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Abstract. The paper delves into the challenge of classi�cation using dis-
persed data gathered from independent sources. The examined approach
involves local models as ensembles of decision trees or random forests
constructed based on local data. In the proposed model, a con�ict anal-
ysis is used to identify the coalitions of local models. Two variants of
forming coalitions were checked � uni�ed and diverse � and two di�erent
strategies for generating �nal decisions were explored, allowing one or
two of the strongest coalitions to make decisions. The diverse coalition
approach is a wholly new and innovative strategy. The methods were
tested and compared with corresponding accuracy-based weighted vari-
ants. The proposed approach improves classi�cation performance, with
weighted variants outperforming unweighted ones in balanced accuracy.
Diverse model coalitions are especially e�ective for challenging and het-
erogeneous datasets.

Keywords: Dispersed data · Con�ict analysis · Decision trees · Random
forests · Ensembles of classi�ers · Weighted Method.

1 Introduction

In today's digitalized world, adapting systems to local markets, such as health-
care, banking, and mobile applications, has led to the proliferation of dispersed
data. Unlike centralized data systems, where information is gathered in a single
repository, dispersed data exists in multiple and diverse environments�from
cloud servers to users' private devices�autonomously gathered without any
structural uni�cation. This trend, driven by factors such as law, data security,
and the resulting aleatoric uncertainty due to variability and inconsistency across
sources, presents both opportunities and challenges that machine learning meth-
ods should address, underscoring the growing importance of this research topic.

The topic of dispersed data is most frequently discussed in the distributed
learning paradigms [3, 19], which insists on training a group of models separately.
Then, various fusion methods, including hierarchical [10] and parallel [2, 15] vari-
ants, use the local predictions in �nal decision-making. However, the process of
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making decisions based on ensemble outputs introduces a degree of epistemic
uncertainty, especially when the models exhibit con�icting predictions due to
insu�cient or unrepresentative data in local tables. This uncertainty necessi-
tates robust frameworks to reconcile di�erences and ensure reliable classi�cation
outcomes. The focus is on the diversity among base classi�ers [9, 11]. The ef-
fectiveness of the global model depends on the method applied to those local
classi�ers [6, 7]. Mostly, the dependencies between local models are not consid-
ered while generating the �nal prediction. However, that information, in many
cases, is crucial and plays a signi�cant role in improving classi�cation quality.
Those relations should be taken into account using the selected fusion method.
In distributed learning, cooperation, and con�ict recognition are rarely applied.
Early Arti�cial Intelligence (AI) con�ict studies focused on decision support sys-
tems, exploring disputes, identifying key issues, and forming potential coalitions.
Various tools have been introduced to analyze con�icts and propose solutions [5].
Nowadays, where there are many multi-agent systems, we can also check their
dependencies. Examining them manually, especially when many are dynamic
and complex, may be ine�ective, burdensome, and unscalable. In this paper, the
Pawlak con�ict model [12, 13] is considered. The simple model based on rough
set theory [14] also gives great insight and understanding of any con�ict. The
theoretical foundation of rough set theory provides a tool for addressing un-
certainty in classi�cation. Rough set theory facilitates the analysis of imprecise
or incomplete information by partitioning data into lower and upper approxi-
mations, e�ectively managing uncertainty and con�ict in decision-making. The
model has been further investigated by many researchers [16, 17, 22], as with
some of its developments � the three-way decision theory proposed by Yao [21],
with further study by other researchers [20].

This study also uses Pawlak's model to create a dynamic system in which
coalitions of local classi�ers are formed. Decision trees and random forests are
used as local models, two di�erent variants of creating coalitions are analyzed,
and two methods of choosing coalitions (uni�ed and diverse) are used. Addition-
ally, all variants are compared with their weighted variants, where the weights
are assigned to each local model based on its accuracy. To the best of our knowl-
edge, the conjunction of forming coalitions with Pawlak's model with weighted
models has never been considered before and compared. The paper shows that,
mostly, variants with weights perform better than their corresponding variants.
Also, which of the variants of generating and selecting coalitions performs better
depends on the chosen data set.

