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Abstract. When an operational parameter presents extremely high variability, 

uncertainty becomes extreme. Long-tail probability distributions can be used to 

model such uncertainty. We present a queuing system in which extreme uncer-

tainty is modelled using long-tail probability distributions. There have been many 

queuing analyses for a single server queue fed by an M/G/traffic process, in 

which G is a Pareto distribution, that focus on certain limiting conditions. In this 

paper, we present a mathematical model to solve an infinite queuing system with 

one server where the inter-arrival time between jobs follows a Pareto probability 

distribution with shape parameter α and a scale parameter A.  The system service 

time is also a Pareto probability distribution with shape parameter β and scale 

parameter B. We call this the P/P/1 queuing model. 

Keywords: Extreme uncertainty, Pareto queues, long-tails. 

1 Introduction 

When an operational parameter presents extremely high variability, uncertainty be-

comes extreme. Long-tail probability distributions can be used to model such uncer-

tainty. Many real-world systems exhibit extreme variability, where rare but significant 

events dominate system behaviour. Earthquakes, wildfires, and floods follow long-

tailed distributions, with unpredictable inter-arrival times and durations. Similar pat-

terns appear in network traffic, where bursts of data cause congestion, and in financial 

markets, where sudden crashes disrupt stability. Cybersecurity threats and human com-

munication also display heavy-tailed activity, making prediction and management chal-

lenging. 

 

This paper models a P/P/1 queuing system, where both inter-arrival and service times 

follow Pareto distributions, capturing extreme uncertainty. We provide mathematical 

formulations and simulations to analyse the system’s behaviour, offering insights 
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relevant to telecommunications, disaster response, and computational workload man-

agement. 

 

In this paper we will discuss a queuing system with the following characteristics: 

─ The inter-arrival time between jobs has a Pareto probability distribution with shape 

parameter α and a scale parameter A. 

─ The service time has a Pareto probability distribution with shape parameter β and 

scale parameter B. 

─ The queue is infinite. 

─ There is only one server. 

 

We will call this the P/P/1 queuing system. 

The probability distribution for random variable that represents the inter-arrivals time 

is defined by the Pareto I probability distribution with shape parameter α, and location 

parameter A: 

 

𝑓(𝑡) = 𝛼 (
𝑡

𝐴
)

−𝛼−1

, with 𝐸[𝑡] =
𝛼𝐴

𝛼−1
. The corresponding survival function is:  

 

 𝑆(𝑡) = 1 − 𝐹(𝑡) = (
𝑡

𝐴
)

−𝛼

 (1) 

The probability distribution for the service time is also distributed as a Pareto I ran-

dom variable with 𝛽 as shape parameter and B as scale parameter.  

 

𝑔(𝑡) = 𝛽 (
𝑡

𝐵
)

−𝛽−1

, with 𝐸[𝑡] =
𝛽𝐵

𝛽−1
. The corresponding survival function is:  

 𝑍(𝑡) = 1 − 𝐹(𝑡) = (
𝑡

𝐵
)

−𝛽

 (2) 

2 Previous Work 

Many simulation studies have been undertaken to evaluate the performance of queueing 

systems with heavy-tail distributed inter-arrival times, execution times and transfer 

times. In this section, we review some of the most relevant work in this area, focusing 

on studies that have used the Pareto distribution to model heavy-tailed distributions. 

 

Fischer and Cart [1] studied the properties and use of the Pareto distribution to model 

a M/Pareto/1 queue and a Pareto/M/1 queue. They showed that both systems can be 

used to model the transmission of information in a network, with the former being more 

suitable for switched networks and the latter being more suitable for packet transmis-

sion. 
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To overcome the difficulties of simulating systems with heavy-tailed distributions, 

Argibay Losada et al. [2] proposed a method to speed up simulations. They used M/G/1 

systems as workbenches and showed that their method could significantly reduce the 

simulation time. Gross et al. [3] investigated the difficulties of simulating queues with 

Pareto service. They considered truncated Pareto service and showed that it can lead to 

significant errors in the estimation of queue performance. Koh and Kim [4] studied the 

queue performance of Pareto/M/1/k using simulations. They investigated the queue be-

haviour with Pareto inter-arrival distribution and showed that the asymptotic and exact 

loss probabilities can be significantly different. 

 

Fischer et al. [5] studied the one-parameter, two-parameter, and three-parameter Pa-

reto distributions. They showed that the two-parameter Pareto distribution can result in 

lower congestion than the one-parameter Pareto distribution. Inmaculada et al. [6] de-

rived estimators for the truncated Pareto distribution. They also investigated the distri-

bution properties and illustrated its applicability in practice. Albrecher et al. [7] inves-

tigates parameter estimation for tempered Pareto-type distribution tempered with a gen-

eral Weibull distribution in risk management and insurance, offering improved methods 

for parameter estimation. 

