Chemical Kinetics on Multi-core
SIMD Architectures

John C. Linford and Adrian Sandu

Virginia Polytechnic Institute and State University
Blacksburg VA 24060, USA
jlinford@vt.edu, sandu@cs.vt.edu

Abstract. Chemical kinetics modeling accounts for a significant por-
tion of the computational time of atmospheric models. Effective appli-
cation of multiple levels of heterogeneous parallelism can significantly
reduce computational time, but implementation on emerging multi-core
technologies can be prohibitively difficult. We introduce an approach
for chemical kinetics modeling on multi-core SIMD architectures we call
abstract vectors which exposes multi-layered heterogeneous parallelism.
The scalar types of elements of the model state data are replaced with
abstract multi-dimensional types. An implementation of the vector type
and its operations can then be optimized for a given multi-core platform.
This approach exposes SIMD parallelism on a fixed grid by aggregating
like operations. We implemented abstract vectors in the Kinetics Prepro-
cessor (KPP) and used our modified KPP to implement SAPRC models
optimized for SSE, OpenMP, and NVIDIA CUDA.

1 Introduction

Many atmospheric models approximate the chemical state of the Earth’s atmo-
sphere by applying a chemical kinetics model over a regular grid. The Commu-
nity Multiscale Air Quality Modeling System (CMAQ) [1], the Weather Research
and Forecasting with Chemistry model (WRF/Chem) [2], and the Sulfur Trans-
port and dEposition Model (STEM) [3] are examples of such models. Chemical
kinetics models trace the evolution of chemical species over time by solving
large numbers of coupled partial differential equations. Computational time is
dominated by the solution of the coupled and stiff equations arising from the
chemical reactions, which may involve millions of variables. Such models often
require hours or days of supercomputer time for realistic regional simulations,
of which up to 90% may be accounted for by chemical kinetics alone.
Increasing power consumption, heat dissipation, and other issues have lead
to the rapid prevalence of multi-core microprocessor chip architectures in re-
cent years. Massively-parallel chipsets with many, possibly heterogeneous, cores
and SIMD capabilities are becoming commonplace. Multi-layered heterogeneous
parallelism offers an impressive number of FLOPS, but at the cost of stagger-
ing hardware and software complexity. Effective application of multiple levels
of heterogeneous parallelism can significantly reduce the computational time of

chemical kinetics simulations, yet implementing these models on emerging multi-
core technologies can be prohibitively difficult.

We introduce abstract vectors as a method for applying multi-layered het-
erogeneous parallelism to chemical kinetics simulations on a regular grid. Each
scalar element of the model state data is replaced by an abstract vector type of
configurable length. Operations on the state vectors are performed as a sequence
of simple vector arithmetic operations (add, multiply, axpy, etc.) on the vector
elements of the state data. This method applies the same operation to every ele-
ment of the abstract vector, exposing SIMD parallelism and greatly simplifying
parallel implementation of the model on SIMD architectures.

We implemented the abstract vector approach in the Kinetic Preprocessor
(KPP) [1]. Our modified KPP generates arbitrary models in terms of abstract
vectors. Implementing a model on a SIMD architecture is as easy as specify-
ing the basic abstract vector arithmetic operations for the platform’s preferred
parallelization method, and a higher-level parallelization most appropriate for
the platform can be applied. We used the modified KPP to implement a single-
precision SAPRC [5] model of 79 species and 211 reactions on Streaming SIMD
Extensions (SSE), OpenMP with SSE, and NVIDIA’s Compute Unified Device
Architecture (CUDA) [9]. The SAPRC model using both SSE and OpenMP
parallelization achieves almost five times the speedup of a serial KPP-generated
SAPRC model.

2 GPUs and the Compute Unified Device Architecture

Graphics Processing Units (GPUs) are low-cost, low-power (watts per flop),
massively-parallel homogeneous microprocessors designed for visualization and
gaming. Because of their power, these special-purpose chips have received a lot
of attention as general-purpose computers (GPGPUs). Examples include the
NVIDIA GeForce GTX 280 with 240 1296MHz processing units and a theo-
retical single-precision peak of 933 gigaFLOPS [0], and the ATI Radeon HD
4870 with 800 750MHz processing units and a single-precision theoretical peak
of 1.2 teraFLOPS [7]. GPUs are often an order of magnitude faster than CPUs,
and GPU performance has been increasing at a rate of 2.5x to 3.0x annually,
compared with 1.4x for CPUs [8]. GPU technology has the additional advan-
tage of being widely-depoloyed in modern computing systems. Many desktop
workstations have GPUs which can be harnessed for scientific computing at no
additional cost to the user.

