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Abstract. In astronomy, precise determination of stellar positions, proper
motions, and parallaxes based on space telescope observations is a Big
Data problem. It requires a dedicated software solver running on a high-
performance computer to analyse billions of input data records and pro-
duce an output stellar catalogue. The solution process relies on a so-
phisticated model to calibrate out the distortions, which are inevitably
presented in the raw input data due to the imperfections of the telescope.
After the solution is calculated, its quality must be assessed for physical
correctness, scientific value, and possible ways of calibration model im-
provement. The tools for the solution quality assessment are as important
as the solver itself and contribute to the solver’s tractability by unveiling
the path to fine-tuning the solving process. In our previous work, we cre-
ated a high-performance astrometric solver AJAS suited for the Japan
Astrometry Satellite Mission for INfrared Exploration (JASMINE). In
the present work, we foster AJAS tractability by integrating it with the
ontology-driven visual analytics platform SciVi leveraging the principles
of multi-purpose ontology-driven API for in-situ data processing. This
integration provides users with high-level management tools for AJAS
computation jobs and high-level visual data mining tools for AJAS solu-
tions. All these tools can be configured via a graphical user Web interface,
extended in Jupyter Notebooks, and executed on the same computing
resource as AJAS, which minimises the data transfer. In this paper,
we elaborate on the technical details of the above-mentioned tools and
demonstrate their capabilities on the real examples of the AJAS solution
quality assessment.

Keywords: Astrometry · Data Fitting · Visual Analytics · Ontology
Engineering · Big Data.
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1 Introduction

Astrometry is a branch of astronomy aiming to precisely determine stellar pa-
rameters like position, proper motion, and parallax based on raw telescope ob-
servations. Accurate values of these parameters are crucial for for fundamental
astronomical and astrophysical studies of the structure and history of the Milky
Way Galaxy. [7].

An astrometric solver is a complex software pipeline tackling a Big Data
problem with uncertainties. It reveals the stellar parameters based on a massive
amount of observational data, which contain uncertainties in the form of various
distortions and noise caused by the imperfections of the telescope optics, de-
tector electronics, etc. To reach its scientific aim, an astrometric solver must be
performant, numerically accurate, and provide tools for assessing and alleviating
uncertainties propagated from the input data to the output.

In our research work, we contribute to the development of the astromet-
ric solver for the Japan Astrometry Satellite Mission for INfrared Exploration
(JASMINE) [10]. For JASMINE, a thorough exploration of the crowded area of
the Milky Way centre is planned, which involves about 115 thousand stars with
9.2 billion observations. For this purpose we have developed at the Institute for
Computational Astronomy (Astronomisches Rechen-Institut, ARI) of Heidelberg
University, Germany, the ARI JASMINE Astrometric Solver (AJAS) suited for
massively parallel high-performance computers [14,15].

For AJAS, we managed to solve the Big Data processing issue by proposing a
dedicated software architecture and utilising state-of-the-art approaches to build
high-performance applications. This allows AJAS to handle the expected full-
scale JASMINE mission’s data within 8.5 hours on a cluster with 5000 CPU
cores. In this paper, we propose an approach of making the AJAS tractable
by the in-situ visual analytics platform SciVi [4] allowing for monitoring and
assessing the solution outcome.

The key contributions of the paper are the following:

1. Bridging astrometry with in-situ visual analytics.
2. Developing the in-situ toolset for assessing the astrometric solution quality

for AJAS.
3. Extending the smart interoperability of the SciVi visual analytics platform

to better handle the in-situ processing cases.
4. Developing a high-performance data access library for AJAS solutions.

2 Methodology

In general, an astrometric observation o is the centroid with particular coordi-
nates (κ;µ) of a stellar image taken by a telescope at a particular moment of
time. The set of observations can be expressed as a function o = f(p), where p
is a vector of model parameters describing, on the one hand, the best knowledge
of the locations and motions of the stars on the celestial sphere, and, on the
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other hand, the best knowledge of the spatial orientation and imaging proper-
ties of the telescope used for making these observations. The function f has a
complicated nature incorporating a lot of effects including, for example, rela-
tivistic effects such as aberration and light bending as well as image distortions
of the optical and electronic imaging system. Therefore, f is not fully known
and cannot be expressed analytically nor inverted to straightforwardly get p.
Instead, an optimisation task arises to find the best fit of p by minimising the
residuals o − c, where c = g(p) is a vector of predicted observations and g is a
model of f . To adequately model the unknown f function by the g function, a
calibration model is introduced that is supposed to describe the differences be-
tween the imaging properties of the ideally specified nominal telescope and the
actually implemented telescope. The calibration model spawns its own nuisance
parameters, which are included in the optimisation process as an integral part
of p.

