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Abstract. This study explores a formalized dynamical systems model of
the General Escape Theory of Suicide using Sobol and PAWN global sen-
sitivity analyses. The findings highlight the importance of self-feedback
loops, the effect of stressors on aversive internal states, and the inter-
action effects between aversive internal states and the urge to escape
on suicidal ideation and non-suicidal escape behaviors. Time-dependent
sensitivity analysis also reveals the long-term stability of parameter im-
portance over time. These results hold potential for informing clinical
interventions by identifying the most important influences for individual
suicidal ideation.
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1 Introduction

Suicide is a major global public health problem, with over 700.000 deaths a year
[9]. Suicidal behavior is conceptualized as the result of the complex interaction
between many different variables [2]. An influential review article stated that
the prediction of suicidal ideation and behaviors has not improved over the last
50 years [3]. Within the field of suicide prevention, a novel route to better un-
derstand and study this complexity is by working with mathematical models.
These formalized models force researchers and clinicians to make any assump-
tions about the relation of different factors explicit and allow them to test more
vigorously what the theory proposes to predict.

In their paper "Mathematical and Computational Modeling of Suicide as a
Complex Dynamical System," Wang et al. [15] developed a mathematical model
of suicidal thoughts as a system of differential equations. Taking inspiration from
applications of nonlinear dynamical systems theory, their model presents suicidal
ideation as a system of interacting subcomponents, such as stressors, aversive
internal states, suicidal thoughts, and escape behaviors. The advantage of such
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an approach is the ability to test predictions made by verbal theories, which have
generally dominated suicide research in psychology. This model is built from the
newly proposed General Escape Theory of Suicide by Millner et al. [8]. The
formalization of this theory as a mathematical model then forces the developer
to make choices about the type of interactions between subcomponents and
the values of self-feedback loop and interaction parameters [15]. The simulated
data provides insight into whether or not the mathematical model reflects the
expected emergent behavior associated with the phenomena. In particular, the
simulation provides evidence for the rapid-onset and high variability of suicidal
thoughts in response to random stressors and heightened aversive internal states.

Methods for global sensitivity analysis are useful in understanding which pa-
rameters are influencing particular outputs from a model. It explores the effects
of changes in all parameters across the entire parameter space, thereby also
investigating parameter-interaction effects on the final outcome variable mea-
sured [10]. Conducting a sensitivity analysis for the suicide model by Wang et
al. [15] is essential to understanding how the parameter choices affect the model
outcomes, which may provide insights into how to improve model parsimony or
where the mathematical and verbal model may not align (i.e. if the verbal model
posits that a particular parameter is extremely important but has little effect
on the outcome in the simulation). In this project, Sobol sensitivity and PAWN
sensitivity analyses were conducted to explore these questions.

1.1 The Model

The model by Wang et al. [15] defines stressors (St) with a Brownian mo-
tion equation, including both the deterministic drift parameter µ, the stochastic
volatility parameter σ, and the regulating effect of externally-focused strategies,
modulated by parameter f1. Next, the change in a patient’s aversive internal
state (A) is increased by the stressor according to another parameter, a, and a
logistic growth term with a carrying capacity of K2. We also assume that the
aversive internal state is reduced by suicidal thoughts and escape behaviors ac-
cording to parameters d2 and e5, since these can have a functional purpose as a
reprieve from the aversive feelings. Finally, aversive internal state is improved by
the effect of internally-focused strategies according to parameter g2. The change
in the urge to escape (U) is governed by a negative self-feedback loop and pos-
itive influence of the aversive internal state, controlled by parameter b3. They
define the change in suicidal thoughts (T ) as a sigmoidal function which has a
negative self-feedback loop and whose structure is dictated by two parameters,
c41 and c42, which determines the steepness and midpoint of the sigmoidal curve
respectively. The change in escape behavior (X) is defined nearly identically,
with parameters c51 and c52. The change in externally-focused strategies (E)
and internally-focused strategies (I) are also governed by a logistic equation,
plus a positive impact of aversive internal states (regulated by parameters b6
and b7, respectively)and a negative impact of the urge to escape (with param-
eters c6 and c7 for externally and internally focused strategies). The equations
governing the model can be found below.
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St = S0e
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dU

dt
= −c3U + b3A, (3)

dT

dt
= −d4T +

1

1 + e−c41(U−c42)
, (4)

dX

dt
= −e5X +

1

1 + e−c51(U−c52)
, (5)

dE

dt
= f6E (K6 − E) + b6A− c6U, (6)

dI

dt
= g7I (K7 − I) + b7A− c7U (7)

1.2 Global Sensitivity Analysis

While local sensitivity analyses investigate the effect of changes in a single vari-
able on the model output, global sensitivity analysis, all parameters are varied
across the defined parameter space at the same time to investigate both pa-
rameters’ single and interaction based effects [16]. In this paper, we will focus
on two prominent methods: Sobol sensitivity analysis, a variance-based method,
and PAWN sensitivity analysis, a moment-independent method.