 

Recent studies have further explored the impact of heavy-tailed distributions on 

queuing systems. Jiang et al. [8] quantified the efficiency of parallelism in systems 

prone to failures and exhibiting power law processing delays and channel availability. 

They characterized the performance of redundant and split parallelism schemes in terms 

of the power law exponent and delay distribution tail asymptotics.  

 

Building on these results, we model both service times and arrival times as Pareto 

random variables, without truncation, and derive exact and asymptotic queuing behav-

iour models for a single server and investigate the resulting probability distributions. 

3 Modelling Heavy Tails 

A heavy-tailed distribution is a distribution, for which the tail is heavier than any expo-

nential tail. In this distribution, the probability of observing a value far from the median 

is greater than it would be in the normal distribution. That is, the probability of extreme 

values is non-negligible.  

 

More precisely, a distribution of a random variable 𝑋 with function 𝑓, and cumula-

tive function 

 

𝐹(𝑥) = 𝑃[𝑋 ≤ 𝑥], 
 

where 𝑃[𝑋] is the corresponding probability density function, is said to be heavy 

right tailed if lim
𝑥→∞

𝑒𝜑𝑥 𝐹(𝑥) = ∞, for any 𝜑 > 0. It tends to have infinite moments, 

such as infinite variance [9]. 
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Note, that a moment is infinite, if the integral that defines the statistical moment 

converges too slowly to be integrated (divergent), therefore, the moment does not exist. 

Since, a heavy-tailed distribution is also a long-tailed distribution, it follows that 

  

lim
𝑥→∞

𝑃[𝑋 > 𝑥 + 𝑡|𝑋 > 𝑥] = 1, or, equivalently, lim
𝑥→∞

𝐹(𝑥+𝑡)

𝐹(𝑥)
= 1 , for any 𝑡 > 0. 

 

Intuitively, equation states that if 𝑥 exceeds some large value, then it is equally likely 

that it will exceed an even larger value as well. For our problem domain, it means that 

if the system executing a task spends large amount of time, probably it will spend longer 

time to complete it [10]. 

3.1 Probability Distribution of Jobs on System 

Let us start by investigating the probability that certain time lag, say the inter-arrival 

time (but it could also have been the execution time) will persist further into the future 

less than Δ𝑡 units of time given the fact that we know it will persist more than 𝜏 time 

units. Assume Δ𝑡 ≪ 1, thus there cannot happen more than one event in Δ𝑡. Also, as-

sume that the time is discrete, and the time slot is the smallest time interval considered 

in the system, for instance, seconds. 

 

In other words, we wish to find out 𝑃[𝑡 < 𝜏 + Δ𝑡 |𝑡 > τ]. For a Pareto r.v.,  

 

𝑃[𝑡 < 𝜏 + Δ𝑡 ] = 1 − (
𝜏+Δ𝑡

𝐴
)

−α

.  𝑃[𝑡 > τ] = (
𝜏

𝐴
)

−𝛼

. Now, the probability  

 

𝑃[𝑡 < 𝑡 + Δ𝑡 𝑎𝑛𝑑 𝑡 > τ ] = (
𝜏

𝐴
)

−𝛼

−(
𝜏+Δ𝑡

𝐴
)

−α

.  

 

Therefore, 𝑃[𝑡 < 𝑡 + Δ𝑡 |𝑡 > τ] =
(
𝜏

𝐴
)
−𝛼

−(
𝜏+Δ𝑡

𝐴
)
−α

(
𝜏

𝐴
)
−𝛼 = 1 − (1 +

Δ𝑡

𝜏
)

−𝛼

. We observe 

that the corresponding survival function 𝜓𝑎𝑟𝑟(Δ𝑡) = 𝑃[𝑡 > 𝜏 + Δ𝑡 |𝑡 > τ] 

= (1 +
Δ𝑡

𝜏
)

−𝛼

 is a Lomax probability distribution, for which a power series approxi-

mation exists. Also, 𝜓𝑠𝑒𝑟(Δ𝑡) = (1 +
Δ𝑡

𝜏
)

−𝛽

for the service time. 

 

Since 𝐴 is the minimum time for 𝑡, let us fix 𝜏 as 𝐴 for inter-arrival times and 𝐵 for 

service times, to address the general cases, as in any given moment an event will always 

have existed for at least 𝐴 (or 𝐵) units of time before persisting into the future. 

