
Scheduling in Workflow-as-a-Service Model with Pre-

Parameterized DAG using Inaccurate Estimates

Victor Toporkov [0000−0002−1484−2255], Dmitry Yemelyanov [0000−0002−9359−8245] ,

and Artem Bulkhak

National Research University “MPEI”, Russia
ToporkovVV@mpei.ru, YemelyanovDM@mpei.ru,

BulkhakAN@mpei.ru

Abstract. Workflow is currently the most common execution model for compo-

site applications across multiple disciplines: seismology (CyberShake), bioinfor-

matics (Epigenomics, SIPHT), astrophysics (Montage), gravitational wave phys-

ics (LIGO), hydro and aerodynamics, quantum chemistry, nanotechnology, hy-

drometeorology, modeling of social systems and transport infrastructure. The

workflow is usually a collection of interrelated tasks within the directed acyclic

graph (DAG) model parameterized by a priori, usually inaccurate, user estimates

for tasks (relative computational or data transfer volumes, execution durations

etc.). In this work, we propose an approach for scheduling science-intensive ap-

plications within the framework of the concept of Workflow-as-a-Service

(WaaS). The proposed scheduling model is built based on the critical jobs’

method, which allows us to obtain the deadlines for completing each of the work-

flow tasks under given efficiency criteria and inaccurate user estimates. This

schedule must consider the actual dynamics of the WaaS resources’ utilization

and lifecycle of virtual machines (VMs). To solve this problem, we propose a

novel procedure to group and assign workflow tasks to VMs instances provided

by the Infrastructure as a Service (IaaS) provider.

Keywords: Cloud Computing, Scientific Workflow, Scheduling, Inaccurate Es-

timates, Critical Job, Task, Batch, Hungarian algorithm.

1 Introduction

Many well-known scientific-intensive projects, such as Montage, CyberShake, Epige-

nomics, SIPHT, and LIGO are implemented as workflows [1-16]. IaaS allows a Work-

flow Management System (WMS) to access a practically unlimited pool of virtualized

resources on a “pay-per-use” basis. To date, there are a huge number of workflow man-

agement systems [17]. They include ASKALON, Galaxy, HyperFlow, Kepler, Pegasus,

Taverna, CloudBus and several others. The paradigm of WaaS makes it possible to

implement effective mechanisms for managing continuous flows of diverse types of

jobs in cloud computing. However, this raises a few fundamental problems associated

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

mailto:YemelyanovDM@mpei.ru
https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

2

with organizing the scheduling of the heterogeneous job-flows and composite applica-

tions.

The main purpose of the presented solution is the implementation of WaaS platforms

for monitoring, processing requests, scheduling, and managing heterogeneous cloud

resources, and in particular, the dynamic creation and removal of VMs and containers

for their efficient assignment to various workflows tasks.

The proposed solution intends to take into account a number of important aspects:

1) the presence of multiple IaaS providers and different types of resources; 2) geo-

graphic distribution of data centers; 3) heterogeneity of workflows; 4) the need to im-

plement the “pay-per-use” model for a specific system user; 5) finally, solving the prob-

lem of an efficient deploying of VMs and providing many containers ready for multi-

threaded environment on physical servers.

The rest of this paper is organized as follows. Section 2 reviews work that is related

to our discussion. Section 3 presents the critical jobs’ method (CJM) method for sched-

uling science-intensive applications and its implementation. Sections 4 and 5 introduce

strategies and a general optimization scheme for VMs allocation. Sections 6 and 7 con-

tain software implementation details and workflows scheduling results obtained for the

considered algorithms. Section 8 summarizes the paper.

2 Related Works

The development of cloud technologies and WMS has given new impetus to research

in the field of workflow scheduling in various applications. In particular, one of the

areas of research is related to the active development of a paradigm in cloud computing

WaaS [1-16].

As a rule, in known scheduling algorithms, the total cost of executing a workflow is

used as one of the optimization criteria or restrictions [1-6, 13]. The work [1] proposes

an approach to scheduling workflows in a container cloud environment for the WaaS

model. The paper [2] introduces the use of a workflow broker based on a combination

of on-demand and spot resource instances to minimize flow execution costs while meet-

ing deadline constraints. The authors of [4] propose a time- and budget-aware dynamic

workflow scheduling (DDBWS) algorithm designed specifically for WaaS environ-

ments. DDBWS schedules workflows by solving the problem of packing multiple re-

sources. Unlike existing algorithms, it simultaneously considers the processor and

memory demands of tasks. The proposed algorithm can significantly reduce the total

number of rented VMs. In [6], the results of expanding the functionality of WMS

CloudBus to process multiple workflows are presented and a prototype of a WaaS cloud

platform for applications in the field of bioinformatics is proposed. A budget-con-

strained resource scheduling algorithm for multiple workflows (EBPSM) is imple-

mented. In [13], a scheduling method is proposed that can reduce monetary costs and

complete the work process within the minimum execution time. To analyze the perfor-

mance of the proposed algorithm, an experiment is carried out in the WorkflowSim

environment, and the results are compared with existing well-known algorithms -

HEFT and DHEFT.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

3

One of the main challenges of workflow scheduling is to make it energy efficient for

cloud providers [3, 14, 16]. To date, formal formulations of workflow scheduling prob-

lems in scientific applications with several criteria are known [7, 8]. Artificial intelli-

gence methods are increasingly being used in workflow scheduling tasks [5, 9, 10]. An

important issue is representing the workflow model as a DAG. In a number of applica-

tions, loops are present naturally. In some known WMS (Pegasus. Apache Airflow,

Taverna, Kepler) palliative techniques are used. This results in increased planning time.