The paper's contribution is as follows. Introduction of hierarchical decision
tree frameworks for dispersed data. Integration of Pawlak's con�ict model to
dynamically form coalitions of local models. Exploration of two types of coali-
tions: uni�ed and diverse. Investigation of two decision strategies: using one or
two strongest coalitions. Analysis of the performance of weighted vs. unweighted
coalitions. The paper is structured as follows: Section 2 presents the theoreti-
cal foundations of the analysis models. Section 3 introduces the methodology,
compares results, and discusses �ndings. The conclusion provides a summary.
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2 Methods

Dispersed data is characterized by inconsistencies in structure among di�erent
local data sets. One possible approach to address this issue, which also allows
data protection, is to deal with each data set in isolation. This is done by generat-
ing local models for each local table. In this paper, the ensembles of decision trees
or random forests are built. In the following step, we utilize the con�ict analysis
model to establish coalitions. The process is done for each object dynamically,
resulting in di�erent sets of coalitions. Eventually, based on generated coalitions,
selected models pass a vote to make the �nal decision. More formally, we have
access to local decision tables represented as Di = (Ui, Ai, d) for i ∈ 1, . . . , n.
In this context, Ui represents the universe, a set of objects; Ai is a set of con-
ditional attributes describing features of the objects; and d denotes the decision
attribute, which represents labels. Although some elements may be shared, the
objects or attributes may vary. So, the experimental part includes two versions
of dispersed data (sets of local tables) � those in which attributes are dispersed
and those in which objects are dispersed.

There are various widely known approaches to building local models. This
study focuses on a tree-based approach, and we use the decision tree and the
random forest models. The models are created using Python with classes from the
Skit-learn library (DecisionTreeClassi�er or RandomForestClassi�er). In future
works, we will test other models, as well as the combination of di�erent models, to
see if it would result in an improvement in classi�cation quality. For the decision
tree, no parameters are speci�ed. For random forest, four di�erent values are
selected for the number of estimators: 10, 20, 50, 100. Each local model is trained
on a separate data set.

Such ensembles of trees generated based on all local tables make a prediction
for the test object x̂. The prediction is represented as a vector [µi,1(x̂), . . . , µi,c(x̂)]
with dimension c equal to the number of decision classes. The value µi,j(x̂) is the
number of votes cast for decision class j by the random trees in the ensemble. In
the paper, we use two approaches � weighted and unweighted methods. During
data preprocessing, for weighted approaches, the weights for each local model
were calculated with a validation set created randomly with a prede�ned seed
from the test set in a strati�ed way. In the literature, in most cases, the �nal
decision is made with simple or weighted voting [18] or another fusion method
[6]. The novelty of this work is using prediction vectors in conjunction with the
con�ict analysis method. This method is used to �nd coalitions that in�uence the
�nal decision. Two types of local models' coalitions are considered in this study:
coalitions of local models with similar opinions and coalitions of local models
with diverse opinions are considered. Both approaches are relevant and based
on di�erent justi�cations. The �rst approach seeks consensus opinions, assum-
ing that the majority of local models are accurate and make correct decisions.
The second emphasizes diversity, drawing on the ensemble of classi�ers principle,
which suggests that varied local models enhance classi�cation quality. For the
task of creating those coalitions, Pawlak's con�ict model [12, 13] is applied.
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In Pawlak's con�ict analysis model, information about the con�ict situation is
stored in an information system S = (LM,V ), where LM is a set of local models,
and V is a set of decision attribute values. Function v : LM → {−1, 0, 1} for
each v ∈ V and i ∈ LM is de�ned

v(i) =


1 if the coordinate µi,v(x̂) for decision v in the prediction vector of

model i has the maximum value of all coordinates in this vector.
0 if the coordinate µi,v(x̂) for decision v in the prediction vector of

model i is this vector's second highest of all coordinates.
−1 in other cases

(1)
That is a way of storing opinions of local models on the test object. For each

model, the decision with the most signi�cant support is assigned the value 1,
which is interpreted as supporting the decision by the model. The next most
supported decision is assigned the value 0, which means the model is neutral
to this decision. We assign the value -1 for all other decisions, which means the
model is against them. A con�ict function is applied in the next step of the
Pawlak con�ict analysis model. The con�ict function ρ : LM × LM → [0, 1] is
de�ned as follows:

ρ(i, j) =
card{v ∈ V : v(i) ̸= v(j)}

card{V }
, (2)

where card{V } is the cardinality of the set of decision classes and i, j ∈ LM .
For uni�ed coalitions, set X ⊆ LM is a coalition of local models if for every

i, j ∈ X we have ρ(i, j) < 0.5. The coalition will include those local models for
which the opinion is consistent in more than half of the decision classes. The
conditions are opposite in diverse coalitions; they include local models inconsis-
tent with more than half of the decision classes. Coalitions do not have to be
disjoint sets. One local model can belong to many coalitions simultaneously, re-
�ecting real arrangements in everyday life. Algorithm 1 presents a pseudo-code
for determining coalitions.

Once the coalitions are generated, the next step is to make a �nal decision
using them. This work explores four di�erent approaches combined with both
ways of creating coalitions described above.

The �rst approach assumes using the two strongest coalitions (in terms
of the number of models in the coalition). The chosen coalitions are the ones
with the maximum number of members. In situations where there are coalitions
with the size of the second strongest coalition, those coalitions are also consid-
ered. Then, the prediction vectors of all chosen models are added, and a single
prediction vector is formed. If some models are part of many coalitions, their
vectors are included every time they occur. Finally, the decision with the biggest
score is made � the decision with the largest value of the coe�cient of the joint
prediction vector. The second approach is analogous to the previous one, except
that we choose only one most strongest coalition, which will decide.

Both weighted approaches work analogously to unweighted ones. Besides
that, each local model's prediction vector is multiplied by the weight, equal to
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Algorithm 1: Create Coalitions

Data: S = (LM,V )
Result: Coalition_set

1 begin

2 Coalition_set← empty list; // Initialize an empty list

3 Boolean← TRUE;
4 foreach X ⊆ LM do

5 foreach i, j ∈ X do

6 if ρ(i, j) >= 0.5 then
// for unified coalitions or ρ(i, j) <= 0.5 for diverse coalitions

7 Boolean = FALSE

8 if Boolean = TRUE then

9 Coalition_set← X

10 return Coalition_set

the model's accuracy, estimated by evaluating the model using the validation set.
Before testing the global model, the test set is strati�ed into test and validation
sets with proportions of 0.5 to 0.5.

Fig. 1. Model generation stages.

Figure 1 shows the proposed hierarchical framework with con�ict analysis for
ensembles of local models (decision trees of random forests), presenting stages
discussed above. At the beginning, the dispersed data are given. For each local
table, we build a separate predictive model. During the classi�cation stage, we
retrieve the prediction vector from every local model. Those vectors are next
used to create an information system representing the con�ict situation. Then,
the coalitions are formed, and depending on the method, one or some of them
are selected to make the �nal decision. The last step is to calculate the score for
each decision class and choose the one with the highest score.
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3 Data sets and experimental results

The study evaluated approaches using three datasets from the UC Irvine Ma-
chine Learning Repository [1, 23, 8] and one empirical dataset [4]. The Avian
In�uenza dataset tracks global human infections from 12 countries, organized
into four tables by region (e.g., Egypt, Vietnam, Indonesia) with region-speci�c
attributes. Its structure supports predictive modeling and epidemiological re-
search to understand avian in�uenza's impact on health. The Car Evaluation
dataset includes six categorical features (e.g., price, maintenance, doors, capac-
ity, luggage size, safety) and classi�es cars into four categories, making it suitable
for machine learning evaluation. The Lymphography dataset classi�es lymphatic
diseases using features like node appearance and histological �ndings to aid med-
ical diagnosis. The Vehicle Silhouettes dataset distinguishes vehicle types based
on shape features from silhouettes. Dataset characteristics are summarized in
Table 1.

