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Abstract. Certain organic compounds posess the ability to change color under 
the influence of light, called photochromism. This change is often due to 
ultrafast chemical transition from open to closed ring isomers 
(photocyclization). Information thechnology applications of these 
photochromics require the reverse transformation to be very slow in the dark. 
We have applied Density Functional Theory (DFT) methods to predict kinetics 
of this cycloreversion. This cycloreversion occurs through symmetry forbidden 
conrotatory electrocyclic mechanism with transition state of strong diradical 
character, and requires the unrestricted broken-symmetry DFT formalism. Our 
results suggest that B3LYP functional describes the activation barrier for the 
cycloreversion process with about 1-2 kcal/mol error, while M052x functional 
gives an error of about 2-3 kcal/mol compared to the experimental values.  

Keywords: Ring opening, cycloreversion, electrocyclic reaction, chemical 
kinetics 

1   Introduction 

Photochromism is a non-destructive process involving light initiated rearrangement of 
chemical bonds accompanied by the change in color and other properties. It often 
results in reversible transformation of a chemical species from open to closed ring 
isomers. The simplest example of photochromism is 1,2-cyclohexadiene (CHD) 
(closed isomer) and 1,3,5-hexatriene (cZc-HT) (open isomer) (Fig.1). 

hν1
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Fig. 1. Photochromic reversible transformation of hexatriene (left) and cyclohexadiene (right). 

The two isomers differ from one another not only in the absorption spectra but 
also in various physical and chemical properties such as geometrical structure, 
refractive index, dielectric constant and oxidation-reduction potential [1]. 



2      Pansy D. Patel,1, 2 Ivan A. Mikhailov,1,4 and Artëm E. Masunov* 1, 2, 3 

Photochromic compounds can be broadly classified into thermally reversible 
compounds (T-type or thermally unstable) and thermally irreversible (P-type or 
thermally stable) compounds. Typical examples of T-type compounds are 
Azobenzene and Spiropyran; and Diarylethenes and Fulgides belong to thermally 
irreversible P-type photochromic compounds (Fig.2).  

 
Fig.2.a,b: Thermally unstable (T-type) and c,d: thermally irreversible (P-type) photochromics. 

The thermal stability of P-type compounds makes them promising materials in design 
of various optoelectronic devices such as optical memory, optical switching, displays 
and nonlinear optics. In order to be practically useful, the photochromic material has 
to satisfy certain requirements, such as: 1. Thermal stability of both isomers; 2. 
Fatigue resistance; 3. Efficient photochromic reactivity: high sensitivity, rapid 
response; 4. High solubility in polymer matrices; 5. Non-destructive readout 
capability; 6. Sensitivity at diode laser wave lengths [2]. In the present contribution 
we focus on the first requirement, which is met by a high activation energy to 
cycloreversion. Dithienyl perfluorocyclopentenes are an important class of thermally 
irreversible (P-type) photochromic compounds, which have been extensively 
investigated to estimate the above mentioned properties and their potential application 
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as optical switches [2-6]. Cycloreversion process occurs through conrotatory 
electrocyclic mechanism involving symmetry forbidden diradical intermediate. This is 
a unimolecular stereoselective process and can be easily understood by the 
Woodward-Hoffmann rules and the Frontier Molecular Orbital (FMO) theory [7]. To 
understand the reaction mechanism of pericyclic reactions, Woodward and Hoffmann 
showed that by examining the interaction of the Frontier molecular orbitals (i.e. the 
highest occupied, HOMO and lowest unoccupied, LUMO) both the regio- and 
stereospecificity could be accounted for. They suggested that in a photochemical 
reaction, an electron in the HOMO of the reactant is promoted to an excited state 
leading to a reversal of terminal symmetry relationships and reversal of 
stereospecificity. Reactions that take the opposite course are symmetry forbidden and 
require a lot more energy to take place if they take place at all. These rules have 
known to be supported by quantum chemical calculations. Computational studies 
have been done extensively on the model system of cyclohexadiene (CHD) to 1,3,5-
hexatriene (cZc-HT) photochemical interconversion. A complete mechanistic picture 
of the photochemical ring opening occurring on the 2A1 surface after CHD 
photoexcitation has been drawn by Celani et. al. using computationally expensive ab 
initio CAS-SCF and CAS-SCF/MP2 method [8]. Their results on the 2A1 potential 
energy surface suggested that the cZc-HT must be the only primary photoproduct of 
the direct irradiation of CHD form the conical intersection, which also agreed with the 
experimental data. They also described the 1B2 pathways for the same process and 
proposed that although the photochemical ring opening of CHD occurs (in 
femtoseconds) in the spectroscopic state, the associated photochemical ring closure 
reaction of cZc-HT is initiated upon decay of 2A1 cZc-HT to the ground state 
picoseconds after the initial excitation [9]. Sakai et al. calculated the potential energy 
surfaces for the electrocyclic reactions of 1,3,5-hexatriene with different ab initio 
molecular orbital methods [10]. The transition states of two electrocyclic reaction 
pathways (conrotatory, 47.62 kcal/mol and disrotatory, 37.24 kcal/mol) for hexa-
1,3,5-triene were reported at CASPT2/6-311+G** level. Since the latter mechanism 
allowed by orbital symmetry has a lower energy barrier, the reactant and product with 
Cs symmetry are unstable; while the conrotatory mechanism with a higher energy 
barrier leads to stable reactant and product with C2 symmetry, so it is the preferable 
pathway for ring closure.  

