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Abstract. The abuse of encryption and obfuscation in malware poses
a significant threat to cybersecurity. Dynamic API call sequences, which
directly reflect malware behavior and are hard to falsify, offer more ro-
bust and reliable features for classification and detection than static
ones. Based on our analysis, we identify the following key character-
istics in API call sequences: (1) The implementation of malicious func-
tionality often involves the allocation and interaction of resources. API
calls to the same resource object, such as files or registries, typically
exhibit contextual dependencies, regardless of whether they are adja-
cent; (2) Multi-process interleaved execution is common in malware, and
API sequences can be organized by execution order or process group-
ing. The sorting method can impact model performance, especially for
multi-process malware; (3) API sequences often contain many consec-
utive repeated API names, but their parameters may differ. Therefore,
we can distinguish these repeated calls by their parameters, rather than
simply removing redundancy through truncation. Based on these obser-
vations, we propose a malware classification ensemble model that inte-
grates multi-dimensional API sequence features. Specifically, we train
separate classification models based on three different feature perspec-
tives: the API resource graph, multi-process API sequence representa-
tion, and parameter-enhanced API name sequences. The outputs of these
three base models are then aggregated using K-Nearest Neighbors (KNN)
soft voting. Training and evaluation on three classification tasks demon-
strate that the three base models outperform existing API sequence-
based detection techniques, and the ensemble model further enhances
the detection performance.

Keywords: Malware Classification · API Sequence · Neural Networks.

1 Introduction

The rampant use of encryption and obfuscation techniques in malware poses
significant challenges for detection and comprehension. Malware authors employ
these techniques to conceal their true intentions and evade analysis, making
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it extremely difficult for security researchers to understand and mitigate the
threats. Running malware in controlled sandbox environments and analyzing
the generated API call sequences has become a widely adopted approach in the
field of malware detection. API calls provide direct insights into the underlying
behavior of malware. By examining these API call traces, analysts can gain
valuable intelligence about the functionality, goals, and potential impact of the
malware.

There are numerous malware detection methods that utilize dynamic behav-
ioral features, which can be categorized into the three types: API sequences-
based models [2,3,9,18,21,22] , API graph-based models [5,6,10,12,19] and API
arguments enhanced meodel [7,17,23]. API2Vec [5]and API2Vec++ [6] consider
the relationships between processes by constructing process relationship graphs
and leveraging NLP techniques to represent API sequences. [10] and [12] also
construct graph models to describe API call relationships and further employ
pattern recognition and deep learning techniques for malware detection. How-
ever, most methods above adopt a single feature perspective and have a rela-
tively coarse granularity, primarily focusing on the names of API sequences and
statistic features of API arguments. This would result in a partial representation
of the API sequence, focusing only on a subset of the information. To extract
more implicit information from API sequence parameters, we have made several
observations based on extensive analysis. The findings are as follows:

Resource Allocation and Interaction: Malicious functionality in malware
often requires the allocation and interaction of various system resources. API
calls that operate on the same resource object, such as files or registries, typically
exhibit contextual dependencies, even if they are not adjacent in the sequence.
This is particularly important in the analysis of malware, as understanding the
context of resource interactions can provide valuable insights into its behavior.
Ignoring these dependencies may lead to a less accurate representation of the
malware’s dynamic execution.

Multi-process Interleaved Execution: Malware often executes across
multiple processes that interleave their activities. In such scenarios, the API
sequences can be organized in two primary ways: by the order of execution or by
grouping based on the process. The method of sorting API calls can significantly
affect the performance of classification models, especially those that rely on the
order of sequence. When applied to multi-process malware, models that depend
heavily on the sequence order may experience a performance decline, as the in-
terleaved nature of the processes introduces complexity that is not adequately
captured by a simple linear sequence. This observation underscores the need for
more sophisticated approaches to handling multi-process malware and highlights
the importance of considering process grouping in the analysis.