Expressed as a minimal extension of the C and C++ programming languages,
CUDA [9] is a model for parallel programming that provides a few easily under-
stood abstractions that allow the programmer to focus on algorithmic efficiency
and develop scalable parallel applications. The programmer writes a serial pro-
gram which calls parallel kernels, which may be simple functions or full programs.
Kernels execute across a set of parallel lightweight threads to operate on data in
the GPU’s memory. Threads are organized into three-dimensional thread blocks.
Threads in a block can cooperate among themselves through barrier synchroniza-

tion and fast, private shared memory. A collection of independent blocks forms
a grid. An application may execute multiple grids independently (in parallel) or
dependently (sequentially). The programmer specifies the number of threads per
block (up to 512) and number of blocks per grid. Threads from different blocks
cannot communicate directly, however they may coordinate their activities by
using atomic memory operations on the global memory visible to all threads.

The CUDA programming model is similar to the Single Program Multiple
Data (SPMD) model. The ability to dynamically create a new grid with the right
number of thread blocks and threads for each application step grants greater flex-
ibility than the SPMD model. The concurrent threads express fine-grained data-
and thread-level parallelism, and the independent thread blocks express course-
grained data parallelism. Parallel execution and thread management in CUDA
are automatic. All thread creation, scheduling, and termination are handled for
the programmer by the underlying system.

Since NVIDIA released the Compute Unified Device Architecture (CUDA)
in 2007, CUDA has become the target of massive development activity with
tens of thousands of registered CUDA developers. Hundreds of scalable parallel
programs for a wide range of applications, including computational chemistry,
sparse matrix solvers, sorting, searching, and physics models have been developed
[10]. These applications scale transparently to hundreds of processor cores and
thousands of concurrent threads. The CUDA model is also applicable to other
shared-memory parallel processing architectures, including multi-core CPUs [11].

3 The Kinetic Preprocessor (KPP)

The Kinetic Preprocessor (KPP) [1] is a general analysis tool that facilitates
the numerical solution of chemical reaction network problems. KPP automati-
cally generates Fortran or C code that computes the time-evolution of chemical
species, the Jacobian, and other quantities needed to interface with numeri-
cal integration schemes. It incorporates a library of several widely-used atmo-
spheric chemistry mechanisms and has been successfully used to treat many
chemical mechanisms from tropospheric and stratospheric chemistry, including
CBM-1V [15], SAPRC [5], and NASA HSRP/AESA.

3.1 Chemical Kinetics Modeling

Given and the initial concentrations, KPP solves the differential equation of
mass action kinetics to completely determine the concentrations at any future
time. The derivation of this equation is given at length in [4] and summarized
here.

Consider a system of n chemical species with R chemical reactions r1,...,7g.
The concentration of species i is denoted by ;. Let y be the vector of concen-
trations of all species involved in the chemical mechanism, y = [y1,...,yn]?. We
define k; to be the rate coefficient of reaction r;.

The stoichiometric coefficients s; ; are defined as follows. s; ; is the number
of molecules of species y; that react (are consumed) in reaction r;. Similarly,
s;)rj is the number of molecules of species y; that are produced in reaction ;.
Clearly, if y; is not involved at all in reaction r; then s, ; = s;)rj = 0.

The principle of mass action kinetics states that each chemical reaction pro-
gresses at a rate proportional to the concentration of the reactants. Thus, the

jth reaction in the model is stated as

_ k; .
(ry) Y siyi—— Y sty 1<j<R, (1)

where k; is the proportionality constant. In general, the rate coefficients are time
dependent: k; = k;(1).