Theoretical investigation of the CHD/cZc-HT photochemical interconversion have 
also been performed with CASPT2 [11] and MR-SCI [12] theory levels to explain the 
reaction path and to suggest the potential energy surface and transition probabilities 
respectively. Garavelli et al. employed the algorithm of steepest decent path to 
compute initial relaxation directions (IRD) from the tip of the conical intersection to 
predict the mechanism of the product formation for the CHD/cZc-HT photochemical 
interconversion [13]. A systematic search for the IRD in the region of the 2A1/1A1 
conical intersection yields three relaxation paths. The first two paths, which start in 
the strict vicinity of the intersection, are nearly equivalent energetically and lead to 
production of CHD and cZc-HT, respectively. The third path, which begins at a much 
larger distance, lies higher in energy and ends at a methylenecyclopentene diradical 
(MCPD) minimum. CASSCF and CASPT2 calculations with various basis sets and 
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different active space definitions have been performed to study the photochromic 
cycloreversion reaction in dithienylethenes (Fig.2c; X=S) using [14]. 

Nakamura and Irie [15] carried out semiempirical calculations on the three types of 
molecular systems (furyl, pyrrolyl, and thienyl), and have decided that the energy 
difference between the ring closed and open forms controls the ease of their 
conversion as well as thermal stability. They observed that in the case of the thienyl 
derivative, the ground-state energy difference between the open and closed forms is 
the lowest, compared to furyl and pyrrolyl derivatives and concluded that the energy 
barrier in the case of the thienyl derivative would be the largest, which makes 
cycloreversion reaction less likely. Later, Majumdar et al. performed DFT and TD-
DFT calculations on selective dithienylethenes and their derivatives to study their 
structures, photophysics, and different molecular properties at the ground and 
vertically excited states [16]. They reported that dithienylethenes derivatives of 
maleic anhydrides and pefluorocyclopentenes are more effective photoswitches. 
Based on their calculations using DFT and restricted FOCI methods, they suggested 
the use of such molecules as nonlinear optical materials.  Over the years Irie and co-
workers have done extensive work on design of the dual-mode optical molecular 
switching materials both experimentally [2-4, 15-31] and theoretically [14, 32-37]. 
Lehn et al. have also synthesized some potential molecular optical switches [6, 38-
42]. Theoretical investigations on thermally irreversible photochromic systems have 
also been conducted by other groups, using semi-empirical, ab initio and DFT 
methods [16, 43, 44].  