Consecutive Repeated API Calls with Varying Parameters: API se-
quences often contain consecutive repeated API calls, where the API names are
the same, but their parameters may differ. These repeated calls, while seemingly
redundant, can provide important contextual information. Rather than simply
applying a truncation method to eliminate redundancy, distinguishing these re-
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peated calls based on their parameters can provide additional insights into the
functionality of the malware. By considering the variation in parameters, we can
more accurately capture the underlying behavior of the malware, as different
parameters may represent different stages or types of malicious activity.

Based on these three observations, we propose a malware classification en-
semble model that integrates multi-dimensional features from API sequences.
Our approach incorporates three distinct perspectives of API sequence features:
the API resource graph, which models the interactions and dependencies be-
tween API calls and resource objects; the multi-process API sequence represen-
tation, which accounts for the interleaved execution of multiple processes; and
the parameter-enhanced API name sequences, which distinguishes repeated API
calls by considering their parameters. To combine the outputs of these mod-
els, we use K-Nearest Neighbors (KNN) soft voting, which allows us to leverage
the strengths of each individual model and make a more robust classification
decision.

The contributions in this paper are as follows:

– We propose a malware classification ensemble model that combines multi-
perspective API sequence features: API resource graph, multi-process API
sequence representation, and parameter-enhanced API name sequences. Both
individual models and the ensemble model achieve outstanding results in
classification tasks.

– We first propose using the handle parameter, which uniquely identifies re-
source objects, to build the API resource graph. This approach is more
accurate and efficient compared to the previous method, which relied on
identifying objects through strings.

– We first propose using API parameters to address the issue of redundant
repetition in API sequences.

– We first propose a cross-attention-based Multi-process API Sequence Rep-
resentation method and a process state transition graph to address the rep-
resentation challenge of multi-process malware.

2 Related Work

2.1 API Sequence-based malware detection

Sequence-based malware detection [2–4, 8, 13] utilizes deep learning to directly
extract features from API call sequences for malware detection. Various meth-
ods have been proposed in this domain: Kwon et al. [14] and Yazi et al. [15]ap-
ply LSTM to capture API calling patterns for classification, while Tobiyama et
al. [16] use an RNN for feature extraction, followed by CNN classification of
the generated feature images. ASSCA [17] employs a bidirectional residual net-
work to classify API sequences, removing redundant information. Additionally,
Li et al. [18] utilize Bi-LSTM to capture and combine intrinsic API sequence
features. While sequence-based methods are simple and do not require extensive
prior knowledge, they face challenges: long sequences can obscure key malicious
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behavior features, adversarial malware can insert noise APIs to evade detection,
and these methods often require large datasets while struggling to exploit API
relationships effectively.

2.2 API Graph-based Malware Detection

Researchers have proposed graph-based malware detection methods to model
the behavior of APIs using graphs [10, 12, 19], then apply Graph Neural Net-
works (GNNs) for feature extraction in malware detection. API2Vec [5] and
API2Vec++ [6] designs Temporal Process Graphs (TPG) and Temporal API
Property Graphs (TAPG) to model inter- and intra-process behaviors for detec-
tion and using random walk to extract meta path to represent the API sequence
for classification. DMalNet [10] converts API call sequences into call graphs to
model API relationships and enhance malware classification. MINES [12] ex-
tracted the API existence feature of malware by graph contrastive learning be-
tween two API graphs. Graph-based approaches generally outperform sequence-
based methods by using GNNs to capture the complex behavior of software
through API relationships. However, these methods often fail to fully account
for the diverse API relationships, as they typically focus on only one type of
relationship.

2.3 API Arguments Enhanced Methods

DMDS [7] firstly propose a feature engineering method by utilizing a feature
hashing trick to encode the API call arguments. CTIMD [11] integrates Cyber
Threat Intelligence (CTI) to enhance sequence learning with runtime parame-
ters. DMalNet [10] and Malatt [8] both used feature encoder that uses different
encoding strategies according to the characteristics of different types of data to
represent API names and arguments as semantic feature vectors in their works.
These methods enhance the model’s expressive power and feature information
by incorporating parameters, yielding relatively good results. However, using
specific parameter values, such as IP addresses and file paths, may reduce the
model’s generalization ability and make it more vulnerable to evasion attacks.