 

Recall that 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+ ⋯ and that  

(1 + 𝑥)𝑝 = 1 + 𝑝𝑥 +
𝑝(𝑝−1)

2
𝑥2 + ⋯. In a Markovian queueing system with survival 

probability 𝐹(𝑡) = 𝑒−𝜆Δ𝑡 = 1 − 𝜆Δ𝑡 +
(𝜆Δ𝑡)2

2
− ⋯, we approximate  
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𝑃[𝑁𝑜 𝑒𝑣𝑒𝑛𝑡] = 𝑃[Δ𝑡 > 𝜏] ≈ 1 − 𝜆Δ𝑡, and under the assumption that only one event 

can occur in the period Δ𝑡, 𝑃[𝑂𝑛𝑒 𝑒𝑣𝑒𝑛𝑡] = 𝑃[𝑡 < 𝜏] ≈ 𝜆Δ𝑡 [11]. 

 

Similarly, with Pareto times:  

 𝑃[𝑁𝑜 𝑒𝑣𝑒𝑛𝑡] = 𝑃[Δ𝑡 > 𝜏] = (1 +
Δ𝑡

𝐴
)

−𝛼

≈ 1 −
𝛼Δ𝑡

𝐴
 (3) 

and 

 𝑃[𝑂𝑛𝑒 𝑒𝑣𝑒𝑛𝑡] = 𝑃[Δ𝑡 < 𝜏] = 1 − (1 +
Δ𝑡

𝐴
)

−𝛼

≈
𝛼Δ𝑡

𝐴
 (4) 

Now we solve the state probabilities for the queueing system. Let 𝑝𝑖(𝑡), the proba-

bility that there are i jobs at time t. Then, 

 

𝑝0(𝑡 + Δ𝑡) = 𝑝0(𝑡) (1 −
𝛼Δ𝑡

𝐴
) + 𝑝1(𝑡) (

𝛽Δ𝑡

𝐵
) 

 

This means that there are two ways in which there could be zero jobs on the system, 

either o job arrived (and no jobs left) or there was one job and then it finished and left. 

With some algebra: 

  
𝑝0(𝑡+Δ𝑡)−𝑝0(𝑡)

Δ𝑡
= 𝑝0(𝑡)

𝛼

𝐴
+ 𝑝1(𝑡)

𝛽

𝐵
, assuming stationary and steady state probabilities 

𝑑𝑝𝑖(𝑡)

𝑑𝑡
= 0, 𝑡ℎ𝑒𝑛 

𝑝1(𝑡) =
𝛼𝐵

𝛽𝐴
𝑝0(𝑡) 

 

For one job we have: 

 

𝑝1(𝑡 + Δ𝑡) = 𝑝0(𝑡)
𝛼Δ𝑡

𝐴
+ 𝑝2(𝑡)

𝛽Δ𝑡

𝐵
 + 𝑝1(𝑡) (1 −

𝛼Δ𝑡

𝐴
) (1 −

𝛽Δ𝑡

𝐵
) 

 

Since Δ𝑡 is so small, and there cannot happen more than one event in such small 

period, all powers of Δ𝑡 vanish: 

 

𝑝2(𝑡) = (
𝛼𝐵

𝛽𝐴
)

2

𝑝0(𝑡) 

And in general,  

 

 𝑝𝑛(𝑡) = (
𝛼𝐵

𝛽𝐴
)

𝑛

𝑝0(𝑡) (5) 

By calling 𝜌 =
𝛼𝐵

𝛽𝐴
 and we find that 𝑝𝑛 = 𝜌𝑛𝑝0. Also, 
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∑ 𝑝𝑛
∞
𝑛=0 = ∑ 𝜌𝑛𝑝0 =∞

𝑛=0 𝑝0 (
1

1−𝜌
) = 1, we find that 𝑝0 = 1 − 𝜌. 

 

Therefore, the number of jobs on a Pareto queuing system still follows a geometric 

probability distribution 𝑝𝑛 = 𝜌𝑛(1 − 𝜌). Then. 

 

𝐸[𝑛] = ∑ 𝑛𝜌𝑛(1 − 𝜌)

∞

𝑛=0

=
𝜌

1 − 𝜌
 

 

A result supported by Whitt [12]. Nevertheless, for a heavy-tailed random variable 

we find that the probability of no event happening in a very small Δ𝑡 interval is almost 

one, as events tend heavily to persist into the future, or 𝑝0 ≈ 1. Thus empirically, a 

closer approximation for the expected number of jobs on the system might be (called 

P/P/1 Series model): 

 𝐸[𝑛] =
𝜌

(1−𝜌)2
 (6) 

And the pdf is closer to 𝑝𝑛 = 𝜌𝑛 

 

Now let us explore the probability distribution of the residence time or system time, 

the time a job stays on the system from entering until it has been served and then exits. 