TD-DFT has been found to have problems in description of excited state potential 
surfaces in the vicinity of conical intersections [45]. These problems are probably 
routed in the poor description of the reference ground state near pericyclic minimum 
within restricted Kohn-Sham (RKS) formalism. The Kohn-Sham formalism of DFT 
was developed for non-degenerate cases; it breaks down for systems with strong 
diradical character and degeneracy of the electronic levels, which is exactly the case 
for conical intersections. However, static (also known as left-right) electron 
correlation can be taken into account by introducing different orbitals for different 
spin. This approach, known as unrestricted Kohn-Sham formalism (UKS) is known to 
yield qualitatively correct description of the bond breaking [46].  

From the detailed analysis of all the previous experimental and theoretical data 
on photochromic compounds, it is clear that computationally inexpensive yet reliable 
theoretical method for property prediction would greatly assist in devising the 
molecular design principles for thermally irreversible photochromics. These 
principles can then be used in synthesis of the new photoswitchable materials. In the 
present paper we report the results of DFT calculations to predict the thermal stability 
property. 

2   Computational Details 

For this study we selected benchmark set of diarylethene perfluorocyclopentenes 
(Fig.3) for which thermal cycloreversion kinetics data is available in the literature. 
GAUSSIAN03 package [47] was used to perform semi-empirical AM1 [48-51], ab 
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initio Hartree-Fock (HF) and  Density Functional theory (DFT) [52, 53] calculations. 
Hybrid DFT functionals such as B3LYP [54-56], BMK [57] and M052x [58] with 
various fractions of Hartree-Fock exchange and the Midi! and 6-31+G* basis sets 
were used.  
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Fig. 3. Benchmark set of molecules with documented thermal stability. 

To characterize each stationary point as a minimum or a transition state and to 
estimate the zero point vibrational energies (ZPE) and vibrational frequencies for all 
optimized species were computed at all levels.  

3   Results and Discussion 

Experiments have suggested that thermal stability of the diarylethenes depends 
on the aryl groups and their aromatic stabilization energies allow conrotatory 
cycloreversion and hence makes the closed ring isomer thermally unstable [2-4, 6]. 

The thermal stabilities of the closed forms of some of the typical photochromic 
compounds have been studied experimentally [3-6] (Fig.3). They report the half-lives 
for the thermal opening process at elevated temperatures. The activation barrier was 
then calculated for these systems using the Arrhenius equation:  

RT
EAk a−

= exp , (1) 

where k is the rate constant, A is the pre exponential factor, Ea is the activation 
energy, R is the universal gas constant and T is the temperature. The electrocyclic 
cycloreversion process is a unimolecular reaction therefore for a given half-life (t1/2) 
we can calculate the rate constant as:  

1 2 3

4 5
6: R1=CH3, R2=H 
7: R1=C2H5, R2=H
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2/1

693.0
t

k −
=  (2) 

Using the Eq.(2) on the data given by Irie et al. [59] for PFC-2 (t1/2=3.3hr at 
T=423K and Ea=139kJ/mol) we calculated the rate constant k= -0.21hr-1. Rearranging 
Eq.(1), the pre-exponential factor A was found to be -2.968·1016. Since cycloreversion 
occurs through the same transition state irrespective of substituents, the value of A is 
expected be similar for all the molecules in Fig.3. Using this value for A we 
calculated the experimental activation energy for other molecules whose t1/2 was 
determined experimentally [3-6], and compared those values to the theoretical 
predictions in (Table 1). 

Table 1. Activation barriers for thermal cycloreversion process from open to closed isomers (in 
kcal/mol) and mean values of the spin operator at TS geometry (<S2>=0 for pure singlet and 
<S2>=1 for pure triplet) 