3 Methodology

As shown in Fig. 1, our approach to malware detection encompasses multiple
perspectives and leverages advanced techniques to capture intricate details and
behavioral patterns. The proposed method consists of four key components:

3.1 API Resource Graph

Motivation The implementation of malicious functions requires resource man-
agement, allocation, and interaction through APIs, such as reading and writing
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Fig. 1. System architecture of PEMS-API

files, reading and writing registry, etc. The interactions between processes and
resources are quite different between malicious and benign programs.

The challenge to construct API Resource Graph is identifying resource nodes.
Different resource nodes may have different representations in various APIs. For
example, a file node can be represented as absolute path or file name, among
others. Recogning resources by strings like file path or file name may result in
multiple duplicate resource nodes. API Resources Graph constructed by Heternet
[19] remains the problem.

In the Windows operating system, handles are unique 32-bit or 64-bit un-
signed integers used to identify objects created or used by applications. These
objects include windows, modules, threads, processes, files, mutexes, sockets,
and more. Within the same process, the mapping between objects and handles
is one-to-one, regardless of the object type. Therefore, by examining the han-
dles present in the API call parameters, we can identify the different objects
involved in the program’s execution. As shown in Fig. 2, resource objects could
be indentified from API arguments.

For the same reason, socket is also an important identifiers for network ob-
jects in a program. Under the assumption that handles and socket serve as
bridges connecting API calls and resources, we can construct dependencies be-
tween discrete APIs by leveraging the affinity of resource.

The Framework of classifier based on is shown in Fig. 3).
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{
  "category": "filesystem",
  "status": true,
 "api": "NtCreateFile",
  "arguments": {
   "file_handle": "0x00000000000000ac", 
    "desired_access": "0x80100080", 
    "file_attributes": 0, 
    "create_disposition": 1, 
    "create_options": 0, 
    "share_access": 5, 
    "filepath": "C:\\Windows\\System32\\en-US\\wshtcpip.dll.mui", 
    "filepath_r": "\\??\\C:\\Windows\\System32\\en-US\\wshtcpip.dll.mui", 
    "status_info": 1}
},

Add an edge in ARG(api→handle id) 

NtCreateFile → 0x00000000000000ac

Fig. 2. An Example of API and corresponding arguments.
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Fig. 3. Overview of classifier based on ARG.

Graph Construction The constructed ARG can be represented as:

G = (VAPI ∪ VResource, E) (1)

where VAPI contains the API nodes, VResource contains the resource object
nodes, and E contains the edges representing interactions between the APIs and
the resources.

The set VResource contains objects that are identified through the parameters
of API calls. Specifically, the resource objects are extracted from parameters
such as: file_handle, key_handle,process_handle, socket. These parameters cor-
respond to specific system resources, such as open files, registry keys, processes,
and network sockets.

From the perspective of API Resource Graph, we gain valuable insights into
the behavior and resource usage patterns of the program. The ARG allows us
to analyze the dependencies between API calls and the resources they access,
providing a comprehensive view of the program’s execution flow.

By focusing on resource usage in API arguments, we can uncover hidden
dependencies and interactions that may not be visible through API name se-
quence alone. The ARG enables us to identify suspicious or malicious resource
usage patterns.

Graph Representation We adopted a simple yet effective method to represent
the Application Resource Graph (ARG). For each object node, we gather all
adjacent API nodes and order them chronologically, forming a set of API paths.
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To obtain meaningful representations, we use Doc2Vec [22] to learn embed-
dings for both the API paths and individual APIs from a large corpus. Each path
and API is represented as a 64-dimensional vector, capturing their interactions
with resources. This approach enables effective analysis and comparison of API
behaviors.

Let P represent the set of paths. For the i-th path pi and a specific API pij
within pi, we first collect the context APIs within a window of size C, denoted as
δ = {pij−C , . . . , p

i
j−1, p

i
j+1, . . . , p

i
j+C}. The representation of pij is then computed

as the embedding of pi combined with the embeddings of the APIs in δ, given
by:

E(pij) = W · 1

2C + 1

(
E(pi) +

∑
k∈δ

E(pik)

)
(2)

where E(·) denotes the embedding function for an API or path, and W is
the weight matrix learned during training.