The reaction velocity (the number of molecules performing the chemical
transformation during each time step) is given in molecules per time unit by

n
S

wit,y) = k() [T wi™- (2)

i=1
y; changes at a rate given by the cumulative effect of all chemical reactions:

R

d _ .
%yZ:Z(S:’ZJ _57,7_])wj(tay)7 ’Lzl,...,’fl (3)

j=1
If we organize the stoichiometric coefficients in two matrices,

S = (s)1cisni<i<r, 8T = (s{)1<icn1<i<r,
then Equation 3 can be rewritten as

Ly = (8"~ 5 Yalt,y) = Swlt,y) = F(t,), (@)
where S = St — S~ and w(t,y) = [wi,...,wr|T is the vector of all chemical
reaction velocities.

Equation 4 gives the time derivative function in standard aggregate form.
Depending on the integration method, other forms, such as a split production-
destruction form may be preferred. Given the time derivative function and the
initial concentrations, the solution of the ordinary differential equations can be
traced in time using a numerical integration method.

4 Vector KPP

In essence, an abstract vector is a pointer to floating point data on the heap.
Vector operations are performed by applying a scalar operation while looping
over the floating point data. By working with pointers, a chemical mechanism

112|3|4|5|6 |7 1(1(1|1(2]|2]|2
8(9(10(11(12|13|14 21333344
15(16|17(18|19(20|21 414|5(5|5|5]6
22|23(24|25(26(27|28 6667|777
29|30(31|32(33(34|35 8(8|8(8]9|9]9
36|37 (38(39(40|41 |42 9|10|10|10|10|11|11
43|44 |45|46|47|48|49 11)|11)12|12|12|12|13

(a) Reference (b) SSE (c) OpenMP (d) CUDA

Fig. 1. Parallelization in reference, SSE, and OpenMP with SSE, and CUDA
versions of the SAPRC mechanism. Numbers indicate consecutive moments in
time; background shading indicates level 1 parallelization.

implemented with abstract vectors can be applied to any contiguous data in an
existing model.

We modified KPP to generate kinetics models in terms of abstract vectors.
The abstract vector type is described by a C structure encapsulating a pointer
to the first element, the vector length, and the vector pitch (or stride). As many
members as needed can be added to the structure without altering code correct-
ness. Fifteen element-wise vector operations — assign, negate, absolute value, ad-
dition, subtraction, multiplication, division, exponentiation, logl0, square root,
power, maximum, axpy, element get, element set — were defined. Several varia-
tions of these functions were required for vector-scalar operations, making a total
of twenty-nine functions. We call these twenty-nine functions level 0 functions
since they expose the finest granularity of SIMD parallelism. Our modified KPP
is called KPP-VECT.

4.1 Model Code Generation

There are five major calculations performed many times during the time step
integration: LU decomposition (KPPDecomp ()), matrix solution by back substitu-
tion (KPPSolve()), the solution to the coupled ODE system (Fun()), calculation
of the Jacobian (Jac ()), and calculation of the reaction rates (Update RCONST()).
These calculations account for almost 95% of the model time, with KPPDecomp ()
and Fun() being the most expensive in the SAPRC model.

KPP generates large source files of completely unrolled instructions for each
of these computations. In order to use abstract vectors, we replaced the infix
grammar of the KPP code generator module with a prefix grammar that uses
calls to the level 0 functions as operators. C code for Fun() as generated by
KPP-VECT is shown in Listing 1.1. The code for numerical integration (i.e.
a Rosenbrock method) is copied from pre-written source files. These files were
modified to operate on abstract vectors to produce a second code library for
KPP code generation.

KPP-VECT generates kinetics models in C. Implementation of the level 0
functions would have been much simpler for a high-level language with support

©

addvv(&Vdot [1]
mulsv(&_t6t_ ,
addvv(&Vdot [1]
mulsv(& _t5t_ ,
addvv(&Vdot [1]
mulsv(& _t4t_ ,
addvv(&Vdot [1]
mulsv(&_t3t_,

o e e
w N = O

14
15
16

1 /* Original source:

> Vdot[1] = A[127]+0.838%A[161]+0.351%A[166]+0.1xA[170]+0.87
3 *A[185]40.204+A[189]+0.103+A[193]+0.121%A[197]
4 £0.185%A[204]+0.073xA[208];

5 x

6 mulsv(&Vdot[1], 0.333, &A[161]) ;

7 addvv(&Vdot[1], &A[127], &Vdot[1]);

8 mulsv(&_t7t_, 351, &A[166]) ;

&Vdot [1], &_t7t_);
1, &A[170]) ;
&Vdot [1], &_t6t_);
37, &A[185]);
&Vdot [1], &_t5t_);
204, &A[189]);
&Vdot [1], &_tdt_);
103, &A[193]);

0.
0.
0.
0.
0.
0.
0.
0.