The data fitting procedure is based on the least squares approach involving
linearisation of g and subsequent solving of the linear equations system. This pro-
cedure has two major problems to tackle. The first problem is a Big Data issue
concerning the size of the system. It depends on the particularities of the astro-
metric mission, but even for relatively small missions, the number of equations
goes into the billions. The second problem is the quality of the calibration model.
To approximate f by g within the target accuracy, the calibration model needs
to be properly fine-tuned. These two problems impose challenging requirements
the software astrometric solver should meet: it should be very high-performant,
flexible, and tractable. It should also contain tools to assess the accuracy and
correctness of the solution, and to appraise the ability of the calibration model
to absorb systematic distortions.

3 Related Work

The JASMINE astrometric problem is formulated adopting the experience from
the ESA Hipparcos [5] and ESA Gaia [7] space astrometry missions and solved
by AJAS utilising the direct approach [14] similarly to the Gaia One Day Astro-
metric Solution (ODAS) [11]. This means that the system of equations for the
least squares data fitting is solved in one go, without iterations, by inverting its
reduced normal matrix M. Since M by its nature is rank-deficient [14], AJAS
leverages singular value decomposition to calculate its pseudo-inverseM+. Com-
putations rely on the state-of-the-art libraries ScaLAPACK [1] and EigenExa [16]
for number crunching and MPI for inter-process communication. Along with
that, hand-crafted optimisations for matrix operations are implemented by con-
sidering the peculiarities of the matrix structure and fine-tuning for data locality,
efficient multithreading, CPU cache usage, and vectorisation [14].

The JASMINE problem is driven by data. This means that data access and
storage are the main bottlenecks of the solver. While running, AJAS scans hun-
dreds of gigabytes and produces terabytes of data, moreover the general data
access pattern is highly random and very cache-unfriendly by its nature. A thor-
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ough inspection of the AJAS solution requires access to all the data generated
during the calculations. For the traditional posthoc analysis made in software
like TOPCAT [17], which is very popular among astronomers, it would be nec-
essary to download the corresponding set of files from the cluster to gain local
access. Even the bare minimum subset for the meaningful analysis (for example,
the array of solution residuals) is more than 100 gigabytes. This, in turn, would
mean spending drastically more time for network communication, than the solv-
ing process takes, and potentially abusing the connection channel. Besides that,
handling the required data volume locally imposes severe requirements on the
performance of a local machine. The natural way to tackle this problem is going
for the so-called in-situ techniques, which “attempt to avoid the overhead of fully
loading and indexing the data in a database management system and improve
performance by progressively building an index during data exploration” [12].

In-situ visualisation and analytics is a broad umbrella term that encloses the
entire paradigm of processing data as it is generated [2,3]. H. Childs et al. propose
an elaborated taxonomy of in-situ systems and define classification criteria to
derive a dedicated type for an arbitrary in-situ system [2]. The main idea of
in-situ processing is twofold: the data can be processed before their generation
is finished, and data transferring overhead is minimised.

Recently, one of the popular and flexible ways of organising in-situ data
processing is Jupyter running on the side of a high-performance computer and
exposing a Python interpreter to the user via a Web browser [9,18]. Analysis
within Jupyter Notebooks gives all the freedom of Python scripting but requires
corresponding programming skills from the scientist. In contrast, scientific visu-
alisation systems like ParaView and VisIt provide in-situ processing capabilities
with a high-level graphical user interface, smoothing the learning curve but con-
straining the scientists by a predefined set of analytical tools [3].

To balance between these two approaches, we leverage the in-situ visual an-
alytics for AJAS with the ontology-driven platform SciVi [4,13]. SciVi can run
in userspace on high-performance computers, exposes a Web interface, and pro-
vides an intuitive visual programming language based on data flow diagrams for
defining visual analytics pipelines using a set of predefined operators. The de-
fined pipelines can then be either executed directly within SciVi or automatically
transformed into the Jupyter Notebooks. The latter allows for the extension of
SciVi operators in Python should they not be enough for advanced analytics
beyond the main expected analytical scenarios. Along with that, it is very easy
to extend SciVi with new operators written in Python, C++, and JavaScript,
making them immediately available in the SciVi Web GUI.