In this work, in contrast to the studies discussed above, we propose innovative tech-

nologies and tools for scheduling and managing workflows of varying complexity and

structure, considering many factors affecting the efficiency of using cloud platform re-

sources, and the simultaneous passage of workflows on WaaS platforms.

3 Workflow Scheduling with Critical Jobs’ Method

3.1 Critical Jobs’ Method

The core of WaaS system is obviously the algorithm for processing and scheduling the

workflows. Although there are many approaches to this problem, including classical

ones and presented in the above section, we begin our consideration with the Critical

Jobs’ Method (CJM). The main important feature of CJM is the possibility to prepare

a reference scheduling plan and define execution deadlines for each task of the work-

flow using a priori, usually inaccurate, user estimates.

More formally, the СJM algorithm solves the following problem. The workflow of

data-dependent tasks can be represented with DAG, the vertices of which correspond

to tasks and data transfers (Fig. 1). The processing of the flow of independent tasks is

implemented in groups, in which the tasks are ordered by priorities. A job is a sequence

of tasks (a path on the DAG). Let 𝐺 be a parameterized workflow graph with various

levels of parallelism of its partially ordered tasks. The partial order relation on the set

𝑇 = 𝐽 ∪ 𝐷 of tasks and data transfers is defined with a DAG, where a subset 𝐽 corre-

spond to computational tasks, and a subset 𝐷 - to the data transfers between the tasks.

The set of oriented edges of the graph represents information and logical connections

and dependencies. The graph is parameterized by a priori estimates of relative compu-

tational or data transfer volumes 𝑣𝑖𝑘, execution durations 𝑡𝑖𝑘
0 for tasks 𝑗𝑖 ∈ 𝐽, 𝑖 =

1, … , 𝑛, on the corresponding resource type 𝑘 ∈ 𝐾, 𝐾 is a number of resource types, and

𝑛 is a number of tasks. Examples of these parameters for graph from Fig. 1 on four

types of resources are given in Table 1.

We define the distribution 𝑟 of resources between tasks in 𝐽 over a period of time

[0, 𝑡∗] as follows:

𝑟 = {(𝑎𝑖 , 𝑏𝑖 , 𝑡𝑖), 𝑖 = 1, . . , 𝑛, 𝑎𝑖 = 𝑘 ∨ 𝑘°, 𝑘 = 1, . . , 𝐾, 𝑘° ∈ {1, . . , 𝐾}, 𝑏𝑖 ∈ [0, 𝑡∗) }, (1)

where 𝑎𝑖 is a parameter determining the assignment of a task 𝑗𝑖 ∈ 𝐽 to the corresponding

resource; 𝑏𝑖 and 𝑡𝑖 are, respectively, the start time and execution duration of the task

𝑗𝑖 ∈ 𝐽 on the resource, the type of which is determined by the assignment 𝑎𝑖.

In (1), 𝑎𝑖 = 𝑘 if a task 𝑗𝑖 ∈ 𝐽 is tied to a so-called base resource, the level (for ex-

ample, the number of processors) of which is limited and depends on the capabilities of

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

4

the task parallelization system, the cost of using the resource of the type 𝑘, and a num-

ber of other factors.

Fig. 1. Example of workflow DAG

In the event of a conflict between parallel tasks from 𝐽, competing for the same re-

source of type 𝑘, taking into account the scalability of the computing environment, a

resource of type 𝑘° ∈ {1, . . , 𝐾} is introduced that is not inferior in its characteristics to

the basic one, and at the same time 𝑎𝑖 = 𝑘°. This may be, for example, an additional

processor node of the same type 𝑘 or an unused base node of the type 𝑘° ≠ 𝑘.

Table 1. Examples of parameterization for tasks 𝑗1 , … , 𝑗6

Parameters 𝑗1 𝑗2 𝑗3 𝑗4 𝑗5 𝑗6

𝒕𝒊𝟏
𝟎 2 3 1 2 1 2

𝒕𝒊𝟐
𝟎 4 6 2 4 2 4

𝒕𝒊𝟑
𝟎 6 9 3 6 3 6

𝒕𝒊𝟒
𝟎 8 12 4 8 4 8

𝒗𝒊𝒌 20 30 10 20 10 20

Let us assume that restrictions (deadlines) are configured for completion times of

individual tasks and jobs, i.e. sequences 𝑗𝑖1
, . . , 𝑗𝑖𝐿

 of informationally or logically related

tasks 1 ≤ 𝑖1 ≤ ⋯ ≤ 𝑖𝐿 ≤ 𝑛 that make up the job:

𝑡𝑔
∗ − 𝑡𝑔 ≥ 0, 𝑡ℎ

∗ − ∑ 𝑡ℎ ≥ 0, 𝑔, ℎ ∈ {1, . . , 𝑛},ℎ (2)

where 𝑡𝑔, 𝑡ℎ - completion times of tasks 𝑗𝑔, 𝑗ℎ ∈ 𝐽, and 𝑡𝑔
∗, 𝑡ℎ

∗ - deadlines for task 𝑗𝑔 and

the job containing the task 𝑗ℎ.

