
2

(Φd + 3Φm) (k − k′)k′+v,k′ +

1
2

(Ψs + 3Ψt) (k + k′ + v)−k′,−(k′+v)

Γ ph
m (v)k,k′ = Λph

m (v)k,k′ −
1
2

(Φd − Φm) (k − k′)k′+v,k′ −

1
2

(Ψs − Ψt) (k + k′ + v)−k′,−(k′+v)

Γ pp
s (v)k,k′ = Λpp

s (v)k,k′ +
1
2

(Φd − 3Φm) (k − k′)k′+v,−k +

1
2

(Φd − 3Φm) (k + k′ + v)−k′,−k

Γ pp
t (v)k,k′ = Λpp

t (v)k,k′ +
1
2

(Φd + Φm) (k − k′)k′+v,−k −

1
2

(Φd + Φm) (k + k′ + v)−k′,−k

(6)

with

Φr (v)k,k′ =
∑
k′′

Fr (v)k,k′′ χ0
r (v)k′′ Γr (v)k′′ ,k′ , r = d, m

Ψr (v)k,k′ =
∑
k′′

Fr (v)k,k′′ χ0
r (v)k′′ Γr (v)k′′ ,k′ , r = s, t

(7)

where for r = d, m, it is labeled as Φ, while for r = s, t, labeled as Ψ.

The parquet equations are derived from enforcing two-particle crossing sym-
metries, while the other equations are necessary for a conserving approximation.
The above set of equations, however, does not form a closed loop because the
fully irreducible vertices, Λr, are not determined internally. When Λr is replaced
by the bare interaction, one obtains the parquet approximation. One can also
imagine taking the results of an exact calculation for a small system size, using
e.g., exact diagonalization or QMC methods, as an input for Λr in the parquet
equations. In this case, one obtains the full multi-scale parquet formalism, that
has been discussed in [1].

2 Algorithm

The parquet equations (2) to (7) form a system of nonlinear equations. The
strength and spatial range of correlations depends on the ratio between the
Coulomb repulsion U and temperature T and the nonlinear system becomes
increasingly difficult to solve for large U . Each entity such as Γ pp

t (v)k,k′ or
Fr(v)k1,k2 can be discretized and represented as three-index Nt × Nt × Nt ar-
rays Γt(k, k′, v) and Fr(k1, k2, v). A simple algorithm is to perform fixed-point
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iteration by freezing some of the unknowns to solve a subset of the nonlinear
equations. Starting from an initial guess, we can solve the Bethe Salpeter equa-
tion (4) to generate Fr(v)k1,k2 . The Φr and Ψr values can be updated using the
new Fr values using (7). The new Γr(v)k,k′ values are computed by the Parquet
equations (6). One can iteratively solve (4) and (6) until convergence, then up-
date the Dyson equation and self energy in (2) and (3). Although this method is
efficient and simple to implement, the iterations may become unstable for large
values of U ≥ 18.

A careful examination of the system shows that the Bethe Salpeter equations
can be written as

Fr(v)k,k′ =Γr(v)k,k′ + Φr(v)k,k′ , r = d, m

Fr(v)k,k′ =Γr(v)k,k′ + Ψr(v)k,k′ , r = s, t
(8)

so that the Bethe Salpeter equations and the Parquet equations can be written
as linear expressions in Fr, Γr, Φr and Ψr. The nonlinearity comes mainly from
the Φr and Ψr variables that are products of just Fr(v) and Γr(v); therefore (4)
to (7) form a complex system of affine quadratic equations.

The literature is sparse on methods for solving a general system of quadratic
equations. The solution of a system of quadratic equations using Newton’s
method has been analyzed in [2]. It shows that multiple solutions are possible
and the Jacobian matrix may be exactly singular if it is evaluated at a midpoint
of two solutions. Cohen and Tomasi [3] have considered the solution of a spe-
cial case of a system of homogeneous bilinear equations. Their results show the
problem is related to solving the generalized eigenvalue problem. Bouaricha and
Schnabel [4, 5, 6] have considered an extension of the Newton’s method to solve
F (x) = 0 by including a low rank tensor approximation of higher derivatives

M(xc + d) = F (xc) + F ′(xc)d +
1
2
Tcdd, F : IRn → IRm , (9)

where Tc is a three index tensor object formed by interpolation of past Newton
steps. The tensor Tc is not the second derivative of F (x) but is chosen to be a sum
of p rank-one tensor objects. Equation (9) may be viewed as a particular system
of quadratic equations. Ultimately, Newton’s method or Levenberg-Marquardt
method is used to solve (9) in a least squares sense as a smaller system of p
quadratic equations. The analysis of quadratic matrix equation AX2 + BX +
C = 0 in n × n matrices and the connection to quadratic eigenvalue problem
(λ2A+λB+C)x = 0 have been considered by Higham and Kim [7]. The authors
used Newton’s method with exact line searches [8] to solve the quadratic matrix
equations.