The objective is to minimize the following loss function, which represents the
average negative log-likelihood of each API across all paths:

− 1

Np

Np∑
i=0

1

Npi

Npi∑
j=0

logP (pij |δ, pi) (3)

Here, Np is the total number of paths in P , Npi is the length of path pi,
and P (pij |δ, pi) represents the probability of a context API pij given the current
API pi and its surrounding context δ. This formulation aims to optimize the
embeddings by minimizing the log-likelihood of context API predictions within
the defined window.

3.2 Multi process API sequence representation

Motivation Multi-process and inter-process interactions are major characteris-
tics of malware behavior, such as process injection attacks, process replacement
attacks, and others. Existing methods rarely capture the process-related pro-
files of API sequences. Typically, past approaches organize API sequences as a
single, long sequence, ignoring the fact that they may contain multiple distinct
functional processes and subsequences. In this section, we organize the input
API sequence in two ways: a globally ordered sequence and process-grouped se-
quences,illustrated in Fig. 4. The global API sequence is first sorted by time and
then divided into blocks based on process. Each block can be seen as accomplish-
ing an independent function. As illustrated in the figure below, this clearly ex-
hibits a hierarchical structure: API words, API groups (sentences), and complete
API sequences (documents). Furthermore, to directly express the process struc-
tural information, we propose the concept of a Process State Transition Graph
(PSTG) and utilize a convolutional network to obtain the transition matrix rep-
resentation. The architecture of Multi process API sequence representation is
shown in Fig. 4.
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Fig. 4. Architecture of Multi process API sequence representation.

Based on the above insights, we propose the Multi-process API Sequence
Representation (MPASR) method. The overall structure of the method is shown
in the diagram below. It includes two primary modules: the Cross-Attention-
based Semantic Representation Module and the Process State Transition Struc-
ture Graph Module. These modules extract the semantic information from the
API sequence and the process structural information, respectively, and serve as
input for the final deep learning classifier.

Cross-Attention-Based Semantic-aware Modeling In the semantic-aware
module, we propose a cross-attention-based multi-process API sequence seman-
tic enhancement representation learning. This approach has several advantages.
First, grouping the API sequences by process allows the sequence to be rep-
resented from the perspective of individual processes. Second, cross-attention
enhances the feature representation. Third, the Doc2Vec representation can ef-
fectively handle longer API sequences.

Semantic-aware Encoder We analogize API subsequences to sentences and view
the complete API sequences as documents. Therefore, Doc2Vec is an efficient
representation method that aligns with this characteristic. Based on this, we
obtain the representations of the two types of API sequences using Doc2Vec.
The relevant mathematical expressions have been presented above.

Cross-Attention Semantic Enhancement As shown in the Fig. 4, after obtaining
the embeddings of the API call sequences under two organizational structures,
the cross-attention mechanism is applied to establish connections between the
two API sequences, thereby enhancing the semantic representation of the multi-
process API sequences. In the figure, emb1 represents the embedding of the API
sequence sorted by execution time, and emb2 represents the embedding of the
API sequence grouped by process ID and then sorted by the first appearance
time of each process. The cross-attention module consists mainly of three fully
connected layers: l1, l2, and l3, with parameter matrices defined as W1 ∈ Rdf×df1 ,
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W2 ∈ Rdf×df2 , and W3 ∈ Rdfa×dfh , where d represents the feature vector di-
mensions, and df1 and df2 are equal, representing the output dimensions of
fully connected layers l1 and l2, respectively. dfa denotes the dimension of the
attention features after concatenation, and dfh represents the output feature di-
mension of the linear layer l3. First, we obtain f1 and f2 as latent features from
the intermediate layer, and the calculation is as follows:

f1 = f ·W1, f2 = f ·W2 (4)

where · denotes matrix multiplication. Specifically, we apply the activation
function tanh to map the intermediate feature values to the range (−1,+1),
obtaining the corresponding feature sign vectors v1 and v2 to represent the latent
feature values. Finally, the feature vector α is obtained by multiplying the two
sign vectors as shown below:

α = vs1 · vs2 (5)

After obtaining α, we combine it with the latent feature vectors fa1 and fa2 .
The two new feature vectors are concatenated into a high-dimensional vector
and passed as input to the final linear layer l3. The output fh is the final output
after the cross-attention operation, as shown in the following equation:

fh = Concat(αf1, αf2) ·W3 (6)

Finally, the embeddings enhanced by cross-attention retain the information of
the original two types of API sequences while also capturing the representations
of API calls related to inter-process interactions.