Molecule 1 2 3 4 5 6 7 
Experiment  26.1 26.8 23.4 29.1 27.6 33.2 28.7 
UAM1 30.1 29.5 29.8 29.9 24.3 27.1 24.8 
UHF/Midi! 30.2 27.9 28.2 30.2 28.2 30.0 27.7 
<S2> value (UHF level) 2.80 2.44 3.09 2.48 2.34 3.28 3.28 
UB3LYP/Midi!//UAM1 28.9 24.6 22.4 28.6 38.2 30.0 27.8 
RM05-2x/Midi!//UAM1 33.6 29.8 26.6 36.2 45.8 43.1 52.7 
UM05-2x/Midi!//UAM1 30.7 27.5 26.2 32.1 39.6 33.1 32.3 
RB3LYP/Midi!//UHF/Midi! 31.7 29.3 26.3 33.9 38.7 37.3 33.6 
UB3LYP/Midi!//UHF/Midi! 30.1 27.1 25.2 31.4 33.4 33.3 30.0 
RBMK/Midi!//UHF/Midi! 38.0 35.3 31.8 40.5 45.4 44.8 42.1 
UBMK/Midi!//UHF/Midi! 37.8 35.2 31.8 40.5 39.8 44.5 42.1 
UB3LYP/Midi! 29.4 29.9 25.2 32.0 34.5 35.4 31.6 
UB3LYP/Midi!(+ZPE) 27.8 27.8 23.2 29.7 31.1 32.8 29.6 
<S2> value (UB3LYP level) 0.62 0.77 0.70 0.75 1.04 0.85 0.83 
UBMK/Midi! 35.8 37.1 34.1 38.7 40.5 43.5 41.6 
UBMK/Midi!(+ZPE) 33.7 34.9 32.0 36.9 36.2 42.9 39.7 
<S2> value (UBMK level) 0.61 0.72 0.65 0.70 1.00 0.77 0.75 
UM05-2x/6-31G* 31.5 31.4 26.6 34.5 39.3 38.2 35.8 
UM05-2x/6-31G*(+ZPE) 29.4 29.3 24.4 32.1 35.6 35.3 32.9 
<S2> value (UM052x level) 0.71 0.80 0.77 0.79 1.08 0.90 0.89 
 
While the HF and AM1 determinants remain unrestricted along the entire path 

from the open to closed form, the UKS solution collapses to the restricted determinant 
soon after the geometry deviates from the TS. This discontinuity on the potential 
surface presented the main technical difficulty and required to generate new 
unrestricted guess on each optimization step with Guess(Always,Mix) keyword. In 
order to avoid this difficulty we used UHF and UAM1 geometry of the transition 
state. However, the compound method UB3LYP//UHF was found to have poor 
agreement with experimental data. As one can see from the Table 1 the unrestricted 
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KS methods (UB3LYP, UBMK or UM052x) give lower energy for the transition state 
than the restricted ones (RB3LYP or RM052x). These UKS activation energies are 
closer to the experimental values in all cases. Zero point energy correction improves 
the agreement with experiment in all cases. The UB3LYP+ZPE method gives the 
deviation from the experimental data of about 1-2 kcal/mol exception that of 5. The 
higher deviation for this molecule (3.5 kcal/mol) could be explained by the higher 
spin contamination of <S2>=1.04. The UM052x functional, designed for kinetic 
calculations, also gives low deviation of about 2-3 kcal/mol. However the UBMK 
method, which was also designed to describe chemical kinetics, strongly 
overestimates the activation barrier due to the fact organic molecules were excluded 
from the training set used in BMK parameterization. 

4   Conclusions 

The kinetics of cycloreversion was studied for the benchmark set of seven 
diarylethene derivatives. The activation energies were calculated from the published 
experimental data, based on the assumption of equal pre-exponential factors in the 
Arrhenius equation. The geometries of the closed and open isomers, as well as 
transition states between them were optimized with AM1, HF, B3LYP, BMK, and 
M05-2x methods using Midi! And 6-31G* basis sets. The predicted activation 
energies were compared with experimental ones. The use of unrestricted Slater 
determinant and zero-point energy correction were found important to achieve better 
agreement with experimental data. Our results suggest that B3LYP and M05-2x 
functionals overestimate the activation barrier for the cycloreversion reaction by 
about 1-2 kcal/mol and 2-3 kcal/mol respectively, while BMK consistently 
overestimates it by 7-9 kcal/mol. We recommend B3LYP/Midi! and M05-2x/6-31G* 
theory levels for prediction of the thermal stability of the photochromic compounds. 
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