We have developed a parallel solver using Newton’s method with line search
to solve the complex system of biaffine quadratic equations. The unknowns are
eight Nt ×Nt ×Nt arrays for Fd, Fm, Fs, Ft, Γd, Γm, Γs, and Γt. The compli-
cated vertex rotations to enforce crossing symmetries in the Parquet equations
(6) can be viewed as permutation operations on a long vector of length Nt

3.
The permutation is implemented using the Message Passing Interface (MPI)
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all-to-all communication primitive. This operation places high demands on the
communication network and is one of the most time consuming kernels. The
sparse Jacobian matrix of the bilinear quadratic equations can be analytically
computed but it has O(40Nt

4) nonzeros. For problems of interest Nt ≥ 256,
the sparse Jacobian matrix is too costly to store in memory. For example, if
Nt = 256 then there are over 134 million degrees of freedom and explicit storage
of the sparse Jacobian still requires over 2.7 TBytes of memory and for a larger
case of Nt = 512, there are over 1073 million degrees of freedom and storage
of the Jacobian requires over 44 TBytes of memory! For this application, we
have found that computing the matrix-vector operation by finite differences in-
troduces an unacceptably high error due to numerical cancellation. Instead the
action of matrix-vector multiply is computed analytically without explicit for-
mation of the Jacobian. The Φ and Ψ expressions in (7) are simple products of
Fr and Γr. The interaction of derivatives of Φr or Ψr with respect to Fr or Γr

can be computed as dense matrix matrix products of Nt by Nt matrices. The
entries in the Jacobian matrix consist of terms such as

∂Φr(v)k,k′

∂Fr(v)k,k′′
= χ0

r(v)k′′ Γr(v)k′′ ,k′ or
∂Φr(v)k,k′

∂Γr(v)k′′ ,k′
= Fr(v)k,k′′ χ0

r(v)k′′ . (10)

The large sparse Jacobian system is solved using the BICGSTAB(L=2) [9]
Krylov iterative method4 without preconditioning. Preconditioning using simple
Jacobian diagonal scaling is not effective for this problem.

3 Numerical Experiments

The code has been ported to several parallel machines, including the Interna-
tional Business Machine (IBM) Opteron cluster (Glenn) at the Ohio Supercom-
puter Center (OSC), the Sun Constellation Linux cluster (Ranger) at the Texas
Advanced Computing Center (TACC) and the IBM BlueGene/P (Eugene) at the
National Center for Computational Sciences (NCCS) at the Oak Ridge National
Laboratory (ORNL).

We present performance results obtained on Eugene and Glenn. Eugene is a
27 TFlops/s IBM Blue Gene/P System operated by the NCCS. Eugene consists
of 2048 850 Mhz IBM quad core 450d PowerPC processors and 2 GBytes of
memory per each node. Eugene has 64 I/O nodes or one I/O node for every 32
compute nodes. Glenn is a 22 TFlops/s IBM Cluster 1350 operated by OSC. It
consists of 877 nodes each with two 2.6 Ghz Advanced Micro Devices (AMD)
Opteron Dual core processors and 8 GBytes of memory and an additional 88
nodes with four 2.6 Ghz Dual core Opterons and 64 GBytes of memory. In total
there are 4212 cores connected by a 10 Gbps Infiniband interconnect.

Parallel jobs can be launched on the Blue Gene/P using three modes:

4 The code for bicgstab2 is available at http://www.math.uu.nl/people/vorst/

zbcg2.f90



6 S. Yang, E. D’Azevedo, H. Fotso, M. Jarrell, et al.

– in Symmetrical Multiprocessor (SMP) mode, one MPI task is spawned on
each node to use the full 2 GBytes of memory. The application may use
OpenMP5 or parallel Engineering Scientific Subroutine Library (ESSL) to
utilize all four cores.

– in Virtual Node (VN) mode, four MPI tasks are spawned on each node to
utilize all four cores. However, each MPI task has access to only a single core
and 512 MBytes of memory.

– in Dual mode, two MPI tasks are spawned and each task has access to two
cores and 1 GBytes of memory.

Similarly, on the IBM Opteron cluster, the number of MPI tasks and threads
per task can be specified. The MP version of AMD Core Math Library (ACML)
was used for the Basic Linear Algebra Subroutine (BLAS) calls. Note that on
Eugene, the default stack size for threads created by OpenMP was configured to
be 4 MBytes. Large automatic arrays that are allocated on the stack may exceed
this limit and lead to a program crash. The code avoids this problem by allocating
large temporary arrays on the heap. The application code was compiled using
mpixlf95 r with -qstrict -O3 -qsmp=omp -lbgesslsmp -lbgessl as the
optimization options.