17 addvv(&Vdot[1], &Vdot[1], &_t3t.);
18 mulsv(&_t2t_, 121, &A[197]);
19 addvv(&Vdot[1], &Vdot[1], &_t2t_);
20 mulsv(&_t1t_, 185, &A[204]);
21 addvv(&Vdot[1], &Vdot[1], &_tlt_);
22 mulsv(&_t0t_, 073, &A[208]);
23 addvv(&Vdot[1], &Vdot[1l], &_-t0t_);

Listing 1.1. Excerpt from the Fun() source code as generated by KPP-VECT

for operator or function overloading (such as C++), however many emerging
multi-core architectures support only C or C variants. Future work will add
support for other languages, such as Fortran, C++, and MATLAB. (The scalar
implementation of KPP can generate C, FORTRAN 77, Fortran 90, and MAT-
LAB code.)

4.2 Level 0 parallelization

The default implementation of the level 0 functions generated by KPP-VECT
unrolls vector loops, but performs no further optimization. Optimization for a
specific SIMD ISA is easily accomplished by modifying any or all of the twenty-
nine level 0 functions. The default implementations are suitable for use on any
platform, even those without branch prediction. The default implementation of
the level 0 axpy operator is shown in Listing 1.2. SSE level 0 parallelization
uses the XMM registers to compute four elements of the abstract vector simul-
taneously, as shown in Listing 1.3. Level 0 parallelization with NVIDIA CUDA
divides the abstract vector into blocks and calculates each element of the solu-
tion vector with one lightweight thread. The CUDA implementation of the axpy
operator is shown in Listing 1.4.

4.3 Level 1 parallelization

In general, a level 1 parallelization should subdivide the abstract vectors among
several processes. Excluding specialized hardware, a level 1 parallelization should
not be implemented in the twenty-nine level 0 functions, since the level 1 paral-
lelization will generally incur more overhead than the level 0. Thread synchro-
nization, explicit memory transfer, and vector packing may be involved, and the

1 void axpyvv(const float alpha, ref_vector_real_t X,
ref_vector_real_t Y)

2 {
3 size_t 1i;

4 const size_t limit = Y-—>length;

5 const size_t blocklimit = (limit / 8) =% 8;
6 float * const Xe = X—>e;

7 float * const Ye = Y—e;

9 for (i=0; i<blocklimit; i+=8) {

10 Ye[i] += alphaxXe[i];

]

11 Ye[i+1] += alphaxXe[i+1];
12 Ye[i+2] += alphaxXe[i+2];
13 Ye[i+3] += alphaxXe[i+3];
14 Ye[i+4] += alphaxXe[i+4];
15 Ye[i+5] += alphaxXe[i+5];
16 Ye[i+6] += alphaxXe[i+6];
17 Ye[i+7] += alphaxXe[i+7];
18

19 switch(limit — i) {

20 case 7: Ye[i] += alphaxXe[i]; 4++i;
21 case 6: Ye[i] += alphaxXe[i]; 4++i;
22 case 5: Ye[i] 4= alphaxXe[i]; 4++i;
23 case 4: Ye[i] += alphaxXe[i]; ++i;
24 case 3: Ye[i]| += alphaxXe[i]; 4++i;
25 case 2: Ye[i] += alphaxXe[i]; ++i;
26 case 1: Ye[i] += alphaxXe[i];

27 }

28}

Listing 1.2. Default implementation of level 0 axpy operator

level 0 functions are called thousands of times during a typical model run. We im-
plement the OpenMP parallelization in an outer loop in the top-level integration
function.

Figure 1 describes parallelization in serial reference, serial SSE, and OpenMP
with SSE versions of the SAPRC mechanism. Level 0 parallelization is repre-
sented with positive integer numbers; level 1 parallelization is represented with
different background shadings. Level 1 parallelization will vary from platform to
platform, particularly for emerging multi-core technologies (i.e. Cell Broadband
Engine).