Table 1. Data set characteristics

Data set # The training set # The test set # Conditional Attributes type # Decision Source
attributes classes

Avian in�uenza 205 89 5 Categorical and Integer 4 [4]
Car evaluation 1210 518 6 Categorical 4 [1]
Lymphography 104 44 18 Categorical 4 [23]

Vehicle Silhouettes 592 254 18 Integer 4 [8]

The research investigates two di�erent methodologies concerning data dis-
persion with respect to both attribute and object dispersion. All datasets within
the UCI repository were consolidated into one table, which was subsequently
dispersed across various local tables (3, 5, 7, 9, and 11 local tables for each
dataset). For the Lymphography and the Vehicle Silhouettes, attributes were
dispersed randomly across the tables. E�orts were made to balance the num-
ber of attributes allocated to each table. The same objects are present in all
tables, but their identi�ers were omitted to simulate a real-world scenario where
recognizing identical objects across tables is not possible. The Car dataset was
dispersed relative to the objects. This means that the objects were divided among
the tables in a strati�ed and random manner, and all attributes were included in
each table. The Avian dataset was collected in 12 countries and divided into four
local tables based on what country the object comes from. Local tables include
countries like Egypt, Vietnam, Indonesia, and others were created. Each table
contains conditional attributes and objects from speci�c countries.

The evaluation insists on repeating a test 10 times to check the stability
of all methods. Despite the random behavior of some approaches, to make the
results reproducible, the set of 10 seeds was randomly chosen, and each test was
conducted with its assigned seed, starting from learning local models on local
tables, generating validation sets, and ending on generating global decisions by
all approaches.

The assessment of classi�cation quality relied on the test set with various
accuracy measures: Classi�cation Accuracy (Acc), Accuracy's standard devia-
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tion (Acc SD), Recall, Precision (Prec.), balanced accuracy (BAcc), balanced
accuracy standard deviation (BAcc SD), and F1 measure (F1). This study uses
two methods to calculate the F1 measure: weighted and macro.

The results are summarized in Figures 2�5, presenting averaged metric values
from all 10 achieved metrics with standard deviation for accuracy and balanced
accuracy. Each dataset, characterized by varying degrees of dispersion, is eval-
uated using three approaches: without coalitions, with coalitions representing
agents' agreement, and with coalitions representing agents' disagreement. The
following notations are used:

� Probability Sum; normal � Local classi�ers (random forest or decision tree)
independently predict; their prediction vectors are summed, and the decision
with the highest value is selected;

� Probability Sum; weighted � Similar to normal, but classi�ers are weighted
by accuracy estimated on a validation set (split from the test set);

� Uni�ed groups; one strongest � Coalitions are formed based on prediction
vectors using classical Pawlak's approach. The strongest coalition's summed
vectors determine the decision;

� Uni�ed groups; two strongest � Extends the above by considering the two
strongest coalitions;

� Uni�ed groups; weighted one strongest/weighted two strongest � Combines
the above with accuracy-based weighting of coalition vectors;

� Diverse groups; one strongest/two strongest/weighted one strongest/weighted
two strongest � Forms coalitions of local models with con�icting predictions
(vector distance greater than 0.5). Variants include one/two strongest or
weighted coalitions.

Additionally, various numbers of estimators were tested for the random forest
classi�er, speci�cally 10, 20, 50, and 100. The tables present the best result
achieved, along with the corresponding number of estimators that produced this
outcome. For each dataset, the table indicates the best result obtained.