 One example of a scheduling criterion is the function of a workflow completion cost:

d1

j1

d2

j2 j3

d3 d6

d5 d4

d7 d8

j6

j4 j5

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

5

 𝐶𝐹 = ∑ ⌈
𝑣𝑖𝑘

𝑡𝑖𝑘
⌉𝑛

𝑖=1 , 𝑡𝑖𝑘 ≥ 𝑡𝑖𝑘
0 , (3)

where 𝑣𝑖𝑘 - is the relative computational volume of task 𝑗𝑖; 𝑡𝑖𝑘 - is the time allocated

for executing a task 𝑗𝑖 on a processor of type k; 𝑛 - is the number of tasks; ⌈∙⌉ denotes

the nearest integer that is not less than the value
𝑣𝑖𝑘

𝑡𝑖𝑘
 of the cost of executing the 𝑖-th

task.

Resource allocation (1) is admissible if constraints (2) are met and the corresponding

optimality criterion is defined, for example (3).

A critical job is a sequence of tasks (containing unassigned tasks) with the largest

sum of specified prior execution estimates using the best combination of resources.

Let us assume the durations of all data transfers 𝑑1, … , 𝑑8 in the workflow model 𝐺 (see

Fig. 1 and Table 1) are equal to one unit of time. Let 𝑡∗ = 20 be the deadline for com-

pleting the workflow. Let us rank critical jobs according to the values of their a priori

maximin duration: (𝑗1, 𝑑1, 𝑗2, 𝑑3, 𝑗4, 𝑑7, 𝑗6); (𝑗1, 𝑑1, 𝑗2, 𝑑4, 𝑗5, 𝑑8, 𝑗6);

(𝑗1, 𝑑2, 𝑗3, 𝑑5, 𝑗4, 𝑑7, 𝑗6); (𝑗1, 𝑑2, 𝑗3, 𝑑6, 𝑗5, 𝑑8, 𝑗6). For the above-mentioned works, this

indicator is respectively equal to 12, 11, 10 and 9 units of time (Fig. 2).

 Assignment to node type 1

0 5

j1 d1

Time

10 15 20

j5

j4
Job 1

j3

j2

d2

d3

d4

d5

d8

d7

d6 j1 d2

d1 j2

j3 j6

j4 d7 j6

d8 j5

j6

Job 4

j6

Job 3

Job 2

Fig. 2. Ranking of critical jobs when assigned to the first node

Then the first critical job in terms of duration corresponds to the path

(𝑗1, 𝑑1, 𝑗2, 𝑑3, 𝑗4, 𝑑7, 𝑗6). It is a priori maximin duration is 12 time units (see Table 1).

After the assignment of tasks to this sequence, the next considered job is

(𝑗1, 𝑑1, 𝑗2, 𝑑4, 𝑗5, 𝑑8, 𝑗6) since tasks 𝑑4, 𝑗5, 𝑑8 have not been assigned yet and the a priori

duration of the job is 11 time units. The resource allocation for the subsequence

(𝑑4, 𝑗5, 𝑑8) must account for the assignment results of the previous critical job. More

detailed information on CJM scheduling, collision resolution and formalization based

on dynamic programming schemes is presented in the paper [18].

The iterative application of this procedure with conflict resolution between parallel

tasks competing for the same resource, in accordance with (1), is the essence of the

critical jobs’ method. Based on this method, it is possible to construct a scheme for the

sequential formation of reference (optimal) and suboptimal schedules for a given effi-

ciency criterion. Let the criterion for the efficiency of resource use be given as a cost

function (3). The 𝐶𝐹 takes the closest to 𝑡𝑖𝑘 duration estimate 𝑡𝑖𝑘
0 that determines the

type k of resource being used (slot set or node). The Gantt chart shown in Fig. 3, repre-

sents the result of workflow scheduling for graph from Fig. 1 on four types of resources

are given in Table 1.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

6

0 5

j1/1 d1

Time

10 15 20

j5/2

j4/1 j6/4

j3/3

j2/1

d2

d3

d4

d5

d8

d7

d6

Assignment to node 3

Assignment to node 4

Fig. 3. Gantt chart of workflow scheduling

3.2 Critical Jobs’ Method Modification

Firstly, we list major features and limitations of the original CJM:

• the method is designed to schedule a single static workflow;

• the point of the base method is to use a multiphases procedure, which identifies

the next critical job and resolves possible conflicts (collisions) with previously

assigned tasks over a shared resource;

• it allows to obtain optimal and close to optimal plans for specified restrictions

on the total cost or task execution time for a single workflow.

Considering the dynamic workflow processing environment, the basic CJM algo-

rithm is available to process incoming workflow jobs individually at the moment of the

arrival to the platform. The main problem that arises is the dynamic component of the

system and compliance with the relevant requirements for the quality of service of each

workflow. In the base implementation of CJM at the conflict resolution stage, it is pro-

posed to reduce the bipartite graph of a “multilayer” collision to a bipartite graph of a

“two-layer” collision by sequentially viewing adjacent pairs of the graph vertices

(tasks) and selecting vertices with the required weight. Thus, each scheduling of the

next critical job may cause a conflict with the previous allocation. Further it can lead to

collisions between parallel tasks and jobs of multiple simultaneously processing work-

flows.