5 Experimental Results

Figure 2 shows the speedup of two versions of the SAPRC99 model using ab-
stract vectors. The “SSE” version uses Streaming SIMD Extensions to accelerate
the basic abstract vector operations. This is only one level of parallelism. The
“OpenMP” version uses SSE for basic abstract vector operations and OpenMP
to parallelize the computation over the grid (two layers of parallelism). Eight
OpenMP threads are used for all vector sizes.

A CUDA implementation was completed, however our experimental results
are not available at this time. We fully expect to have these results in the final
copy. Our initial results suggest that the CUDA implementation achieves better

1 size-t 1i;

2 const size_t limit = Y-—>length;

3 const size_t blocklimit = limit / 4;
4 __ml128 m;

5 _-ml128 A = _mm_setl_ps(alpha);

6 --ml28 x Xe = (--ml128x%)X—>e¢;

7 --ml28 x Ye = (--ml128x%)Y—>e¢;

8 for(i=0; i<blocklimit; i++4+) {

9 m = _mm_mul_ps (A, xXe);

10 *Ye = _mm_add_ps(*Ye, m);

11 Xe++; Yet+;

12}

13 i *x= 4;

14 switch(limit—i) {

15 case 3: Y—>e[i] += alphaxX—>e[i]; ++i;
16 case 2: Y—>e[i] += alphaxX—>e[i]; ++i;
17 case 1: Y—>e[i] += alphaxX—>e[i];

18

Listing 1.3. SSE implementation of level 0 axpy operator

1 __global__ void axpyvv_k(const float alpha, float * X, float =* Y,
int len)

2

3 int idx = threadldx.x + blockDim.x % blockIdx.x;

4 if (idx < len) Y[idx] += alphaxX[idx];

5

6 void axpyvv(const float alpha, ref_vector_real_t X,

ref_vector_real_t Y) {
7 int B = 256;
axpyvv_k <<< VLEN / B, B >>> (alpha, X—>e, Y—>e, VLEN);

o3

Listing 1.4. CUDA implementation of level 0 axpy operator

performance than the OpenMP version. The principle difficulty in developing
the CUDA implementation is maximizing the ratio of floating-point operations
to memory copies. To this end, the five principle computations (KppDecomp(),
etc.) were converted to thread kernels. This approach is only feasible for GPUs
with very large on-board memories, such as the NVIDIA GeForce GTX 280.

6 Conclusion and Future Work

We have presented a method for exposing SIMD parallelism in chemical kinetics
modeling called abstract vectors. We implemented abstract vectors in the Ki-
netic PreProcessor (KPP) and used the modified KPP to generate versions of
a SAPRC model which leverage Streaming SIMD Extensions (SSE), SSE and
OpenMP, and NVIDIA CUDA. Our vector-based SAPRC mechanism is approx-
imately five times faster than the KPP-generated SAPRC model currently used
in the CMAQ [1], WRF/Chem [2], and STEM [3] production models.

There are several improvements that could be made to the code KPP-VECT
generates. First, memory I/O overhead can be reduced by aggregating operators
into special-purpose level 0 vector operators. For example, computations of the

600.00%

500.00% .’\ = —T

400.00% AY

300.00%
200.00% #—SSE
OpenMP

100.00%

0.00%

D © "z " > 0 v S > ©
"% 2 NV X 9 9 o ©)
N 9T QY OO %\"\3;"0;1/«\6;"

Vector Length

Fig. 2. Percent speedup over scalar KPP code for different vector lengths.

form A =V; x V5 x...xV, occur frequently in the solution of the ODE function.
An “n-multiply” kernel should be developed to reduce the number of memory
copies. Furthermore, aggregating operations will reduce the number of function
calls, thus reducing the code size and alleviating pressure on CBEA local storage.

The addition of a vector-of-vectors type would also improve performance. The
current implementation of KPP-VECT uses arrays of abstract vectors in place
of vectors of vectors, so contiguity of the data between vectors is not guaranteed.
A vector-of-vector type would aggregate data, improving cache utilization and
reducing the complexity of exposed communication processing.