3.2 Probability Distribution of System Time of M/M/1 Queue 

Let us review first the Markovian case. Let us call 𝑓0(𝑡) the probability distribution of 

the time a job stays on the system when there are no other jobs on the system, that is, 

the execution time. Assume all execution times are i.i.d. random variables with 𝑓0(𝑡) =
𝜇𝑒−𝜇𝑡 . If there is one job on the system when a new job arrives, then the time the arriv-

ing job stays on the system is the execution time of both jobs, that is, the addition of 

two exponentially distributed random variables. Then, the probability distribution of 

the system time of one job when there is one other job already in the system is [11]:  

𝑓1(𝑡) = ∫ 𝑓0(𝛼)𝑓0(𝑡 − 𝛼)𝑑𝛼 = ∫ 𝜇𝑒−𝜇𝛼
𝑡

0

𝜆𝑒−𝜇(𝑡−𝛼)𝑑𝛼 = 𝜇2𝑡𝑒−𝜇𝑡
𝑡

0

 

 

Following on that: 

𝑓2(𝑡) = ∫ 𝑓1(𝛼)𝑓0(𝑡 − 𝛼)𝑑𝛼 =
𝜇3𝑡2𝑒−𝜇𝑡

2

𝑡

0

 

And in general 

 

𝑓𝑛(𝑡) =
𝜇𝑛+1𝑡𝑛𝑒−𝜇𝑡

𝑛!
, 𝑓𝑛(𝑡) is then the probability distribution of the system time when 

there are 𝑛 jobs on the system. Recall that 𝑝𝑛is the probability that there are 𝑛 jobs on 

queue. Therefore, the probability distribution of the system time of any arriving job is 

(with 𝜌 =
𝜆

𝜇
), 
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𝑓(𝑡) = ∑ 𝑝𝑛𝑓𝑛(𝑡)

∞

𝑛=0

 

𝑓(𝑡) = ∑ 𝑝𝑛𝑓𝑛(𝑡)∞
𝑛=0 = ∑ 𝜌𝑛(1 − 𝜌)∞

𝑛=0
𝜇𝑛+1𝑡𝑛𝑒−𝜇𝑡

𝑛!
= (𝜇 − 𝜆)𝑒−(𝜇−𝜆)𝑡, and 

 𝐸[𝑡] = ∫ 𝑡(𝜇 − 𝜆)𝑒−(𝜇−𝜆)𝑡𝑑𝑡 =
1

𝜇−𝜆

∞

𝑡=0
 (7) 

What are the probability distributions of the number of jobs in the system and the 

total system time when execution times and the inter arrival times are Pareto distributed 

random variables? Firstly, we will answer that question for self-similar variables. Sec-

ondly, for regular Pareto random variables. 

3.3 Self-Similarity and Heavy-Tails 

Now, we describe how heavy-tails can cause self-similarity (fractal behaviour), and 

long-range dependence. Let us first assume that we deal with polynomial decay of the 

tail of the probability distribution, and use the Pareto Distribution as an example of 

heavy tailed distribution [13]: 𝑷[𝑿 > 𝒙] = 𝒙−𝜶𝑳(𝒙), 
 

where 𝛼 = 1 𝛾⁄  is an inverse of the extreme value index 𝛾. 𝐿 is a slow varying func-

tion at infinity, that is 𝐥𝐢𝐦
𝒙→∞

𝑳(𝜸𝒙)

𝑳(𝒙)
= 𝟏, for 𝒙 > 𝟎. 

 

In non-self-similar data, the average of a series of samples tends to the population 

mean, as the number of samples increases [11]. That is: 

 

  

Fig. 1. Aggregation of self-similar data (Pa-
reto distribution). Average does not smooth 

Fig. 2. Aggregation of non-self-similar data 
(exponential distribution). Average is 
smoothed 

𝑃 [ lim
𝑥→∞

1

𝑛
∑ 𝑋𝑖 = 𝜇𝑛

𝑖=1 ] = 1, where 𝜇 = 𝐸[𝑋𝑖], 𝑉𝑎𝑟 [
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 ] =

𝜎2

𝑛
, and 𝜎 is the 

standard deviation of the population. 
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The latter means that deviations of the sample mean with respect to the population 

mean decay proportionally to the size of the sample. Hence, as we aggregate data aver-

aging larger collections, the averages become smoother, approaching the sample mean.  

 

In [14], it is shown that in self-similar data something different happens: 

𝑉𝑎𝑟 [
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 ] = 𝜎2𝑛−𝛼, where 𝛼 < 1. Hence, the sample mean converges to the pop-

ulation mean much slower. This implies that, with non-negligible probability, the exe-

cution time of a collection of jobs can be much larger or much smaller than the execu-

tion time computed using population mean. There is a non-negligible probability of 

having a exceedingly long runtime to solve the tasks, considerably longer than the pop-

ulation mean. It can create the self-similar profile shown in Figs. 1-2. 

 

There are several, not equivalent, definitions of self-similarity. The standard one states 

that a continuous-time process 𝑌 = {𝑌(𝑡), 𝑡 ≥ 0} is self-similar (with self-similarity or 

Hurst parameter H), if it satisfies the condition [15]: 

𝑌(𝑡) ≡ 𝑎−𝐻𝑌(𝑎𝑡),  t, a > 0, and 0.5 < 𝐻 < 1 (8) 

where the equality means that the expressions have equivalent probability distribu-

tion.  