Thus, in our dynamic model, for all arriving workflow jobs we implement only the

first CJM stage of planning time ranges for performing critical job tasks according to

budget and time user restrictions for the whole workflow. These calculations can be

made simultaneously for multiple different workflows without any conflicts for the re-

sources. The resulting time ranges represent execution recommendations and deadlines

for each task which should be further handled by the cloud resource assignment module.

While developing the method, several statements have been made.

1) Since only resource types are considered at CJM planning stage, and not their

specific instances, there are no conflicts within a job, a workflow, or many workflows.

Therefore, the conflict resolution process is not included in the modified CJM but is

transferred to the stage of assigning tasks to specific instances of VMs.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

7

2) The modified CJM builds a workflow execution plan based on a priori time esti-

mates of task execution from given resource types and the data transfer time between

workflow tasks. Information about the amount of data transmitted and the time of each

data transaction is recorded in the result of the CJM operation and passed to the assign-

ment module.

3) At the stage of scheduling a critical job and calculating the additive separable

criterion, in the case of several identical values of the criterion, we settle on the first

one. At this stage it is important to select the optimal value, regardless of the specific

assignment for resource types.

In the result, the modified CJM is applied for each new workflow that arrives on the

WaaS platform, and as the output it provides the following: time ranges of the workflow

tasks execution; tasks’ volume and execution requirements; data volumes and the data

transfer dependencies between the tasks of the workflow.

4 The General Optimization Scheme of the Virtual

Resources Allocation

4.1 Virtual Resources Allocation Strategies

One of the most important problems arose when scheduling and executing many com-

putational tasks from the workflows is the effective allocation and management of

VMs. By managing VMs, we mean determining the moments of start (creation) and

finish (stopping, releasing) of individual VMs and containers, as well as the assignment

and the execution order of ready-to-run computational tasks. We propose several strat-

egies for managing VMs to execute workflow tasks.

Firstly, one can create a new dedicated VM specifically to execute each individual

task and release it when the task is completed. This greedy but flexible strategy allows

us to strictly match VM types and lifetime with the tasks’ requirements, especially in

conditions when the time required to create and shut down VM is much less compared

to the average task execution time. However, the VM creation and preparation time

includes time to configure the necessary software environment and the time to copy and

receive the required input data. The shutdown/cleanup time may increase due to the

need to save and copy the calculation results to the next task of the global data storage

(e.g., Amazon 3s).

Secondly, one can maintain some dynamically changing pool of constantly active

VMs and distribute ready-to-run tasks between them (the so-called control strategy).

The pool dynamics implies a decrease and an increase in the number of active machines,

depending on the computing needs at a certain time. With this approach, it may be

possible to schedule and assign tasks more efficiently by matching tasks’ requirements

with already active VMs and sometimes skip the data transfer routines. For example,

when two consecutive (data-dependent) tasks are executed on the same VM, then the

operation of copying and transferring data is not required. On the other hand, due to the

specifics and variety of workflow structures, as well as their variable number, it is not

always possible to ensure full and constant loading of the entire pool of active VMs.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

8

Thus, some of the VMs will be idle from time to time, thereby reducing the usefulness

and cost-effectiveness of this approach. In addition, a certain difficulty lies in designing

an algorithm for efficiently assigning tasks to available VMs.

Thirdly, there is a mixed strategy, when some basic minimum pool of active VMs is

maintained during the execution of workflows, but additional dedicated VMs can be

created to account for all unassigned ready-to-run tasks.

Since the implementation of the first greedy approach is trivial but does not provide

clear mechanisms to optimize the use of virtual resources, a control strategy is further

considered in this paper.

4.2 High-level Optimization Scheme

To implement the control strategy, we propose the following general algorithm scheme.

1) As input data the algorithm receives execution time plans for the individual tasks,

data transfer volumes between them, as well as available types of VMs. The task

execution plan is the time interval expected for its actual execution (i.e. the earliest start

time and the latest completion time). It is assumed that these time ranges are passed

from modified CJM implementation and maintain the relationship of continuity and

sequence of execution in the initial workflows.

2) At the first stage, the input task flow is divided into parallel execution batches.

The main requirement for dividing is that all tasks in one batch must be independent

(there must be no data dependencies between them) and can be performed in parallel,

taking into account the execution plan. Thus, the entire set of tasks is divided into many

consecutive groups-batches. Tasks with data dependency should be in different,

sequential (although not necessarily adjacent) parallel execution batches. The dividing

into batches can be performed dynamically, taking into account the constantly incoming

tasks. It is enough to operate with two parallel execution bacthes to implement the

general optimization scheme.

3) At the second stage, the algorithm performs sequential scheduling and task

assignment of each batch to the virtual resources. To achieve this, the problem of the

minimum perfect matching (assignment problem) is solved using the Hungarian (Kuhn-

Munkres) algorithm [19].

5 Algorithms to Group Tasks into Parallel Batches

5.1 Generalization and Input Data

The important initial step for efficient VM allocation and processing is to determine the

number of simultaneously required VMs at any given time. This number depends on

the structure of workflows, the relationships between tasks, the time of their execution,

the history of assignment to VMs, etc. Thus, it should be determined dynamically in

the runtime. For this purpose, we propose and study two different algorithms of group-

ing workflow tasks into batches. Each batch should contain tasks which can be executed

in parallel without breaking data dependencies and local deadlines.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

9

 Firstly, we proposed and implemented the algorithm Follow The Leader (FTL) [19].