Process State Transition Graph The Process State Transition Graph (PSTG)
is constructed based on the time-ordered API sequence. We further divide the
sequence into blocks based on the process ID, encoding each block with its cor-
responding process number. A directed edge is drawn between adjacent blocks
based on their sequence in the API flow. The resulting structure captures the
transitions between processes, providing a state transition matrix, shown in
Fig. 4. In the time-ordered API sequences,there may be cases where API se-
quences are interleaved. Let the state transition matrix be T . If two APIs are
adjacent in execution order but belong to different processes, a process state
transition occurs, and we update Ti,j += 1, where i and j are the indices of
the two processes involved in the context switch. Note that the process index
is different from the PID—it starts from 0, with the first encountered process
labeled as 0, and so on. This approach helps reduce the dimensionality of the
state transition matrix.

After getting the state transition matrix PTSG, we use ResNet [24] to pro-
cess it. ResNet facilitates efficient information transmission through shortcut
connections. We employ an 11-layer ResNet with 3 residual blocks. All convo-
lution kernels have a size of 3 × 3, as we aim to capture subtle changes in the
graph. Next, we use a global max pooling layer to compute the embedding of the
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state transition graph. Specifically, the embedding of the state transition graph
is given by:

ePTSG = Maxpooling(ResNet(PTSG)) (7)

We only apply pooling methods in the last layer to handle varying input
sizes.

3.3 Argumewnts Enhanced API Sequences

By analyzing the API sequences and their parameters, we found that malicious
software’s dynamic API call sequences often contain many repeated API names,
but with different parameters. Previous methods treated these as noise and sim-
plified the sequences by removing duplicates. Based on this insight, we propose
a set of heuristic strategies based on parameter content to optimize the repre-
sentation of API sequences. As shown in the Fig. 5, ‘LdrGetProcedureAddress‘
is used for loading functions at runtime and typically appears consecutively in
the sequence. Its parameter, ‘function_name‘, indicates the function whose ad-
dress needs to be obtained. Therefore, we replace the original API sequence
with ‘API_function_name‘. Similarly, we use ‘sleep_dwMilliseconds‘ instead of
‘sleep‘, and ‘NtDelayExecution_DelayInterval‘ instead of ‘NtDelayExecution‘.

The benefit of this approach is that it enriches the representation of the
API sequences without reducing the model’s generalization ability or causing
adversarial detection.

API_Seqs               Arguments

LdrGetDllHandle        {······} 
LdrGetProcedureAddress {······, 'function_name': 'FlsFree', ······} 
LdrGetProcedureAddress {······, 'function_name': 'FlsGetValue', ······} 
LdrGetProcedureAddress {······, 'function_name': 'FlsAlloc', ······} 
LdrGetProcedureAddress {······, 'function_name': 'FlsSetValue', ······} 
LdrGetProcedureAddress {······, 'function_name': 'InitializeCriticalSectionEx', ······} 
LdrGetProcedureAddress {······, 'function_name': 'InitOnceExecuteOnce', ······} 
LdrGetProcedureAddress {······, 'function_name': 'CreateEventExW', ······} 
······
LdrGetDllHandle        {······}

Modified API_Seqs

LdrGetDllHandle
LdrGetProcedureAddress_FlsFree
LdrGetProcedureAddress_FlsGetValue
LdrGetProcedureAddress_FlsAlloc
LdrGetProcedureAddress_FlsSetValue
LdrGetProcedureAddress_InitializeCriticalSectionEx
LdrGetProcedureAddress_InitOnceExecuteOnce
LdrGetProcedureAddress_CreateEventExW
······
LdrGetDllHandle