Sobol Sensitivity Analysis. Sobol sensitivity analysis decomposes the model
output variance into sensitivity indices for each parameter, allowing for an in-
terpretation of how much a particular output’s variability can be attributed
to a particular parameter or parameter interaction [13]. First, we choose rea-
sonable parameter ranges which are then sampled using a Sobol sequence, a
quasi-random sequence that more efficiently covers the parameter space than
completely random methods such as Monte Carlo. The model is then run for
each combination of parameter values. From here, first-order and higher-order
sensitivity indices are calculated for each parameter.

If we define X = (X1, ..., Xn) as an input vector with n parameters, and
f(X) = Y as the model output, then the variance of the average of that model
output for all possible parameter values provides a useful measure of model
variability as a result of that parameter set. We are particularly interested in the
variance of the average across all possible values of Xi to avoid any dependence
on the value of Xi in the parameter space. For ease of interpretation, we can
define µXi = E(Y |Xi) as the conditional expectation when the parameter Xi is
fixed and µX∼i = E(Y |X∼i) as the expectation when all other parameters are
held constant except Xi, as per standard convention.

The first-order sensitivity index is then described in Sobol [13] as the propor-
tion of the total variance that can be explained by variation in the parameter
set Xi, i.e.
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Si =
V (µXi(Y ))

V (Y )
, 0 ≤ Si ≤ 1. (8)

This provides the main effect of the particular parameter Xi on the output
variability of the model. If this value is high, we can assume a strong, direct
effect of this parameter on the variability in the model output. We can similarly
extend this to second-order indices, where we explore the variance in model
output as a result of all other variables while two particular parameters are
fixed. This can be depicted with the following equation, adapted from Sobol
[13],

Si,j =
V (µX∼i,j

(Y ))− V (µXi
(Y ))− V (µXj

(Y ))

V (Y )
. (9)

If the second-order sensitivity index for a particular parameter combination is
high, we can assume a strong interaction effect between these two parameters
on the output. Given that there are 24 parameters to investigate, looking at
all possible interaction levels would be unrealistic and computationally demand-
ing. Therefore, we can use the total-order sensitivity index as a metric for these
higher-order interactions. The total-order sensitivity index describes the propor-
tion of variance caused by that particular parameter while all other parameters
are fixed. From the Law of Total Variance, we know that

EX∼i(VXi(Y |X∼i))

V (Y )
+

VX∼i(EXi(Y |X∼i))

V (Y )
= 1. (10)

Hence, the first term in the above expression encapsulates total-order sensitivity,
as it averages across all other parameters, the conditional variance caused by the
parameter of interest. Therefore, the total-order sensitivity index of a particular
parameter, Xi, can be described in the following equation (once again adapted
from Sobol [13]),

STi = 1− V (µX∼i(Y ))

V (Y )
. (11)

A high total-order index for a parameter implies it has a strong overall effect,
which includes its interaction and main effects. This would imply that if first
or second-order indices for a parameter were low, but total-order indices were
high, then the model output was likely due to higher-order interactions between
multiple parameters and the parameter of interest.

PAWN Sensitivity Analysis. In situations where output distributions are
highly skewed or bimodal, variance decomposition techniques may not provide
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the most reliable estimates of sensitivity indices. Another approach is PAWN,
which is moment independent [10]. Rather than measuring changes in variability,
it measures distributional changes in the output. After sampling for parameter
combinations, the model is evaluated and its overall cumulative distribution
function (CDF) is calculated without any parameter held constant, representing
the baseline distribution of the output. Then, each parameter is sampled for a
particular conditioning value, Xi. The model is then evaluated for random sam-
ples of all other parameters for each conditioned value of Xi. The output CDF
for each conditioned value of Xi is compared to the original, overall output CDF
using the Kolmogorov-Smirnov statistic. This statistic is then used to calculate
the sensitivity index for the overall effect of that parameter on the output, akin
to the Sobol total-order sensitivity index [11]. However, this calculation cannot
capture first or second-order variance decomposition. As a result, we will use
PAWN to verify the robustness of our result from the Sobol sensitivity analysis.