 

A process satisfying Eq. (8) can never really be stationary one as it requires that 

𝑌(𝑡) ≡ 𝑌(𝑎𝑡), (or rather the distribution of {𝑌(𝑡 + 𝑠) − 𝑌(𝑡)} does not depend on 𝑡). 

As we show bellow, in our application, this does not hold, so we assume that 𝑌(𝑡) has 

stationary increments. Let us 𝑡 = 1 and a= 𝑡 in Eq. (1), thus,  

 

Y(t) ≡ 𝑡𝐻Y(1),  t, 0.5 < 𝐻 < 1. 

 

Notice also, that eq. (8) in the context of time series analysis implies that [15] [16]: 

 

 𝑧𝑛(𝑡) = ∑ 𝑋(𝑖)𝑛
𝑖=1 ≡ 𝑛𝐻𝑋(1) (9) 

Where the equality represents equality in probability distribution and 𝑧𝑛(𝑡) is the 

accumulation process for 𝑛 jobs execution time.  

 

We assume 𝑧1(𝑡) to be the service time for any job, that is,  𝑓0(𝑡) = 𝑓(𝑧1(𝑡)) is the 

probability distribution of the wait when there is no job been serviced when the new 

job arrives. That is that wait time is only the service time for the new job, and 𝑓𝑛(𝑡) =
𝑓(𝑧𝑛+1(𝑡)). Then the probability distribution of the wait time is: 

 𝑓(𝑡) = ∑ 𝑝𝑛𝑓𝑛(𝑡)∞
𝑛=0  (10) 

With 

 𝑓𝑛(𝑡) = 𝑓(𝑧𝑛+1(𝑡)) = (𝑛 + 1)𝐻𝑓(𝑧1(𝑡)) (11) 
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3.4 Using Fractional Differentiation to Find the Probability Distribution of 

Service Time 

Where 𝑓(𝑧𝑛(𝑡)) is the probability distribution of the system time when there are n 

jobs on the system and 𝑓(𝑧1(𝑡)) is the probability distribution of the system time when 

there is only one job on the system, or the execution time for one job (a presumably 

long-tailed pdf). Thus, the probability distribution for system time is: 

 

𝑓(𝑡) = ∑ 𝑝𝑛𝑓𝑛(𝑡)

∞

𝑛=0

= ∑(𝑛 + 1)𝐻𝑓(𝑧1(𝑡))

∞

𝑛=0

𝜌𝑛 

𝑓(𝑡) = 𝑓(𝑧1(𝑡)) ∑(𝑛 + 1)𝐻

∞

𝑛=0

𝜌𝑛 

 

Recall from fractional differentiation that: 

 
𝑑𝛼𝑥𝑘

𝑑𝑥𝛼 =
𝑘!

(𝑘−𝛼)!
𝑥𝑘−𝛼 (12) 

Now, we use Stirling’s approximation: 

 

𝑘!

(𝑘 − 𝛼)!
=

𝑘𝑘𝑒−𝑘√2Π𝑘

(𝑘 − 𝛼)𝑘−𝛼𝑒−(𝑘−𝛼)√2Π(𝑘 − 𝛼)
=

𝑘𝑘

(𝑘 − 𝛼)𝑘−𝛼
𝑒−𝛼√

𝑘

𝑘 − 𝛼
 

 

For 𝑘 ≫ 𝛼 , 

 

𝑘𝑘

(𝑘 − 𝛼)𝑘−𝛼
= (1 −

𝛼

𝑘
)

−𝑘

(𝑘 − 𝛼)𝛼~𝑒𝛼𝑘𝛼 

 

With, 

√
𝑘

𝑘 − 𝛼
~1 

Therefore,  

 
𝑑𝛼𝑥𝑘

𝑑𝑥𝛼
=

𝑘!

(𝑘−𝛼)!
𝑥𝑘−𝛼 = 𝑒𝛼𝑘𝛼𝑒−𝛼(1)𝑥𝑘−𝛼 = 𝑘𝛼𝑥𝑘−𝛼 (13) 

Since 𝑘 ≫ 𝛼 is not our case, we will test the accuracy of the previous approximation 

for 𝑘 = −1 and 𝛼 = 1, since 
𝑑1𝑥−1

𝑑𝑥1 = −
1

𝑥2. That is: 

 

𝑑𝛼𝑥𝑘

𝑑𝑥𝛼
=

𝑑𝑥−1

𝑑𝑥
=

𝑘!

(𝑘 − 𝛼)!
𝑥𝑘−𝛼 =

(−1)!

(−1 − 1)!
𝑥−1−1 =

(−1)!