SciVi also can be seamlessly integrated with AJAS supplying settings pa-
rameters directly to AJAS modules and allowing the monitoring of intermediate
AJAS state on the fly.
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4 AJAS Job Management

Typically, AJAS runs on a CPU cluster as a job that is first submitted to the spe-
cific execution queue. The job defines the requested resources (including amount
of RAM, number of cluster nodes and CPU cores, time limit, etc.), the runtime
environment, and the configuration of AJAS (including paths to input and out-
put data, multithreading parameters, etc.). Traditionally, a job is described and
submitted manually, which requires an understanding of the cluster architecture
and knowledge of the specific notation supported by the particular queue man-
ager. The monitoring of the execution is then also manual by requesting the job
status, while no information about the actual AJAS progress can be retrieved. In
this sense, the job submission preparations might be tedious and the tractability
of AJAS is limited.

The SciVi system overcomes this hurdle. For AJAS and the cluster, on which
AJAS should run, ontological profiles are created and saved in the SciVi knowl-
edge base. The AJAS ontological profile (see Fig. 1) describes the AJAS settings
and output data types. The cluster ontological profile (see Fig. 2) describes re-
source limits and available queue types, as well as provides a job template for
the queue manager and the job status retrieving commands. By parsing these
profiles, SciVi automatically builds an intuitive user interface for creating the
AJAS jobs and monitoring their state. Only high-level settings are exposed to
the interface, for example, paths to input and output data and the type of queue
to submit the job to. The low-level settings like multithreading options (“Num-
ber of Building Threads” and “Number of Summation Threads”) are calculated
automatically to gain maximal performance. The process grid (“Number of Pro-
cesses” and “Number of CPU Cores per Process”) and time limit settings are
customizable but SciVi automatically calculates default values for them based
on the chosen input data and queue type. The formulas to calculate the defaults
are a part of the AJAS ontological profile (contained in the “AJAS Job” imple-
mentation). The service outputs “Start Date” and “Progress” allow monitoring
of the particular AJAS job status in realtime.

5 AJAS Solution Analysis

Another part of the demanded AJAS tractability is tuning the solving process
and the calibration model based on the solution quality assessment.

The solution analysis consists of two main steps: automatic generation of a
standard report and custom data mining. The standard report contains a set
of visual and numerical metrics, which, based on our experience, are needed to
estimate the solution quality. Custom data mining relies on the interactive SciVi
capabilities. The data mining is applicable only if a standard report indicates
some solution problems, and it aims to unveil the causes of these problems.

The list of metrics for the standard report and the palette of tools for the
custom data mining are still incomplete and are a matter of extension when
the real JASMINE mission data will be available. So, here we describe only
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Fig. 1: A fragment of AJAS ontological profile. For the nodes, green highlights
the settings given by the user, blue highlights customizable settings which have
computable default values, red highlights settings which are determined auto-
matically.

Fig. 2: A fragment of bwUniCluster 2.0 (the cluster available for academic use
for the universities of Baden-Württemberg, Germany) ontological profile.

three items to demonstrate the idea of our visual analytics pipeline: plotting the
spectrum of M, fitting the Gaussian function to the distribution of astrometric
residuals, and plotting the map of uncertainties in the stellar parameters. The
presented analytical examples are demonstrated on the test cases, which contain
10 thousand stars and 800 million observations and are solved for two astrometric
parameters (stellar position).

5.1 Plotting the Spectrum of M

The mathematical foundation of AJAS has been elaborated in [14]. The main
idea is to solve the linearised system

Dx = o− c, (1)
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where D = (CS), C is the matrix of the Jacobian derivatives of the calibration
model, S is is the matrix of the Jacobian derivatives of the stellar parameters,
o is the vector of observations, c is the vector of predicted observations. These
predictions are made for the given observation model represented by the deriva-
tives in D and the initial guess of the calibration and stellar parameters p. Then,
x is a vector of updates for p.

The system (1) is overdetermined and the normal matrix N = DTD is
rank-deficient, so we use the least squares fitting to resolve x. For this, the
pseudo-inverse matrix N+ must be found, which is computationally not possible
because of the huge size of N . Instead, a reduced normal matrix M is calculated
by forward-eliminating parts of C [14]. The M matrix is then almost two orders
of magnitude smaller than N and can be inverted in reasonable time by the
singular value decomposition:

M+ = ZE−1ZT, (2)

where Z is a matrix of eigenvectors and E is a diagonal matrix of singular values
(non-zero eigenvalues) of M.