The main idea behind FTL is to preserve the following invariant given the batch start

time and tasks’ deadlines, no two tasks in the batch can be executed sequentially even

on the fastest VM. Thus, FTL determines the minimum required parallelism level of the

incoming task flow at any given time. The result of its work can be further used for

predicting and dynamic management of multiple VMs.

FTL algorithm receives a set of computational tasks 𝑡𝑖 and a list of available VM

types 𝑉𝑚𝑡
𝑗
. Every task 𝑡𝑖 contains the following information: its own computational

volume 𝑉𝑝𝑖 (which is necessary to predict the time of its execution 𝑇𝑒𝑖 on each type of

VM), the amount of input 𝑉𝑖𝑛𝑖 and output 𝑉𝑜𝑢𝑡𝑖 data, and the relationship of prece-

dence with parent and children tasks. In addition, an expected execution interval is de-

fined for each task (the earliest start time 𝑡𝑟𝑖 and the deadline for completion 𝑇𝑑𝑖) at

the stage of preprocessing by the CJM module. Based on the early start time values 𝑡𝑟𝑖,

the execution time 𝑇𝑒𝑖 on the given virtual machine and the deadline for completion

𝑇𝑑𝑖, two additional characteristics can be computed separately: the earliest completion

time 𝑚𝑖𝑛𝑡𝑓
𝑖 = 𝑡𝑟𝑖 + 𝑇𝑒𝑖 and the latest start time 𝑚𝑎𝑥𝑡𝑠

𝑖 = 𝑇𝑑𝑖 − 𝑇𝑒𝑖.

5.2 ASAP Algorithm

However, despite the implementation of the above-described invariant, FTL algorithm

tends to save and minimize average demand for VMs and to postpone the execution of

all tasks closer to their deadlines. These features may lead to an increase in the required

VM performance and may result in parent and child tasks not being included in adjacent

packages. In turn, this may prevent the reuse of execution data when performing parent

and child tasks on the same VM instance. Thus, as an alternative to FTL we considered

the more straightforward algorithm described in [6]. The basic idea of this algorithm is

to execute each task as soon as possible when all parent tasks are finished. Each task is

placed into the batch following the batch containing its last parent task. We call this

algorithm ASAP. Thus, in contrast to FTL, ASAP strives to execute all tasks immedi-

ately when ready, without considering local deadlines. However, looking ahead, this

policy of placing tasks into batches as early as possible turns out to be more suitable

and flexible for the VM assignment stage.

 Another important numerical metric of the batch grouping quality is the number

𝑁𝑝𝑐 of parent and child tasks in adjacent batches. Generally, such groupings may allow

us to save time on data transfers due to reuse of VMs, their internal data storage and

configurations. Table 2 shows 𝑁𝑝𝑐 provided by FTL and ASAP algorithms for different

workflows. The results in Table 2 demonstrate the general advantage of the ASAP al-

gorithm over FTL in terms of 𝑁𝑝𝑐 even for small workflows consisting of 50 tasks. On

the other hand, the batch grouping result strongly depends on the workflow structure

and the given task deadlines. The greatest advantage is demonstrated in heterogeneous

workflows with tasks of varying duration. However, for MONTAGE workflow con-

sisting of 1000 tasks, ASAP and FTL algorithms provided identical batch groupings

with 𝑁𝑝𝑐 = 834. As a result, ASAP algorithm generally demonstrates more efficient

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

10

results because it groups tasks into batches more tightly and allows for resource reuse

during the workflow execution.

Table 2. Number 𝑁𝑝𝑐 provided by FTL and ASAP algorithms for different workflows

Algorithm LIGO50 GENOME50 CYBERSHAKE50 MONTAGE1000

FTL 31 15 29 834

ASAP 38 48 45 834

5.3 Dynamic VM Allocation

Next, we discuss the problem of efficient resources allocation and assignment for each

batch of parallel execution retrieved with FTL algorithm. It should be noticed that this

assignment operation implicitly assumes the possibility of disabling unnecessary VMs.

The VMA (VM Allocation) algorithm is proposed to solve this problem, based on

the Hungarian Kuhn-Munkres algorithm (Kuhn, H.W., 1955) to find a perfect matching

in a bipartite graph G = (T, R, E), where T is the set of batch B tasks, R is the set of

available resources, and E is the set of edges between T and R. The edge between the

task from T and the resource from R means that the task can be executed on the corre-

sponding VM in compliance with all requirements. The edge weight is a target optimi-

zation criterion of this assignment and scheduling in general. By these means we can

optimize VMs total usage cost, tasks’ execution runtimes, data transfers time, etc. [19].

6 Software Implementation and Analysis

In developing the software implementation of the proposed algorithms, the following

basic assumptions were made.

Firstly, in the current implementation, it is assumed that the expected task execution

time on some instance of VM can be calculated as the ratio of the task computational

volume to a given performance characteristic of the VM. This assumption is optional

and is made for greater clarity of the model, input data and calculations. In future ver-

sions of the program, it is assumed to provide a more flexible calculation of task exe-

cution time, for example, based on a given matrix of correspondence between tasks and

types of available VMs.