(−2)!
𝑥−2 
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=
−1−1

(−2)−2
𝑒−1√

−1

−2
(𝑥−2) = −

4√0.5

𝑒
= −1.0405𝑥−2~ − 𝑥−2 

 

Or a 4% error. Now with 𝛼 = 𝐻, and 𝑘 = −1, and considering the chain rule for 

differentiation, we find: 

 

𝑑𝐻

𝑑𝑎
(

1

1 − 𝑎
) =

𝑑𝐻

𝑑𝑎
(1 − 𝑎)−1 =

(−1)!

(−1 − 𝐻)!
(1 − 𝑎)−1−𝐻

𝑑𝐻

𝑑𝑎
(−𝑎) 

=
(−1)!

(−1 − 𝐻)!
(1 − 𝑎)−1−𝐻 (

1!

(1 − 𝐻)!
𝐻(−1))~

𝑎1−𝐻

(1 − 𝛼)1+𝐻
 

 

Therefore if, 

∑ 𝑎𝑛

∞

𝑛=0

=
1

1 − 𝑎
 

 

Then 

𝑑𝐻

𝑑𝑎
∑ 𝑎𝑛

∞

𝑛=0

=
𝑑𝐻

𝑑𝑎
(

1

1 − 𝑎
) 

 

thus, 

 ∑ 𝑘𝐻𝑎𝑛−𝐻∞
𝑘=0 ~

𝑎1−𝐻

(1−𝛼)1+𝐻 (14) 

 

and, 

 ∑ 𝑛𝐻𝜌𝑛∞
𝑛=0 ~

𝜌

(1−𝜌)1+𝐻 (15) 

 

Then, the probability distribution of the system time is: 

 

𝑓(𝑡) = 𝑓(𝑧1(𝑡)) ∑(𝑛 + 1)𝐻

∞

𝑛=0

𝜌𝑛 

 

With 

∑(𝑛 + 1)𝐻

∞

𝑛=0

𝜌𝑛 = ∑𝑗𝐻
∞

𝑗=1

𝜌𝑗−1 =
1

𝜌
∑𝑗𝐻
∞

𝑗=0

𝜌𝑗 

 

Then, 

𝑓(𝑡) = 𝑓(𝑧1(𝑡)) (
1

𝜌
) (

𝜌

(1 − 𝜌)1+𝐻
) = 
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𝑓(𝑡) =
𝑓(𝑧1(𝑡))

(1 − 𝜌)1+𝐻
 

 

Consequently, 

𝐸[𝑡] =
𝐸[𝑧1(𝑡)]

(1 − 𝜌)1+𝐻
 

 

If 𝑧1(𝑡) is has Pareto pdf then, 

 𝐸[𝑡] =
𝛽𝐵

(𝛽−1)(1−𝜌)1+𝐻 (16) 

Since Little’s Law indicates that: 

 𝐸[𝑡] = 𝐸[𝑛]𝐸[𝑎𝑟𝑟 𝑡𝑖𝑚𝑒] = (𝐸[𝑛] + 1)𝐸[𝑠𝑒𝑟  𝑡𝑖𝑚𝑒] (17) 

Then it follows that 𝐸[𝑛] =
1

(1−𝜌)1+𝐻 − 1  

 

Therefore (called P/P/1 Frac1 model),  

 𝐸[𝑛] =
1

(1−𝜌)1+𝐻 − 1 =
1−(1−𝜌)1+𝐻

(1−𝜌)1+𝐻 ≈
1−(1−(1+𝐻)𝜌)

(1−𝜌)1+𝐻 =
(1+𝐻)𝜌

(1−𝜌)1+𝐻 (18) 

4 Modelling Sum of Pareto Random Variables 

The central limit theorem (CLT) states that, under appropriate conditions, the distribu-

tion of a normalized version of the sample mean converges to a standard normal distri-

bution. In the same manner, the addition of random variables with -stable (long-tailed 

probability distribution), when normalized, approaches a well-defined stable limiting 

distribution which depends on  or  [17]. This will allow us to derive a quasi-asymp-

totic model for our queuing system. 

 

The Generalized Central Limit Theorem states that the properly normalized sum 

𝑆𝑛 = ∑ 𝑧𝑖
𝑁
𝑖  of many i.i.d. Pareto r.v.s may be approximated by a stable distribution: 

 𝑙𝑖𝑚
𝑛→∞

𝑃 [
𝑆𝑛−𝑏𝑛

𝑛

1
𝛽𝐶𝛽

< 𝜑] = 𝐹𝛽(𝑥) (19)                                 

In (14) ( )F x
 is a stable distribution with index 𝛽. The normalization coefficient is: 

 𝐶𝛽 = [Γ(1 − 𝛼)cos (
𝜋𝛼

2
)]

1 𝛽⁄

 (20) 

The shift coefficient is: 

 𝑏𝑛 =
𝑛𝛽

𝛽−1
 (21) 
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4.1 Tail Asymptotic of Heavy-Tail Sums 

According to Zaliapin et al [18] an approximation for the upper quantiles can be ob-

tained by noticing that the tail 1 ( )F x−  of a stable distribution has a simple asymptotic: 

 

lim
𝑥→∞

𝑥𝛽(1 − 𝐹𝛽) = 𝐶𝛼
−𝛽

. 