Based on the results in Figures 2�5, we can draw the following conclusions.
The Avian In�uenza dataset showed its highest performance using the random
forest (RF) classi�er with the 'Diverse groups' approach. This result suggests
that con�icting classi�ers through coalition formation improve predictive accu-
racy. We believe that this is due to the variety of approaches taken, as di�ering
perspectives signi�cantly impact quality. The ability to aggregate diverse predic-
tions likely mitigates inconsistencies caused by object dispersion across multiple
tables (countries). The decision tree (DT) classi�er using the 'Uni�ed groups'
or 'Diverse groups' approach consistently gives the best results for most ver-
sions of dispersion. The Car Evaluation dataset has categorical features, making
it well-suited for decision trees. Interestingly, for the Car dataset, the 'Proba-
bility Sum' approach, without coalitions, also often produces good results (for
dispersion 3LT, 7LT, 9LT). It is also worth noting that, for this dataset, the
use of weights does not lead to any improvements. The Lymphography dataset,
characterized by complex medical features, performed best when using weighted
random forests in the 'Diverse groups' con�guration. This suggests that classi�er
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Fig. 2. Results of precision (Prec.), recall, F-measure (F-m.), balanced accuracy (bacc)
and classi�cation accuracy (acc) for the considered approaches Part 1. RF is the ab-
breviation Random Forest and DT for Decision Tree.
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Fig. 3. Results of precision (Prec.), recall, F-measure (F-m.), balanced accuracy (bacc)
and classi�cation accuracy (acc) for the considered approaches Part 2. RF is the ab-
breviation Random Forest and DT for Decision Tree.
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Fig. 4. Results of precision (Prec.), recall, F-measure (F-m.), balanced accuracy (bacc)
and classi�cation accuracy (acc) for the considered approaches Part 3. RF is the ab-
breviation Random Forest and DT for Decision Tree.
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Fig. 5. Results of precision (Prec.), recall, F-measure (F-m.), balanced accuracy (bacc)
and classi�cation accuracy (acc) for the considered approaches Part 4. RF is the ab-
breviation Random Forest and DT for Decision Tree.
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weighting based on validation set accuracy compensates for prediction con�icts.
However, results were generally lower due to the dataset's challenging nature.
Given that decision trees sometimes obtain the highest prediction quality (espe-
cially for 9LT), it is important to emphasize that accurate weighting and con�ict
resolution are crucial for this dataset. For the Vehicle Silhouettes dataset, the
best-performing approach was random forests with weighted and sometimes un-
weighted 'Uni�ed groups'.

In general, random forests consistently outperformed decision trees in datasets
with numerical or complex features, such as Vehicle Silhouettes and Lymphog-
raphy. In contrast, decision trees excelled in the Car Evaluation dataset due to
its well-de�ned categorical attributes. It could also be a result of a number of
features selected to build trees. By default, a single decision tree uses all features,
while in a random forest, the square root of the number of features. Higher dis-
persion levels negatively impacted all approaches, especially in complex datasets
like Lymphography. Approaches utilizing weighted classi�ers or diverse coalition
strategies mitigated this decline. Forming coalitions among classi�ers with con-
�icting predictions improved results, emphasizing the value of ensemble diversity.
Applying classi�er accuracy-based weights led to better results in most cases.

Statistical tests were performed to con�rm the observed validities and bal-
anced accuracy values were used for comparison. At �rst, the balanced accuracy
values of all twenty approaches were compared � so twenty dependent samples
each containing of 16 observations were created, representing the results for each
dataset and dispersion version. Since the balanced accuracy is ratio-scaled and
normal distribution is not con�rmed, also the samples are small the Friedman
test was used to determine whether the di�erences in balanced accuracy values
among the approaches were statistically signi�cant. The Friedman test indicated
that there is no statistically signi�cant di�erence in mean balanced accuracy
among the twenty approaches, χ2(15, 19) = 9.58, p = 0.96. A comparative box
plot illustrating the balanced accuracy results for the twenty methods is pro-
vided in Figure 6. Although the statistical test did not con�rm the signi�cance
of the mean di�erences for such a large number of samples, the graph clearly
shows that the results for the weighted approaches are signi�cantly higher than
those for the other methods. Therefore, further statistical tests were conducted.

Next, we analyze the di�erences in average balanced accuracy among the four
approaches: uni�ed groups unweighted and weighted, diverse groups unweighted
and weighted. This time, the results were organized into 4 dependent groups,
each containing 64 observations. Similarly, the Friedman test was conducted on
balanced accuracy values. The test con�rmed a statistically signi�cant di�erence
in the averages among at least two of the approaches, χ2(64, 3) = 17.75, p =
0.0005. To pinpoint the speci�c di�erences, a post-hoc Dunn-Bonferroni test was
performed, with the signi�cant results highlighted in blue in Table 2. The test
revealed signi�cant di�erences between the unweighted and weighted approaches.
A comparative box plot (Figure 7) shows that the balanced accuracy results are
slightly better for weighted than unweighted approaches. This was also con�rmed
by the Wilcoxon test (p-value 0.0001) for results organized into two groups �

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_8

https://dx.doi.org/10.1007/978-3-031-97573-8_8
https://dx.doi.org/10.1007/978-3-031-97573-8_8


Uni�ed and Diverse Coalition Formation in Dispersed Data Classi�cation 13

Fig. 6. Comparison of balanced accuracy obtained for all analyzed approaches.

unweighted and weighted approaches � with 128 observations in each. It was
checked analogously with the Wilcoxon test (p-value 0.17) that the division
into approaches with di�erent methodologies for forming coalitions � uni�ed
groups and diverse groups � does not bring signi�cant di�erences. However,
when we analyzed individual data sets, it was apparent that sometimes the
approach with consensus coalitions is better, while for di�cult data sets, the
approach with incompatible coalitions is better. Thus, the e�ectiveness of the
coalition formation approach depends on the dataset. However, in general, it can
be concluded that weighted approaches yield better results.

Table 2. p-values for the post-hoc Dunn Bonferroni test for appeoaches: uni�ed groups
unweighted and weighted; diverse groups unweighted and weighted

p-value Uni�ed groups Uni�ed groups Diverse groups Diverse groups
weighted weighted

Uni�ed groups 0.04 1 0.04
Uni�ed groups. weighted 0.04 0.03 1
Diverse groups 1 0.03 0.03
Diverse groups. weighted 0.04 1 0.03

In conclusion, the results indicate the importance of classi�er accuracy-based
weighting for dispersed data. Diverse coalition strategies, which group classi�ers
with con�icting predictions, proved particularly e�ective for datasets with com-
plex features or high dispersion, such as Lymphography and Vehicle Silhouettes.
In contrast, uni�ed coalition approaches often performed better in datasets with
categorical features, exempli�ed by the Car Evaluation dataset. Overall, the �nd-
ings emphasize the critical role of classi�er diversity and weighting in achieving
robust predictive performance across varied datasets.
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Fig. 7. Comparison of balanced accuracy obtained for approaches: uni�ed groups un-
weighted and weighted; diverse groups unweighted and weighted.

4 Conclusion

This paper proposes a hierarchical classi�cation model based on dispersed data.
Decision trees and random forests were used with con�ict model analysis. For
the �rst time, a model with diverse coalitions was used in conjunction with the
sum method. In addition to that, the weighted variants were introduced and
compared with the unweighted ones. In this work, tests were made on sixteen
di�erent dispersed datasets, some with respect to objects and others with respect
to attributes. The results were compared with other known literature methods:
the sum and weighted sum methods with trees or random forest methods.

The proposed approach yields better results for most of the tested data sets.
It was also statistically proven that in terms of classi�cation quality, determined
by balanced accuracy measure, weighted variants provide better classi�cation
quality than corresponding variants without assigning weights for local models.
Also, which method of creating coalitions is better depends on the data set �
coalitions of diverse models enhance classi�cation quality for more challenging
and diverse data sets.

In future work, the k-nearest neighbors, AdaBoost classi�ers, and multilayer
perceptrons are planned to be used as local classi�ers in conjunction with the
con�ict analysis and coalition formation method and with other methods of
determining di�erences among local models. The plans also includes features
importance and their similarity between coalitions.

References

1. Bohanec, M.: (1997). Car Evaluation. UCI Machine Learning Repository.
https://doi.org/10.24432/C5JP48.

2. Czarnowski, I. Weighted Ensemble with one-class Classi�cation and Over-sampling
and Instance selection (WECOI): An approach for learning from imbalanced data
streams, Journal of Computational Science, 61, (2022) 101614, ISSN 1877�7503.

3. Czarnowski, I., J�edrzejowicz, P. Ensemble online classi�er based on the one-class
base classi�ers for mining data streams. Cybernetics and Systems, 2015, 46(1-2),
51�68.

4. Fiebig, L., Soyka, J., Buda, S., Buchholz, U., Dehnert, M., Haas, W., 2011, Avian
in�uenza A(H5N1) in humans - line list, http://dx.doi.org/10.25646/7661 (accessed
on 15 February 2024).