2 Methods Implementation

2.1 Model Implementation

The model implementation is the same as the version published by Wang et al.
[15], which can be found at https://github.com/ShirleyBWang/math_model_
suicide. As in the original paper, the simulation length was two weeks, cal-
culated as (15 · 1440) minutes in 15 days, with increments of 0.01. The only
adjustment made is the use of the Python compiler library, Numba, which uses
a different random number generator [6]. Given the numerical nature of the
model itself, Numba lends itself well to speeding the model evaluations, reduc-
ing a single model run from 0.3 seconds to 0.002 seconds.

Additionally, for the time-dependent sensitivity analysis, the seed for the
model was set to compare sensitivity for different output values for a partic-
ular run. This output was chosen for its medial variability in output values,
lending itself to interesting interpretations whilst not being overly complex. A
visualization of this output can be found in figure 1.

Fig. 1. Simulation output for Numba seed 504 from the model provided in Wang et
al.[15].
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2.2 Sensitivity Analysis Implementation

The sensitivity analysis was implemented using SALib (version 1.5.0) [5], a
Python library designed for the task. All documentation for library can be found
at https://salib.readthedocs.io/en/latest/index.html. The saltelli()
function from the sample package was used to sample the parameter space ac-
cording to the Saltelli algorithm, which reduces error associated with the Sobol
sequence used for quasi-random sampling of parameter space [12]. The analyze()
functions from packages sobol and pawn were utilized to estimate the sensitiv-
ity indices. The number of conditioning intervals used for the PAWN analysis
was dependent on the sample size, with the number of conditioning intervals
being roughly 1% of the sample size for reliable convergence [1]. Additionally,
the NumPy library (version 1.26.4) [4] and Pandas library (version 2.2.2) [7]
were employed for data manipulation and analysis. Finally, MatPlotLib (version
3.8.0) [14] was imported for visualizations.

3 Results and Discussion

3.1 Maximum Model Output Sensitivity Analysis

We first plotted the output distributions for runs with 210 parameter space sam-
ples to determine the appropriateness of the sensitivity analysis method. From
figure 2, we notice that the output distributions for the maximum of suicidal
thoughts and the maximum escape behavior are highly right-skewed, meaning
that comparison of variance-based sensitivity results with moment-independent,
PAWN sensitivity indices is useful in confirming results. The distribution of
aversive internal state model outputs is relatively evenly distributed, indicating
that we can rely on the results of variance-based, Sobol analysis results for this
output.

Fig. 2. Output distributions for maximum each output variable from model runs (sui-
cidal thoughts, aversive internal state, and escape behavior) with 210 parameter space
samples.

We notice similar results reflected in convergence graphs for both Sobol total-
order indices and PAWN indices (seen in figure 3 and figure 4 respectively).
Increasing the number of parameter space samples for aversive internal state
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model outputs does not significantly improve the convergence of sensitivity in-
dices. However, overall, we notice that the total-order sensitivity indices for any
of the three outputs does not substantially change for more than 216 samples,
with only a minor reduction in the confidence interval. For PAWN indices, lit-
tle information is gained past 210 parameter space samples, since values have
already converged. Hence, further analyses for maxima of model outputs were
conducted with 217 parameter samples for Sobol indices and 214 parameter sam-
ples for PAWN indices.

Fig. 3. Sobol total-order index values for the three highest sensitivity indices for the
maximum of each model output (suicidal thoughts, aversive internal state, and escape
behavior) for an increasing number of parameter space samples with 95% confidence.

Fig. 4. PAWN sensitivity index values for the three highest sensitivity indices for the
maximum of each model output (suicidal thoughts, aversive internal state, and escape
behavior) for an increasing number of parameter space samples with the coefficient of
variation as error.