The application was tested using a low value of U = 4. It took three outer iter-
ations in computing the self energy, each inner iteration required three Newton it-
erations. The Jacobian system required less than 60 iterations in BICGSTAB(L=2).
We expect overall memory requirements in the iterative solver to scale as the
number of degrees of freedom O(Nt

3) and total work scales as O(Nt
4) in com-

puting matrix-vector multiplies.
Tables 1 and 2 show the run times for Nt = 256 on Eugene and Glenn

respectively and Tables 3 and 4 show the run times for Nt = 512. The first
two columns of Table 1 show that there is some extra overhead in creating and
managing threads since 256 cores are used in both cases. The OpenMP results
on Eugene show good (strong) scalability since the overall time decreased from
668s on 64 nodes to 367s on 128 nodes to 191s on 256 nodes. The data also
suggest the time taken in MPI all-to-all communication decreases as more cores
are added but is greater on Glenn than Eugene. Performance of MPI all-to-all
is dependent on the interconnect hardware and on the vendor’s implementation
of MPI library. Note that the majority of run time was spent in computing
matrix-vector multiplies called by the BICGSTAB linear solver on Eugene but
was less dominant on Glenn. Time spent in dense matrix multiplies (zgemm)
and MPI all-to-all communication accounts for over 70% of total time. Table 3
shows hybrid parallelization using OpenMP and MPI is effective in using many
cores. Figure 1 shows the decrease in run time as threads and cores are increased
for a fixed number of MPI tasks. Multi-threading performs well on both systems.
The overall run time decreased almost linearly from 4370s to 1126s (94% parallel
efficiency) as we increase the number of cores from 512 cores (128 MPI tasks x
4 threads per task) to 2048 cores (512 MPI tasks x 4 threads per task). On the
IBM Opteron Cluster we gathered hardware performance counter profile data
5 Include ”export OMP NUM THREADS=4” in batch script.
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using the oprofile performance monitoring utility. The resulting performance
data is included in the last few rows of Tables 2 and 4. From these results we see
that many configurations performed quite well overall, achieving more than one
TFlops/s. In particular, in the case of Nt = 512 on 512 cores (256 MPI tasks × 2
threads), the measured performance was 1.69 TFlops/s, or 63% of peak utilizing
12% of a 22 TFlops/s system.

4 Summary

We have described the development of a parallel solver for multi-scale par-
quet quantum modeling of highly correlated materials. The code uses Newton’s
method with line search to solve the large system of affine quadratic equations.
The large sparse Jacobian is too large to store and the action of matrix-vector
multiply is computed analytically. Performance results on the BlueGene/P and
Opeteron cluster suggest hybrid OpenMP and MPI programming technique can
effectively use large numbers of cores to solve problems with a billion degrees of
freedom.

Future development will focus on more sophisticated continuation method for
generating good initial guesses and the exploration of effective preconditioners
and iterative methods for solving the Jacobian system.

Table 1. Run time for Nt = 256 on various configurations on the BlueGene/P.

Cores ( MPI Tasks × Threads per Task )
256 (256 × 1) 256 (64 × 4) 512 (256 × 2) 512 (128 × 4) 1024 (256 × 4)

total 584s 668s 358s 367s 191s

bicgstab 557s 630s 335s 344s 175s

matvec 499s 549s 301s 304s 154s

zgemm 352s 391s 194s 194s 98s

mpi alltoall 78s 74s 70s 69s 37s
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Table 2. Run time for Nt = 256 on various configurations on the Opteron Cluster
(Glenn).

Cores ( MPI Tasks × Threads per Task )
256 (256 × 1) 256 (64 × 4) 512 (256 × 2) 512 (128 × 4) 1024 (256 × 4)

total 542s 724s 340s 277s 208s

bicgstab 510s 679s 316s 257s 173s

matvec 449s 570s 272s 204s 166s

zgemm 203s 213s 106s 108s 55s

scatter 218s 310s 151s 68s 102s

total memory usage 42 GB 35 GB 44 GB 37 GB 46 GB

aggregate Mem BW 331 GB/s 237 GB/s 502 GB/s 574 GB/s 549 GB/s

aggregate FP Perf. 657 Gflop/s 498 Gflop/s 995 Gflops/s 1132 Gflops/s 1097 Gflops/s

Table 3. Performance for Nt = 512 on various configurations on the BlueGene/P.

Cores ( MPI Tasks × Threads per Task )
512 (256 × 2) 512 (128 × 4) 2048 (512 × 4)

total 4213s 4370s 1126s

bicgstab 4012s 4120s 1038s

matvec 3771s 3869s 975s

zgemm 2889s 2964s 733s

mpi alltoall 586s 583s 165s

Table 4. Run time for Nt = 512 on various configurations on the OSC Opteron Cluster
(Glenn).

Cores ( MPI Tasks × Threads per Task )
512 (512 × 1) 512 (256 × 2) 512 (128 × 4)

total 7282s 3351s 4116s

bicgstab 6505s 3175s 3863s

matvec 4664s 2815s 3395s

zgemm 1612s 1625s 1633s

scatter 2766s 987s 1577s

total memory usage 305 GB 267 GB 259 GB

aggregate Mem BW 298 GB/s 626 GB/s 512 GB/s

aggregate FP Perf. 779 Gflop/s 1689 Gflop/s 1380 Gflops/s
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Fig. 1. Run time for Nt = 256 with increasing threads per MPI task on the BlueGene/P
and the IBM Opteron Cluster.
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