The second assumption is there is global data storage with sufficient volume for

simultaneous storage of all intermediate data necessary for transfer between the tasks.

At the same time, the calculated data transfer rate remains the same in parallel copying

of output data from a set of completed tasks. This assumption is necessary to simplify

calculations in cases where the sequential tasks are executed with some acceptable de-

lay, and it is more beneficial to copy output data to a centralized storage, rather than

keep it on a VM until the next task is started. This assumption can be justified in sce-

narios where the volume of transferred data does not exceed a certain critical value, and

centralized, possibly cloud storage implements effective balancing of requests between

several nodes.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

11

Thirdly, the developed program solution does not implement a single best-case pro-

cessing scenario for all possible workflows but provides a set of configuration param-

eters to tailor processing for a specific scheduling scenario. These parameters are pri-

marily aimed at minimizing the schedule calculation time, which can grow cubically

relative to the set of elements in the parallel batch.

An important stage is the preparation of data for the assignment problem and Hungarian

algorithm: calculating the edges’ cost of the considered bipartite graph. Thus, it is nec-

essary to precalculate the expected result and parameters (including the target criterion)

for each pair between the tasks T and VMs R.

Each pair of a task 𝑡𝑖 and a VM 𝑉𝑀𝑗 can be considered independently. The execution

plan of each pair may include VM waiting (idle) time, preparation time, actual task

execution runtime (based on the task computational volume 𝑉𝑝𝑖 and VM performance

𝑃𝑗) and release time. VM preparation time includes the time to create a new machine

and the time to copy the necessary data from the previous related task. Data can be

copied either directly from the VM on which the previous task was executed, or from

global storage. If the current task is scheduled to be performed on the same instance of

VM, then data transfer is not required. Based on the preparation time of the VM and

the task execution time, the required usage time of the VM and the corresponding eco-

nomic cost are calculated.

7 Workflow Scheduling Optimization Results

7.1 Optimization Results

To demonstrate the optimization capabilities of the presented algorithm, we conducted

a series of scheduling experiments on many real workflows, including GENOME,

LIGO, CYBERSHAKE, SIPHT, MONTAGE and their intersecting combinations.

Table 3 shows the main execution characteristics of LIGO workflows in different

optimization scenarios. The results were obtained with developed software in Python 3

environment, CPU Core i5, and 8 GB RAM. The presented results show significant

optimization potential realized by selecting the required criterion for in the imple-

mented algorithm.

Table 3. LIGO Workflow Optimization Results

Optimization Total VM

Cost

Total

Runtime,

sec

Total VM

Time,

sec

Cost minimization 12740 4260 4328

Cost maximization 13057 4576 4754

Runtime minimization 12929 4180 4310

Runtime maximization 12769 4757 4840

VM time minimization 12743 4200 4269

VM time maximization 12952 4823 4980

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

12

7.2 Comparison of VM Allocation Strategies

In this experiment series we study VM allocation efficiency provided by the following

strategies and algorithms.

1. Greedy strategy creates a new dedicated VM for each workflow task. VM

type is selected to optimize the global scheduling criterion while meeting

the execution time deadline. VM usage may require additional uptime to

receive data transfers required for the task execution.

2. Control strategy is represented with the proposed VMA algorithm: VM

assignment procedure optimizes global criteria given the deadline con-

straints for workflow tasks grouped in batches.

Testing was carried out based on a workload consisting of 100 independent work-

flows. The workflow instances were built based on real scientific applications (Mon-

tage, Cybershake, Genome, LIGO, SIPHT) and contain 50 vertices each. The execution

deadline for each individual workflow was generated randomly between the fastest (us-

ing highest performance VMs) and the slowest (using the least performance VMs) pos-

sible execution times. The deadline limit determines the base execution plan and there-

fore affects the allocation variants and strategies. These workflows differ in their struc-

ture, required computational and data transfers volumes. For example, the average ex-

ecution time of Montage workflow is 100 seconds, while Cybershake on average re-

quires 30000 seconds. So, workflows with larger computational volumes may have a

greater impact on the simulation results.

The following environment configuration parameters were studied:

• the arrival rate of workflows to the WaaS platform (quantity per minute);

• time intervals required to create and initialize and to release the VM.

It is worth to mention CJM scheduling step allows us to specify a specialized opti-

mization criterion for each received workflow. This optimization will generally affect

deadlines for the tasks of the workflow.

However, only one common optimization criterion can be used in VMA during the

actual VM allocation. To support specific optimization criteria for input workflows it

is possible to run several instances of VMA algorithms, each processing workflow

matching one particular global criterion.