The PAWN approach to sensitivity indices captures a more general effect
of each parameter on the model output distribution, which may include some
higher-order interactions with other parameters. We can then compare the PAWN
sensitivity indices and the total-order Sobol sensitivity indices to evaluate the ro-
bustness of the results, found in figure 5. As illustrated in both the convergence
plots and the side-by-side total-order and PAWN sensitivity plots, we notice
that the only disagreement between the two methods is between the relative
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importance of the self-feedback loop parameters and c42 and c52, which control
the horizontal placement of the midpoint of the sigmoidal curves for suicidal
thoughts and escape behaviors respectively. The two sensitivity analysis meth-
ods cannot be compared exactly, since they rely on two distinct measurements.
However, the disagreement between relative importance of the midpoints of the
sigmoidal curves indicates that these parameters have a greater impact on the
asymmetric distributional changes on the model output than the overall vari-
ance in the model output. Regardless, the methods agree on which parameters
remain the most important to the model outputs, regardless of their original
distribution.

Fig. 5. Total-order Sobol sensitivity indices (left) and PAWN sensitivity indices (right)
for the maximum of the specified model output. Error for Sobol indices is measured as a
95% confidence interval and the coefficient of variation as error for PAWN indices. Only
parameters with an index greater than 0.01 are visualized for ease of reading. Sobol
sensitivity indices were calculated with 217 samples, compared with PAWN sensitivity
indices calculated with 214 samples.
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As mentioned in section 1.2, the main effects of each parameter can be cap-
tured with first-order Sobol sensitivity indices, shown in figure 6. These agree
with the highest total-order sensitivity indices for each model output. The most
relevant parameters that contribute to variance in the maximum of suicidal
thoughts are d4 (the self-feedback loop of suicidal thoughts), c42 (the midpoint of
the sigmoidal curve for suicidal thoughts), b3 (the effect of the aversive internal
state on the change in the urge to escape), c3 (the self-feedback loop on the urge
to escape) and K2 (the carrying capacity of the aversive internal state) with the
self-feedback loop having the greatest impact. For aversive internal state, the
most influential parameters are overwhelmingly K2 (the carrying capacity for
aversive internal state), b2 (the self-feedback loop on aversive internal states),
and a2 (the effect of stressors on the change in aversive internal states). For es-
cape behavior, the most important parameters identified are e5 (the self-feedback
loop of escape behaviors), c52 (the midpoint of the sigmoidal curve for escape
behavior), and once again c3, b3, and K2.

The high relevance of the self-feedback loops associated with each maximum
for the outcome variable relates to the nonlinear effect of feedback on the system.
All of the self-feedback loops have negative effects on their respective output,
dampening the state’s proportional effect on the rate of change of its output.
Therefore, as these values decrease, the exponential effect of the model output
state is strengthened, and that particular variable can maximize at a higher
peak. This can lead to greater variability in model outputs as a result of changes
to any of their respective self-feedback loops.

In comparison to the total-order Sobol indices seen in figure 5, the same
parameters of importance are highlighted for all model outputs in figure 6. How-
ever, for the maximum of suicidal thoughts and escape behavior, the first-order
sensitivity indices generally have much lower indices than their total-order coun-
terparts. This indicates a high amount of second-order or higher-order interac-
tions for each of these variables. However, the values of the sensitivity indices
for maximum of aversive internal state are almost identical to their total-order
sensitivity indices, indicating that the vast majority of variance in model output
is due to the individual effect of each of these parameters with minimal reliance
on higher-order interactions. This begs the question as to which particular inter-
actions are relevant for the model outputs. As expected, the only second-order
parameter interaction with a sensitivity index greater than 0.01 is between b2
and a2, since a2 is the effect of stressors on the change in aversive internal state,
which in turn directly effects the self-feedback loop parameter b2.

For maximum escape behavior and the maximum of suicidal thoughts, there
are more interesting second-order interaction dynamics, particularly between
parameters governing self-feedback loops. The results of the second-order Sobol
sensitivity analyses are found in figure 7.

We notice that all of the most relevant parameter interactions for a particular
model output involve the parameter associated with its self-feedback loop. For
the maximum of suicidal thoughts and escape behavior, this is d4 and e5 respec-
tively. We also notice the high relevance of K2, a2, b3, and particularly c3 (the
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Fig. 6. First-order Sobol sensitivity indices for all parameters for the maximum of each
model output.
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Fig. 7. Second-order Sobol sensitivity indices for parameters with indices greater than
0.01 for the maximum of suicidal thoughts and escape behaviors.
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parameter associated with the self-feedback loop for the urge to escape). This
highlights, once again, the impact of exponential growth for self-feedback loops
between coupled states. Since the urge to escape has a positive, nonlinear effect
on both suicidal thoughts and escape behaviors, any exponential growth that
results from lowering c3 will greatly impact the results of both escape behaviors
and suicidal thoughts. The cascading effect of variables is also highlighted, as
K2 is the carrying capacity for aversive internal state, a2 is the positive effect
of stressors on aversive internal state, and b3 is the positive effect aversive inter-
nal state on the urge to escape. This in turn feeds both escape behaviors and
suicidal thoughts, whose state will dictate their growth rate as a result of their
self-feedback loops. We again notice the high importance of interactions with
c42 and c52: since these parameters control the placement of these sigmoidal
curves, changes in these parameters will affect the threshold of urge to escape at
which either escape behaviors or suicidal thoughts will sharply increase. Small
perturbations in the parameters introduce nonlinearities that, when combined
with their own self-feedback loops, will starkly affect the model output.