Fig. 5. Example of simplifying a repeated API subsequence based on parameters

After getting modified API sequences, we use N-grams to represent the se-
quence and apply machine learning techniques for classification.First, we extract
N-grams from the API sequences. N-grams are contiguous sequences of N items
from a given sample of text, and they are used to capture local patterns in the
API sequences. We choose the most frequent N-grams in the training data to
construct feature vectors for each sample. Specifically, for each API sequence,
we compute a feature vector where each element corresponds to the frequency
of a particular N-gram in that sequence. Then, we select features with mutual
information to gain the top K2 most relevant features, where mutual information
I(X,Y ) between features X and label Y is defined as:
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I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(8)

The top K2 features are selected based on the highest mutual information
scores. After selecting the features, we apply the XGBoost classifier to train a
model on the selected features.

3.4 Ensemble Learning

After obtaining the results from the three models, we use ensemble learning
to enhance the performance of the classification model, improving its accuracy
and robustness by combining the predictions from multiple models. Ensemble
learning, using the voting method, integrates these outputs to provide a final
prediction. The voting method can be classified into hard voting (majority vote)
and soft voting (based on class probabilities). Here, K-Nearest Neighbors (KNN)
is used for soft voting. For optimal performance, the base models should meet
two conditions: 1. Similar accuracy: Models should have comparable accuracy
to avoid one dominating the voting process. 2. Low homogeneity: Models should
be diverse to capture different aspects of the data, providing complementary
insights that enhance overall performance.

4 Experiments

4.1 Experimental Setup

Dataset In our paper, both API name sequences and called arguments of dy-
namic excution are required. Although there are some publicly available API
sequences dataset, they are not suitable for our approach due to the absence of
API arguments. Thus, we collect malware and goodware from various sources
by ourselves and execute each sample in cuckoo sandbox [20] environment for 2
minutes. Then, we get API call sequences and arguments from the dynamic exe-
cution logs. Finally, the experiment was conducted on a dataset containing 19088
malware from 62 families and 11030 goodware. Malware are categorized into 12
classes based on attack intent and techniques. We construct three classification
tasks — malware family classification, malware functionality classification and
malware detection.

Evaluation Metrics We evaluate our method and compared methods using
five widely used metrics, including Accuracy and F1-Score.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)
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Recall =
TP

TP + FN
(11)

F1− Score = 2× Precision ×Recall

Precision+Recall
(12)

, where TP and TN are correct detections of positives and negatives, while
FN and FP are misclassified positive and negative samples, respectively.

4.2 Results and Analysis

Comparative results The comparative results are presented in Table 1. The
following observations can be made from the experimental results:

Firstly, in the comparison of individual models, MPAR achieved the best per-
formance in terms of the metrics. ARG and Modified_API also outperformed
most other models. Although these methods only extract partial features of the
API sequences, such as resource dependency information, process semantics and
structural information of the API sequences, and the existence information of
optimized APIs containing parameter information, they still perform well, in-
dicating that these partial features are useful for classification tasks. MalAtt
exhibits comparable performance to the three standard models we proposed;
however, considering that it integrates static opcode information, which is vul-
nerable to code obfuscation attacks, its performance will degrade significantly
when samples are obfuscated. Additionally, the graph-based method API2Vec
did not perform as expected. We believe this could be due to the large num-
ber of duplicate nodes hindering the random walk process from exploring more
diverse paths. Furthermore, methods that incorporate parameter information
(such as DMDS, MalAtt, Dmalnet, and Agrawal et al.) generally outperform
methods that rely solely on the API name sequence. Finally, we observed that
as the complexity of the classification task increases and the number of categories
grows, classification performance tends to decrease, as capturing more intricate
details becomes necessary to further distinguish between samples.