 

More plainly with r.v.s with Pareto distribution: 

 𝑙𝑖𝑚
𝑛→∞

𝑃[𝑆𝑛 > 𝜑] = 𝜃 = (
𝜑−𝑏𝑛

𝑛

1
𝛽

)

−𝛽

= 𝑛(𝜑 − 𝑏𝑛)−𝛽 (22) 

 

And thus, 

 P[𝑆𝑛 = 𝑡] = 𝑛𝛽(𝑡 − 𝑏𝑛)−𝛽−1 (23) 

 

Recall that (1 + 𝑥)𝑝~1 + 𝑝𝑥. Also, (𝑎 − 𝑏)−𝛽 = 𝑎−𝛽 (1 +
𝑏

𝑎
)

−𝛽

~𝑎−𝛽 (1 +
𝛽𝑏

𝑎
).  

 

Therefore, 

 𝑃[𝑆𝑛 = 𝑡] = 𝑛𝛽(𝑡 − 𝑏𝑛)−𝛽−1~𝑛𝛽𝑡−𝛽−1 (1 +

(𝛽+1)𝑛𝛽

(𝛽−1)

𝑡
) = 𝑛𝛽𝑡−𝛽−1 (1 +

𝑛𝛽(𝛽+1)

𝑡(𝛽−1)
) (24) 

Therefore, the probability distribution for system time is: 

 

𝑓(𝑡) = ∑ 𝑝𝑛𝑓𝑛(𝑡)

∞

𝑛=0

= ∑ 𝑝𝑛

∞

𝑛=0

𝑃[𝑆𝑛+1 = 𝑡] 

= ∑ 𝜌𝑛(1 − 𝜌)

∞

𝑛=0

(𝑛 + 1)𝛽𝑡−𝛽−1 (1 +
(𝑛 + 1)𝛽(𝛽 + 1)

𝑡(𝛽 − 1)
) 

= (1 − 𝜌)𝛽𝑡−𝛽−1 [∑ 𝜌𝑛(𝑛 + 1)

∞

𝑛=0

+
𝛽(𝛽 + 1)

𝑡(𝛽 − 1)
∑(𝑛 + 1)2𝜌𝑛

∞

𝑛=0

] 

 

= (1 − 𝜌)𝛽𝑡−𝛽−1 [
1

(1 − 𝜌)2
+

𝛽(𝛽 + 1)

𝑡(𝛽 − 1)
(

ρ + 1

(1 − ρ)3
)] 

 𝑓(𝑡) = 𝛽𝑡−𝛽−1 [
1

(1−𝜌)
+

𝛽(𝛽+1)

𝑡(𝛽−1)
(

ρ+1

(1−ρ)2
)] (25) 

And by the Pareto scaling, if 𝑦 = 𝐴𝑥, then 𝐸[𝑦] = 𝐴𝐸[𝑥], we have (P/P/1 Par Sum): 

 𝐸[𝑡] = 𝐵 [
𝛽

(1−𝜌)(𝛽−1)
+

𝛽(𝛽+1)(1+𝜌)

(𝛽−1)(1−𝜌)2
] (26) 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_16

https://dx.doi.org/10.1007/978-3-031-97573-8_16
https://dx.doi.org/10.1007/978-3-031-97573-8_16


13 

5 Results and Discussion 

To validate the models, a discrete event simulation was carried out. The inter-arrival 

time of each job is Pareto I probability distribution with shape parameter 𝛼, and location 

parameter A, 𝑓(𝑡) = 𝛼 (
𝑡

𝐴
)

−𝛼−1

. For the simulation, 𝛼 = 1.7 and 𝐴 = 1.77059, which 

makes the mean inter-arrival time of 𝐸[𝑎𝑟𝑟 𝑡𝑖𝑚𝑒] = �̅� = 4.3. The probability distribu-

tion for the service time is also distributed as a Pareto I random variable with 𝛽 as shape 

parameter and B as scale parameter, 𝑔(𝑡) = 𝛽 (
𝑡

𝐵
)

−𝛽−1

. For the simulation, 𝛽 = 1.8 

and 𝐵 = 1.51111, which makes the mean service time of 𝐸[𝑠𝑒𝑟𝑣 𝑡𝑖𝑚𝑒] = 𝑆̅ = 3.4. 
Each run consisted of one single batch of 1,000,000 arrivals, with the results shown in 

Table 1. Performance measures of Table 1 were estimated using observed value means 

allowing for transient period. 