Implementation on the Cell Broadband Engine Architecture (CBEA) requires
further development. The performance of our initial CBEA implementation is
unimpressive, due to the extremely small size of the synergistic processing ele-
ment (SPE) local store. The SPE local store is shared between data and code.
Ideally, a level 1 parallelization would offload the five principle computations
(KppDecomp (), etc.) to the SPEs for processing. However, the compiled size of
the five principle computations is much larger than the available 256 KB local
storage. Portions of the program code must be manually swapped between main
memory and local storage via overlays, and no more than four grid cells can
be processed at a time. This overhead outweighs any benefit gained by mov-
ing computations to the SPE and reduces performance to that provided by the
Power Processing Element (PPE), a standard PowerPC CPU. Alternately, the
SPEs can be used to process the level 0 functions alone. However, the explicit
communication overhead is prohibitive. We are exploring other approaches for
the CBEA.

10

References

10.

11.

12.

13.

14.

15.

. Byun, D.W., Ching, J.K.S.: Science algorithms of the EPA models-3 commu-

nity multiscale air quality (CMAQ) modeling system. Technical Report U.S.
EPA/600/R~99/030, U.S. EPA (1999)

Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock,
W.C., Eder, B.: Fully coupled online chemistry within the WRF model. Atmos.
Env. 39 (2005) 6957-6975

Carmichael, G.R., Peters, L.K., Kitada, T.: A second generation model for regional
scale transport / chemistry / deposition. Atmos. Env. 20 (1986) 173-188
Damian, V., Sandu, A., Damian, M., Potra, F., Carmichael, G.R.: The Kinetic
Preprocessor KPP — a software environment for solving chemical kinetics. Comput.
Chem. Eng. 26 (2002) 1567-1579

Carter, W.P.L.: A detailed mechanism for the gas-phase atmospheric reactions of
organic compounds. Atmos. Env. 24A (1990) 481-518

: Technical brief: NVIDIA GeForce GTX 200 GPU architectural overview. Tech-
nical Report TB-04044-001_v01, NVIDIA Corporation (May 2008)

Mantor, M.: AMD: Entering the golden age of heterogeneous computing.
http://ati.amd.com/technology/streamcomputing/IUCAA_Pune_PEEP_2008.pdf
(September 23-237 2008)

. Himawan, B., Vachharajani, M.: Deconstructing hardware usage for general pur-

pose computation on GPUs. In: Fith Annual Workshop on Duplicating, Decon-
structing, and Debunking (in conunction with ISCA-33). (2006)

Corporation, N.: NVIDIA CUDA compute unified device architecture: Program-
ming guide version 2.0. http://www.nvidia.com/object/cuda_develop.html
(2008)

Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with cuda. In: ACM SIGGRAPH 2008 Courses (SIGGRAPH’08), New York, NY,
USA, ACM (2008) 1-14

Stratton, J., Stone, S., mei Hwu, W.: MCUDA: An efficient implementation of
CUDA kernels on multi-cores. Technical Report IMPACT-08-01, University of
Mlinois at Urbana-Champaign (March 2008)

Flachs, B., Asano, S., Dhong, S.H., Hofstee, H.P., Gervais, G., Kim, R., Le, T., et.
al.: The microarchitecture of the synergistic processor for a cell processor. IEEE
J. Solid State Circuits 41(1) (2006) 63-70

Corporation, I.B.M.: PowerPC Microprocessor Family: Vector/SIMD Multi-
media Extension Technology Programming Environments Manual, http://www-
306.ibm.com/chips/techlib. 2.07¢ edn. (October 2006)

Chen, T., Raghavan, R., Dale, J., Iwata, E.: Cell Broadband Engine Architecture
and its first implementation. IBM developerWorks (June 2006)

Gery, M.W., Whitten, G.Z., Killus, J.P., Dodge, M.C.: A photochemical kinetics
mechanism for urban and regional scale computer modeling. J. Geophys. Res.
94(D10) (1989) 12925-12956

http://ati.amd.com/technology/streamcomputing/IUCAA_Pune_PEEP_2008.pdf
http://www.nvidia.com/object/cuda_develop.html

	Chemical Kinetics on Multi-core SIMD Architectures
	John C. Linford and Adrian Sandu