The eigenvalue spectrum of M gives information about the degeneracy of
the system. Because of its inherent rank deficiency, the eigenvalue spectrum of
M will always contain zero eigenvalues. These can, however, be eliminated by
appropriately constraining the system. If not eliminated by constraints, these
algebraically but not necessarily numerically zero eigenvalues pose a problem.
In addition, more eigenvalues may become numerically small when there are
not enough observations to determine the corresponding model parameter, con-
tributing to the same problem. Once inverted in (2), these near zero eigenvalues
will become large and numerically destroy the solution. To prevent this, they
have to be zeroed out in E−1.

Logarithmic spectrum plots (Fig. 3) help to inspect the consistency of input
data and the numerical stability of the solution. For example, the top plot in
Fig. 3 shows that the spectrum has several very small eigenvalues spanning the
spectrum’s dynamic range from 10−10 to 108, which is beyond the range of 64-bit
floating point data type. This indicates the numerical instability and degeneracy
of the system. The degeneracy comes from the fact that the system has the free-
dom to either calibrate the observations, bringing them to the predicted stellar
positions, or to update the stellar positions, bringing them to the observations.
To restrict this freedom, the set of stars is used, whose parameters are known
with high precision. These stars come from the Gaia DR3 catalogue [6]. For
them, extra summands are put to the S block of the system’s design matrix D
reinforcing the weight of corresponding Jacobian derivatives. The improvement
of the spectrum in this case is shown in the bottom plot in Fig. 3.

In some cases, zero and also negative eigenvalues may pop up. To stick with
the logarithmic scale, absolute values of eigenvalues are taken, and those, which
were negative, are then marked red in the plot and a corresponding legend ap-
pears explaining the meaning of colours.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_11

https://dx.doi.org/10.1007/978-3-031-97573-8_11
https://dx.doi.org/10.1007/978-3-031-97573-8_11


Fig. 3: Plot of the M spectrum drawn by SciVi using matplotlib [8]. Top: the
S block of the system’s design matrix D is not reinforced by the stars from the
Gaia DR3 catalogue, bottom: the S block is reinforced.

5.2 Fitting a Gaussian to the Residuals

If all systematic uncertainties have been accounted for by the calibration model,
the residuals r = o−c−Dx should have a perfect Gaussian distribution reflect-
ing the remaining, purely random observational noise. If the distribution of r
differs from Gaussian, it means, that the utilised calibration model was unable to
absorb all the systematic errors of the observations, for example, optical distor-
tions introduced by the telescope, geometrical imperfections of the focal plane,
etc. In this case, x is not the desired astrometric solution and the calibration
model has to be improved. Finding the way to that improvement is a challenge.
The first step in that way is the identification of the observations, which de-
viate the distribution from the Gaussian. The common characteristics of these
observations will then give a hint, which effects are missing in the calibration
model.

To allow this type of analysis, the histogram of residuals is built and the
Gaussian curve is fitted to it. There are also tools, which provide the possibility
to perform this operation on an arbitrary subset of observations. Fig. 4 demon-
strates the corresponding visualisation results for two cases. Both plots show
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residuals in one direction (η) of the field-of-view reference system (FoVRS). The
top plot corresponds to the case when the calibration model is unable to absorb
all systematic distortions. Two problems are immediately seen: the goodness of
fit for the Gaussian curve is not high enough, just 0.97, and, more importantly,
the Gaussian distribution is not centred at zero (µ = 10−9). The bottom plot
shows the case when all the systematic distortions are removed. The goodness
of fit for the Gaussian curve is almost exactly 1.0 and it is centred at zero
(µ = 10−14), which reflects the pure random observational noise.

Fig. 4: Fitting the Gaussian curve to the histogram of residuals drawn by SciVi
using matplotlib. Top: systematic remains in the residuals, bottom: systematic
is fully removed. Note, that the axes of both plots have different scales.

5.3 Plotting the Stellar Uncertainties

The pseudo-inverse matrix M+ is a covariance matrix for the S block of (1),
which means, its main diagonal contains standard errors of the stellar parame-
ters. The square roots of these elements represent corresponding uncertainties,
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which, in turn, can be used for the solution quality assessment. To visually in-
spect them, we plot them as a colour-coded stellar map (see Fig. 5). The dots
correspond to the stars drawn in the International Celestial Reference System
(ICRS), and the colours represent uncertainties of a chosen stellar parameter (for
example, one of the position coordinates). This representation way highlights the
sky regions, which are covered worse than others by observations. Based on this
information, the observation strategy of the satellite can be amended to improve
coverage of these problematic regions.