Table 4 contains total results of the workload execution depending on the workflow

arrival rate (from 0.5 to 100 workflows per minute). Firstly, we note that Greedy exe-

cution results do not depend on the workflow arrival rate: all VMs are created and tai-

lored for specific tasks, so the absolute start time of the task does not affect the choice

of the VM type. On the other hand, VMA scheduling directly depends on the density

of the incoming tasks. So, based on the workflow arrival rate and the composition of

the parallel batches, VMA allocated 5-20% less VM instances by reusing them to exe-

cute several consecutive tasks. This strategy resulted in nearly 5% advantage over the

Greedy strategy by the total VM cost criterion. Total tasks’ execution time remained

nearly constant as it depends on the pre-configured deadlines specific to each workflow

and independent from the arrival rate.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

13

Table 4. Algorithms’ comparison depending on workflow arrival rate

Workflow

Arrival Rate

(per minute)

Algorithm Total Task

Execution Time,

sec

Total

VM

Cost

of Created

VMs

0.5 VMA 409280 13226 3912

1 VMA 409486 13277 4116

2 VMA 409602 13316 4334

6 VMA 409601 13279 4503

12 VMA 409586 13257 4574

60 VMA 409578 13168 4619

100 VMA 409596 13168 4633

* Greedy 409650 13906 4955

Table 5 contains total results of the workload execution depending on the time re-

quired to create and initialize and to release (destroy) VM. This parameter affects the

result of both VMA and Greedy algorithms, as total cost directly depends on total VM

usage time, including periods of VM initialization and release.

Based on the results obtained, VMA allocated 16% less VM instances to execute the

same amount of tasks, resulting in an up to 10% advantage over Greedy algorithms by

the total cost criterion. Sa expected, the advantage increases with increasing VM crea-

tion and initialization time.

Table 5. Algorithms comparison depending on VM initialization and release time

VM

Init/Release

Time

Algorithm Total Task

Execution Time,

sec

Total

Cost

of Created

VMs

0/0 VMA 391361 10878 4175

0/0 Greedy 391559 10885 4955

10/1 VMA 391297 11009 4127

10/1 Greedy 391559 11053 4955

100/10 VMA 391449 12144 4125

100/10 Greedy 391559 12557 4955

300/30 VMA 391453 14576 4134

300/30 Greedy 391559 15899 4955

500/50 VMA 391413 17076 4118

500/50 Greedy 391559 19242 4955

Overall, the following main conclusions can be drawn from the comparison results:

• both VMA and Greedy algorithms meet workflow deadlines in 100% of simu-

lation experiments; total cost optimization implies approximate equality in

terms of total time criterion;

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

14

• VMA exploits the possibility of reusing VMs, minimizing VMs initialization

time and data transfer times between data-dependent tasks; in this way VMA at

average allocates 10-15% less VM instances, resulting in 5% less total VM us-

age cost.

8 Conclusion and Future Work

In this work, a multi-module procedure was proposed and implemented for scheduling

and executing multiple independent workflows. For this purpose, several modifications

of the CJM were implemented, including the possibility of time modeling to receive

and schedule a set of workflows that are spaced in time.

The resource assignment stage allows us to optimize many global characteristics of

cloud resource usage. The proposed solution manages the pool of active VMs by defin-

ing for each instance the creation, preparation, utilization, data transfer and shutdown

intervals. The developed solution has been evaluated on several examples of real-world

workflows. It is worth emphasizing once again that in many respects the results of this

work were obtained based on a study of both classical and highly specialized optimiza-

tion algorithms.

The main limiting factor is the high (cubic) computational complexity of the solution

relative to the parallelism degree of the incoming task flow [19]. Thus, there is a natural

limitation in the size of workflows, the scheduling of which can be completed in a fea-

sible time. Future work will concern problems of scheduling algorithms complexity in

scalable WaaS platforms.

Acknowledgments. This work was supported by the Russian Science Foundation

(project no. 22-21-00372, https://rscf.ru/en/project/22-21-00372/).

References

1. Karmakar, K., Tarafdar, A., Das, R.K. et al. Cost-efficient Workflow as a Service using Con-

tainers. J Grid Computing 22, 40 (2024). https://doi.org/10.1007/s10723-024-09745-7

2. Taghavi, B., Zolfaghari, B. & Abrishami, S. A Cost-Efficient Workflow as a Service Broker

Using On-demand and Spot Instances. J Grid Computing 21, 40 (2023).

https://doi.org/10.1007/s10723-023-09676-9

3. Tarafdar, A., Karmakar, K., Khatua, S., Das, R.K.: Energy-efficient scheduling of deadline-

sensitive and budget-constrained workflows in the cloud. In: International conference on dis-

tributed computing and internet technology. Springer, pp. 65–80 (2021)

4. Saeedizade, E., Ashtiani, M.: Ddbws: A dynamic deadline and budget-aware workflow

scheduling algorithm in workflow-as-a-service environments. J. Supercomput. 77(12),

14525–14564 (2021)

5. Qin, Y., Wang, H., Yi, S., Li, X., Zhai, L.: An energy-aware scheduling algorithm for budget-

constrained scientific workflows based on multi-objective reinforcement learning. J. Super-

comput. 76(1), 455–480 (2020)

6. Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. Workflow-as-a-Service

Cloud Platform and Deployment of Bioinformatics Workflow Applications. Preprint. June

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://doi.org/10.1007/s10723-024-09745-7
https://doi.org/10.1007/s10723-023-09676-9
https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

15

2020. 30 p. https://www.researchgate.net/scientific-contributions/Maria-A-Rodriguez-

2114894132

7. Anurina Tarafdar, Kamalesh Karmakar, Rajib K Das, Sunirmal Khatua. Multi-criteria sched-

uling of scientific workflows in the Workflow as a Service platform // Computers and Elec-

trical Engineering Volume 105, January 2023, 108458

8. Vincenzo De Maio a, Dragi Kimovski . Multi-objective scheduling of extreme data scientific

workflows in Fog // Future Generation Computer Systems. Volume 106, May 2020, Pages

171-184.