Ablation study To evaluate the contribution of each model to overall accuracy,
we compared individual models as well as their pairwise combinations. Among
the individual models, Multi-process API Sequence Representation (MPAR)
achieved the highest accuracy, followed by API Resource Graph (ARG). As il-
lustrateed in 1,when ARG and MPAR were used together, the accuracy on the
family classification task increased by 0.169% compared to using MPAR alone.
We hypothesize that although there is a large accuracy gap between the two
base models, their low homogeneity allows for performance improvement when
combined. No combination led to a decrease in accuracy, which we attribute to
the low homogeneity and relatively small accuracy differences between the three
models, making this an ideal scenario for deep ensemble learning. When all three
models were used together, the accuracy improved by as much as 1.98%.

Additionally, we explored whether optimizing the processing of API sequences
through parameter tuning enhances classification performance, and how differ-
ent API sorting strategies influence the results. We also assessed whether our
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Table 1. Comparisons of different models on three tasks. The best results are in
boldface.

Model
Family Classification Function Classification Malware Detection Inference Time

(ms/sample)Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

API2Vec [5] 0.7651 0.7134 0.8017 0.7533 0.8929 0.8552 919.9
DMDS [7] 0.8937 0.8383 0.917 0.8443 0.9314 0.882 21.2

TextCNN [9] 0.613 0.5847 0.6521 0.6019 0.7244 0.6915 19.8
Agrawal et al. [1] 0.9087 0.9182 0.9331 0.924 0.9551 0.9291 34.5

MalAtt [8] 0.9126 0.9122 0.9363 0.9166 0.972 0.9481 28.3
Dmalnet [10] 0.9136 0.9097 0.9214 0.9138 0.9371 0.9257 20

MPAR 0.9213 0.9057 0.9372 0.9237 0.9796 0.9556 21.1
ARG 0.9157 0.91 0.9353 0.9113 0.9543 0.9342 25.3

Modified_API 0.9172 0.891 0.9297 0.9077 0.9712 0.9466 18.5
ARG+MPAR 0.9382 0.9191 0.949 0.9345 0.9874 0.9565 46.7

ARG+Modified_API 0.9255 0.9032 0.9448 0.9179 0.9836 0.9546 39.8
Modified_API+MPAR 0.9318 0.9089 0.9417 0.9111 0.9866 0.9547 44.2

Ensemble Model 0.9411 0.9373 0.9574 0.9411 0.9884 0.9579 65.4

cross-attention mechanism offers superior performance compared to simply con-
catenating the two embeddings. As illustrated in Fig. 6, the optimized API
sequences yielded better results than the original sequences when used as input.
Moreover, the cross-attention-based API sequence representation method out-
performed both individual API sequences and the concatenated version of the
two sequences, which aligns with our expectations.

(a) ROC of methods with different API
processing strategies

(b) ROC of methods with different API
Sequence order

Fig. 6. Comparison of ROC Curves

Inference Time Overhead The inference time overhead of this method comes
from three components: ARG, MPAR, and Modified_API. The experiments
were conducted on an Ubuntu (20.04.2 LTS) server with a 32-core AMD EPYC
9654 96-Core Processor and 120GB of RAM. The average processing time per
sequence for each of the three components was 21.1ms, 26.3ms, and 18.5ms,
respectively, while the time for processing with the three models combined was
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65.4ms. In comparison, API2Vec, DMDS, TextCNN, Agrawal et al., MalAtt, and
Dmalnet took 919.9ms, 21.2ms, 19.8ms, 34.5ms, 28.3ms, and 20ms, respectively,
to process one sequence. Although our method takes relatively longer, the 65.4ms
detection time is still reasonable. Therefore, we believe this method is feasible
for malware detection in real-world scenarios.

5 Conclusion

This paper proposes a hybrid model that combines deep learning and machine
learning, leveraging ensemble learning to integrate different deep learning base
models and obtain final results through a voting mechanism. The model exten-
sively explores API information from three aspects: API resource graphs, multi
process API sequence representation, and argumewnts Enhanced API sequence
n-grams. These heterogeneous pieces of information are integrated to further
improve accuracy. We evaluated the model on a large dataset composed of real-
world software. Experimental results show that the proposed model outperforms
other comparison models in terms of accuracy and f1 score.
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