3.2 Time-Dependent Sensitivity Analysis

In order to assess any changes in parameter influence over the two-week simula-
tion, a sensitivity analysis for all three model outputs was conducted each day of
the simulation output found in figure 1. This particular realization of the model
was chosen for its sufficiently fluctuating dynamics, particularly its peak in stres-
sors between the second and third day of the simulation and trough at day 11. In
figure 8, we see the results for the first-order and total-order sensitivity indices
for the five highest sensitivity indices for each model output with 216 samples.
For both types of sensitivity indices, we notice a general trend of stability in
the value of sensitivity indices over the course of the simulation. The general
stability of sensitivity indices over the course of the simulation, despite fluctua-
tions in variable outputs, indicates that the choice of simulation realization seen
in figure 1 does not influence the sensitivity analysis output. The individual in-
fluence of d4 (self-feedback loop of suicidal thoughts) decreases over the course
of the simulation, while its interactions remain highly relevant throughout for
suicidal thoughts. This indicates that while d4 may have a direct importance
in the trajectory of suicidal thoughts initially, its interactions with parameters
governing aversive internal state or urge to escape maintain the overall influ-
ence of the self-feedback loop on the suicidal thoughts output. The self-feedback
loop governed by d4 may also diminish in individual importance as the system
stabilizes and suicidal thoughts decrease.

For aversive internal state, higher-order interactions involving b6 (effect of
aversive internal states on external-focused strategies), c3 (self-feedback loop
on urge to escape), b3 (effect of aversive internal states on change in urge to
escape), and c6 (effect of urge to escape on external-focused strategies) all in-
crease slightly on the second day of the simulation when stressors inflate, before
remaining relatively constant for the remainder of the simulation. As stressors
spike in the early part of the simulation, aversive internal state and the urge
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Fig. 8. The five highest first and total-order sensitivity indices for each model output
on each day of the simulation.
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to escape temporarily amplify each other. This highlights the interaction be-
tween mediating parameters like b3 and c3 that capture the reinforcing loop
where higher aversive states drive a greater urge to escape. This sharp increase
in stressors also drives the activation of externally based strategies as a result of
increased aversive internal state and the urge to escape, which underscores the
importance of parameter interactions involving b6 and c6. We also notice that
a2 (the positive effect of aversive internal states on change in urge to escape)
has a modest individual influence on aversive internal state. In this way, it acts
as a bridge between aversive internal state and the urge to escape, but does not
amplify the reinforcing loop between the two states.

We see a similar trend for higher-order interactions with c3 and b3 for escape
behavior, and a slight decline in interaction importance for c52 following the first
day of the simulation and a modest increase in interaction importance for K2.
This is likely due to the fact that c52 (the midpoint of the sigmoidal curve for
escape behavior) strongly influences the sharp increase of escape behaviors by
interacting with the variable’s self-feedback loop when stressors are high in the
early days of the simulation. Interactions with the carrying capacity for aversive
internal state (K2) increase in relevance as the simulation proceeds, indicating
greater reliance on K2 as a regulating mechanism for aversive internal state.

4 Conclusion and Future Work

Results from a sensitivity analysis of the General Escape model of suicidal
thoughts by Wang et al. [15] highlight the importance of parameters govern-
ing self-feedback loops, carrying capacities for aversive internal states, and the
downregulation of cascading effects of stressors on escape behaviors and suicidal
thoughts. The results also indicate that the relative influence of these parame-
ters are stable throughout the simulation. Interaction effects between aversive
internal state and the urge to escape were also found to greatly impact the
model output. Future research should validate these model findings with clini-
cal data and explore individual differences to refine the model’s applicability to
intervention strategies.
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