 

Simulation results yield a value of W=E[t]= 74.99923 with standard deviation of 

46.5673, and value of L=E[n]= 17.75728 with standard deviation of 10.68285. Results 

for M/G/1 model are also shown. 

 

 Sim M/M/1 P/P/1 Series P/P/1 Frac1 P/P/1 Par Sum M/G/1 

Eq.  
 

𝑆̅

�̅�
 

𝛼𝐵

𝛽𝐴
 

𝛼𝐵

𝛽𝐴
 

𝛼𝐵

𝛽𝐴
 

𝑆̅

�̅�
 

Eq. E[t] 

 

1

𝜇 − 𝜆
 

𝜌

(1 − 𝜌)2 �̅� (
(1 + 𝐻)𝜌

(1 − 𝜌)1+𝐻) �̅� 𝐵

[
 
 
 
 

𝛽

(1 − 𝜌)(𝛽 − 1)

+
𝛽(𝛽 + 1)(1 + 𝜌)

(𝛽 − 1)(1 − 𝜌)2 ]
 
 
 
 

 
𝜌2 + 𝜆2𝜎2

2(1 − 𝜌)
+ 𝜌 

Eq. E[n] 

 

𝜌

1 − 𝜌
 

𝜌

(1 − 𝜌)2 
(1 + 𝐻)𝜌

(1 − 𝜌)1+𝐻 
𝐵

�̅�

[
 
 
 
 

𝛽

(1 − 𝜌)(𝛽 − 1)

+
𝛽(𝛽 + 1)(1 + 𝜌)

(𝛽 − 1)(1 − 𝜌)2 ]
 
 
 
 

 
𝜌2

𝜆
+ 𝜆𝜎2

2(1 − 𝜌)
+

1

𝜇
 

 0.787431 0.806037 0.790697 0.790697 0.790698 0.790698 

E[t] 74.99923 17.52916 77.612345 64.738760 405.389135 51.262932 

E[n] 17.75728 4.155635 18.049383 15.055525 94.2765432 11.921612 

Table 1. Comparing the average with derived models 

6 Discussion 

In Table 1 we can see that eq. (6), 
𝜌

(1−𝜌)2
, gives the best approximation to 𝐸[𝑛] whereas 

eq. (18), 
𝜌

(1−𝜌)2
�̅�, gives the best approximation to 𝐸[𝑡], meaning that model P/P/1 Se-

ries is the best approximation, closely followed by the P/P/1 Frac1 model. 

 

It is also interesting to note that the performance of the well-known M/G/1 model 

is much better than the M/M/1 as simulation results give 𝐿 = 𝐸[𝑛] = 17.76, with 
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M/M/1 estimating 𝐿 = 𝐸[𝑛] = 4.16 and M/G/1 estimating 𝐿 = 𝐸[𝑛] = 11.93, a 

much better result. 

 

Also, even though at first it appears that the P/P/1 Par Sum is way off, with a result 

of 𝐿 = 𝐸[𝑛] = 94.28, it is important to remember that it is an asymptotic model. In 

fact, the average maximum queue length observed, that is, maximum congestion, is 

�̅�𝑚𝑎𝑥 = 1,121.4 jobs, with an all-simulations maximum of 3,438. These extremely large 

values result from rare, but high-impact events of extremely high service times. In 

these extreme cases, P/P/1 Par Sum model would yield better results. 

7 Conclusion 

 The P/P/1 queueing system is a powerful tool for modelling a wide variety of real-

world systems. In this paper, we have shown how the P/P/1 queue can be used to model 

systems with high variability in the inter-arrival and service times. Our results show 

that the P/P/1 Series model can accurately predict the mean number of jobs in the sys-

tem and the mean residence time. This model assumes that the probability of no event 

happening in a very small Δt is almost one, as events tend heavily to persist into the 

future. This assumption is supported by our simulation results, which show that the 

P/P/1 Series model can closely approximate the mean number of jobs in the system and 

the mean residence time. We also find that the P/P/1 Frac1 model is also a close match 

with simulation results, although is fall short in estimating some parameters. Interest-

ingly, the P/P/1 Par Sum model models better conditions in which there is congestion 

because the occurrence exceedingly large service time rare event. 

 

We identify as current limitations of our work that the simulation assumes infinite 

queue capacity, which may not hold in real-world systems with finite resources. Also, 

the models rely on the assumption of steady-state conditions, which may not be valid 

during transient phases or under extreme variability.  

 

Future research could explore extending this model to multi-server systems or incor-

porating additional real-world factors, such as varying service rates or priority queues. 

Also, our work will focus on the use of the P/P/1 Series model to model other real-

world systems. And the use of different simulation techniques to improve the accuracy. 
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