9. Huifang Li a, Yizhu Wang a, Jingwei Huang a, Yushun Fan. Mutation and dynamic objec-

tive-based farmland fertility algorithm for workflow scheduling in the cloud // Journal of

Parallel and Distributed Computing. Volume 164, June 2022, Pages 69-82.

https://doi.org/10.1016/j.jpdc.2022.02.005

10. Yang Gu, Jian Cao, Shiyou Qian, Nengjun Zhu, Wei Guan. MANSOR: A module alignment

method based on neighbor information for scientific workflow // Concurrency and Computa-

tion: Practice and Experience Volume36, Issue10, May 2024

e7736. https://doi.org/10.1002/cpe.7736

11. Ahmad, Z., Nazir, B., Umer, A.: A fault-tolerant workflow management system with quality-

of-service-aware scheduling for scientific workflows in cloud computing. Int. J. Commun.

Syst. 34(1), 4649 (2021)

12. B Burkat, K., Pawlik, M., Balis, B., Malawski, M., Vahi, K., Rynge, M., da Silva, R.F., Deel-

man, E.: Serverless Containers–rising viable approach to Scientific Workflows. In: 17th In-

ternational Conference on eScience (eScience). IEEE, pp. 40-49 (2021)

13. Karmakar, K., Das, R.K., Khatua, S.: Resource scheduling for tasks of a workflow in cloud

environment. In: International conference on distributed computing and internet technology.

Springer, pp. 214–226 (2020)

14. Ranjan, R., Thakur, I.S., Aujla, G.S., Kumar, N., Zomaya, A.Y.: Energy-efficient workflow

scheduling using container-based virtualization in software-defined data centers. IEEE Trans.

Ind. Inform. 16(12), 7646–7657 (2020)

15. Silva, R.F., Pottier, L., Coleman, T., Deelman, E., Casanova, H.: Workflowhub: community

framework for enabling scientific workflow research and development. In: 2020 IEEE/ACM

workflows in support of large-scale science (WORKS). IEEE, pp. 49–56 (2020)

16. Medara, R., Singh, R.S. A Review on Energy-Aware Scheduling Techniques for Workflows

in IaaS Clouds. Wireless Pers Commun 125, 1545–1584 (2022).

https://doi.org/10.1007/s11277-022-09621-1

17. Peter Amstutz, Maxim Mikheev, Michael R. Crusoe, Nebojša Tijanić, Samuel Lampa, et al.

(2024): Existing Workflow systems. Common Workflow Language wiki,

GitHub.https://s.apache.org/existing-workflow-systems updated 2024-08-18, accessed 2024-

08-18.

18. Victor Toporkov and Dmitry Yemelyanov (2021). Micro-scheduling for Dependable Re-

sources Allocation // In: Performance Evaluation Models for Distributed Service Networks.

Studies in Systems, Decision and Control. Vol. 343. Editors: Bocewicz, Grzegorz, Pempera,

Jarosław, Toporkov, Victor. Springer International Publishing., pp. 81-105.

19. Toporkov, V., Yemelyanov, D., Bulkhak, A., Pirogova, M. (2024). Job Batch Scheduling

in Workflow-as-a-Service Platforms. In: Sokolinsky, L., Zymbler, M., Voevodin, V., Don-

garra, J. (eds) Parallel Computational Technologies. PCT 2024. Communications in Com-

puter and Information Science, Springer, Cham. vol 2241. Pp. 65–79.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_12

https://www.researchgate.net/scientific-contributions/Maria-A-Rodriguez-2114894132
https://www.researchgate.net/scientific-contributions/Maria-A-Rodriguez-2114894132
https://www.sciencedirect.com/journal/computers-and-electrical-engineering
https://www.sciencedirect.com/journal/computers-and-electrical-engineering
https://www.sciencedirect.com/journal/computers-and-electrical-engineering/vol/105/suppl/C
https://www.sciencedirect.com/journal/future-generation-computer-systems
https://www.sciencedirect.com/journal/future-generation-computer-systems/vol/106/suppl/C
https://www.sciencedirect.com/journal/journal-of-parallel-and-distributed-computing
https://www.sciencedirect.com/journal/journal-of-parallel-and-distributed-computing
https://www.sciencedirect.com/journal/journal-of-parallel-and-distributed-computing/vol/164/suppl/C
https://doi.org/10.1016/j.jpdc.2022.02.005
https://onlinelibrary.wiley.com/authored-by/Gu/Yang
https://onlinelibrary.wiley.com/authored-by/Cao/Jian
https://onlinelibrary.wiley.com/authored-by/Qian/Shiyou
https://onlinelibrary.wiley.com/authored-by/Zhu/Nengjun
https://onlinelibrary.wiley.com/authored-by/Guan/Wei
https://onlinelibrary.wiley.com/toc/15320634/2024/36/10
https://doi.org/10.1002/cpe.7736
https://doi.org/10.1007/s11277-022-09621-1
https://s.apache.org/existing-workflow-systems
https://dx.doi.org/10.1007/978-3-031-97573-8_12
https://dx.doi.org/10.1007/978-3-031-97573-8_12