Fig. 5: Map of stellar uncertainties of the first position coordinate in ICRS drawn
in SciVi using matplotlib.

In this example, four categories of stars can be visually distinguished accord-
ing to the uncertainty of the α coordinate (one angular position coordinate in
ICRS):

1. Stars with very low uncertainty are highlighted with a violet colour. As
mentioned in Section 5.1, these stars have a very good initial guess of their
position because they are taken from the Gaia DR3 catalogue and used to re-
solve the degeneracy between the calibration model and stellar positions. As
can be seen in Fig. 5, they are distributed pretty evenly over the JASMINE
target region, providing good coverage of the observed field.

2. Stars with acceptably low uncertainty are highlighted with a blue colour.
These are the majority of stars inside the JASMINE target region, which
have been observed a sufficient number of times to obtain a high-quality
astrometric solution.

3. Stars with higher uncertainty are highlighted with a greenish and green
colours. These stars are on the border (especially in the corners) of the
JASMINE target region, so they are observed fewer times, which slightly
worsens the quality of the astrometric solution for them.
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4. A single star located approximately at (−1.652;−0.519) with very high un-
certainty is highlighted with a red colour. This star has only 59 observations,
while the others have, on average, 77 thousand observations (almost four or-
ders of magnitude more). Therefore, the solution of this star should be used
with caution. However, since in this category there is only one star out of
10 thousand observed in this test case, the overall quality of the solution is
considered high.

As an improvement for this visualization type, we plan to implement the
ability to query and plot corresponding observations for chosen stars on demand.
Plotting all observations at once is pointless, but showing individual observations
for specific stars at the appropriate zoom level might be helpful for inspecting
the astrometric solution.

In the future, we are also interested in finding a presentation form for the
off-diagonal elements of M+, which express the covariances of different stellar
and higher-order calibration parameters.

5.4 Organizing the Custom Visual Analytics in SciVi

The standard report gives an overview of the whole solution, but if problems are
identified, more fine-grained manual analysis is needed. SciVi allows the user to
customize the analytical pipeline defining particular data flow diagrams (DFDs),
which declare querying, transforming, and visualizing appropriate subsets of
data.

Let us assume for example that the fitting of the Gaussian curve to the
whole set of residuals leads to unsatisfactory results. It means that the input
data contain systematic distortion that was not absorbed by the calibration
model. To identify which observations introduce this distortion, different subsets
of the solution should be investigated individually. Fig. 6 demonstrates the DFD
describing a custom visual analytics pipeline. The AJAS solution is filtered to
extract its subset according to the given criteria specified in the settings of
the “Filter” operator. These settings are not shown in the diagram as they
are displayed separately in the SciVi user interface when the user clicks on this
operator. Then, a histogram is created and a Gaussian curve is fitted to it. Then,
both the histogram and the curve are plotted, joined together and displayed to
the user.

Fig. 6: DFD of a custom visual analytics pipeline in SciVi.
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Each operator has its own ontological profile (like, for example, the one for
AJAS is shown in Fig. 1). This profile specifies the inputs, outputs, and settings
of the operator along with its implementation and the computing resource it
should be executed on. Based on this information, SciVi maintains the graphical
user interface of the operator, its appearance in the DFD, and its interoperability
with other operators within the pipeline defined by DFD.

In the DFD from Fig. 6, all the operators except for the “View” are specified
to run on the server (supercomputer) side to have direct access to the data.
The “View” operator combines two actions: rendering of the plot, which is also
performed on the server side, and displaying the rendering result to the user,
which happens on the client side (in the user’s Web browser). The ontological
profile of the compound “View” operator is shown in Fig. 7. Here, suboperators
“Render” and “Display” are linked to “View” as its parts, and the output of
“Render” is declared to be used as an input of “Display”, while “Render” is
linked to the server side and “Display” is linked to the client side. The data
transfer between them is managed by SciVi automatically.

Fig. 7: Ontological profile of the “View” operator.