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_8

https://dx.doi.org/10.1007/978-3-031-97573-8_8
https://dx.doi.org/10.1007/978-3-031-97573-8_8


Uni�ed and Diverse Coalition Formation in Dispersed Data Classi�cation 15

5. Giordano, R., Passarella, G., Uricchio, V. F., Vurro, M. (2007). Integrating con�ict
analysis and consensus reaching in a decision support system for water resource
management. Journal of environmental management, 84(2), 213-228.

6. Kashinath, S. A.; Mostafa, S. A.; Mustapha, A.; Mahdin, H.; Lim, D.; Mahmoud,
M. A.; Mohammed, M.A.; Al-Rimy, B.A.S.; Fudzee M. F.; Yang, T. J. Review
of data fusion methods for real-time and multi-sensor tra�c �ow analysis. IEEE
Access, (2021) 9, 51258-51276.

7. Kuncheva, L. I. Combining pattern classi�ers: methods and algorithms. 2014. John
Wiley & Sons.

8. Mowforth, P. Shepherd, B. Statlog (Vehicle Silhouettes) [Dataset]. UCI Machine
Learning Repository. https://doi.org/10.24432/C5HG6N.

9. Nam, G.; Yoon, J.; Lee, Y.; Lee, J. Diversity matters when learning from ensembles.
Advances in Neural Information Processing Systems, (2021) 34, 8367-8377.

10. Ng, W. W.; Zhang, J.; Lai, C. S.; Pedrycz, W.; Lai, L. L.; Wang, X. Cost-sensitive
weighting and imbalance-reversed bagging for streaming imbalanced and concept
drifting in electricity pricing classi�cation. IEEE Transactions on Industrial Infor-
matics, 15(3), 1588�1597, (2018).

11. Ortega, L. A.; Cabañas, R.; Masegosa, A. Diversity and Generalization in Neu-
ral Network Ensembles. In International Conference on Arti�cial Intelligence and
Statistics (2022) (11720-11743). PMLR.

12. Pawlak, Z. Some remarks on con�ict analysis. Eur. J. Oper. Res. 2005, 166, 649�
654.

13. Pawlak, Z. Con�ict analysis. In Proceedings of the Fifth European Congress on In-
telligent Techniques and Soft Computing (EUFIT'97), Aachen, Germany, 8�12
September 1997; pp. 1589�1591.

14. Pawlak, Z. (1982). Rough sets. International journal of computer & information
sciences, 11, 341-356.

15. Pªawiak, P.; Abdar, M.; Pªawiak, J.; Makarenkov, V.; Acharya, U. R. DGHNL: A
new deep genetic hierarchical network of learners for prediction of credit scoring.
Information Sciences, 516, 401�418, (2020).

16. Przybyªa-Kasperek, M.; Sacewicz, J. (2024). Ensembles of random trees with
coalitions-a classi�cation model for dispersed data. Procedia Computer Science,
246, 1599-1608.

17. Przybyªa-Kasperek, M.; Wakulicz-Deja, A. (2014). A dispersed decision-making
system�The use of negotiations during the dynamic generation of a system's struc-
ture. Information Sciences, 288, 194-219.

18. Tasci, E., Uluturk, C., Ugur, A.: A voting-based ensemble deep learning method
focusing on image augmentation and preprocessing variations for tuberculosis de-
tection. Neural Computing and Applications, 33(22), 15541-15555, (2021).

19. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer,
J. S. A survey on distributed machine learning. ACM computing surveys, 53(2),
1�33, (2020).

20. Xiaonan Li, Yucong Yan. (2024). A dynamic three-way con�ict analysis model with
adaptive thresholds, Information Sciences, Volume 657.

21. Yao, Y. (2010). Three-way decisions with probabilistic rough sets. Information
sciences, 180(3), 341-353.

22. Zohaib Gillani, Zia Bashir, Saira Aquil. A game theoretic con�ict analysis model
with linguistic assessments and two levels of game play. Information Sciences, 677,
(2024) 120840, ISSN 0020-0255.

23. Zwitter, M. and Soklic, M.: (1988). Lymphography. UCI Machine Learning Repos-
itory. https://doi.org/10.24432/C54598.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_8

https://dx.doi.org/10.1007/978-3-031-97573-8_8
https://dx.doi.org/10.1007/978-3-031-97573-8_8