The concept of compound operators is new to SciVi and is first introduced
in this work. It is a further improvement of the smart interoperability intro-
duced in [13]. Smart interoperability allows different operators within the same
DFD to run on different computing resources and freely exchange the data with
minimal transmission overhead. However, each regular operator is tied to its
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computing resource. The compound operators generalise the smart interoper-
ability approach to the cases, where a single operator is distributed over several
different computing resources. This makes SciVi DFDs more versatile, efficient,
and concise.

All the AJAS-related server-side SciVi operators rely on the Rapid ACCess
Operations On Numerical Solutions (RACCOONS) library. We developed this
library in C++ and created a binding to Python. Its core implements a mul-
tithreaded data querying engine and its Python interface provides pandas-like
access to the AJAS solution. The querying engine supports lazy caching and on-
demand indexing of data, which optimises the analytics process when the user
issues requests for data of a similar nature.

Since SciVi operators are internally implemented in Python, it was for us
straightforward to implement the automatic dumping of any particular SciVi
visual analytics pipeline to a Jupyter Notebook. This feature allows the user to
customise the pipeline even further and build upon it more complicated process-
ing machinery using Python.

6 Conclusion

We integrate the ontology-driven visual analytics platform SciVi with AJAS
using the principles of a multipurpose ontology-driven API and run them on
the same computing resource to avoid unnecessary data transfer. Within the
SciVi environment, we developed a set of tools providing both automatic and
human-in-the-loop operation controls, which enable AJAS tractability via in-
situ visualisation and analytics. SciVi exposes these tools via a Web interface
and automatically generates for them an intuitive graphical user interface that
allows the users to build data processing pipelines using a visual programming
language based on data flow diagrams. These tools facilitate starting AJAS on a
cluster, monitoring its progress, and extensive analysis of its output. Advanced
visual analytics helps to assess the quality of astrometric solutions produced by
AJAS, identify the issues and find out the ways to corresponding improvements
via the fine-tuning of the AJAS solving process.

Data processing pipelines created in SciVi can be automatically converted
into Jupyter Notebooks and then further customized in Python.

We demonstrate the SciVi capabilities on three examples of analysing M+

spectrum, astrometric system’s residuals, and astrometric parameters’ uncer-
tainties. This list, however, is still incomplete to fully assess the quality of the
astrometric solution, so, a part of future work is to extend this toolset with other
instruments and metrics. Another direction of improvement is the optimisation
of the RACCOONS library that provides efficient access to the AJAS data.
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15. Ryabinin, K., Sarras, G., Löffler, W., Erokhina, O., Biermann, M.: Satellite tele-
scope self-calibration through precise stellar data mining. Frontiers in Artificial
Intelligence and Applications 398, 248–254 (2024). https://doi.org/10.3233/
FAIA241425

16. Sakurai, T., Futamura, Y., Imakura, A., Imamura, T.: Scalable Eigen-Analysis
Engine for Large-Scale Eigenvalue Problems, pp. 37–57. Springer Singapore, Sin-
gapore (2019). https://doi.org/10.1007/978-981-13-1924-2_3

17. Taylor, M.: TOPCAT: Working with Data and Working with Users (2017), https:
//arxiv.org/abs/1711.01885

18. Tsai, S.R., Schive, H.Y., Turk, M.: Libyt: A Tool for Parallel In Situ Analysis with
yt, Python, and Jupyter. In: Proceedings of the Platform for Advanced Scientific
Computing Conference. PASC ’24, Association for Computing Machinery, New
York, NY, USA (2024). https://doi.org/10.1145/3659914.3659939, https://
doi.org/10.1145/3659914.3659939

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_11

https://api.semanticscholar.org/CorpusID:248893496
https://api.semanticscholar.org/CorpusID:248893496
https://doi.org/10.1007/978-3-030-89477-1_9
https://doi.org/10.1007/978-3-030-89477-1_9
https://doi.org/10.3233/FAIA241425
https://doi.org/10.3233/FAIA241425
https://doi.org/10.3233/FAIA241425
https://doi.org/10.3233/FAIA241425
https://doi.org/10.1007/978-981-13-1924-2_3
https://doi.org/10.1007/978-981-13-1924-2_3
https://arxiv.org/abs/1711.01885
https://arxiv.org/abs/1711.01885
https://doi.org/10.1145/3659914.3659939
https://doi.org/10.1145/3659914.3659939
https://doi.org/10.1145/3659914.3659939
https://doi.org/10.1145/3659914.3659939
https://dx.doi.org/10.1007/978-3-031-97573-8_11
https://dx.doi.org/10.1007/978-3-031-97573-8_11

