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Abstract. The aging population has led to an increasing number of
elderly individuals living alone, making it crucial to address their need
for prompt and effective emergency assistance. Older adults, often fac-
ing physical limitations or illnesses, require reliable systems for imme-
diate help during life-threatening situations. To meet this need, smart
devices like emergency call systems are being developed, enhancing se-
niors’ safety and improving health and social care responses. Our re-
search explores how passive and active speech analysis on mobile devices
can support automatic emergency assistance. We show that this can be
achieved on Edge devices using tiny machine learning (ML) models for
wake-word detection, speech-to-text conversion, and intention recogni-
tion, paving the way for safer, smarter living environments for seniors.

Keywords: Internet of Things, older adults, Natural Language Process-
ing, intention recognition, speech analysis

1 Introduction

The aging society, characterized by a growing proportion of older individuals
in the population, is a global phenomenon [18]. Advances in healthcare have
improved living conditions, enabling more people to reach old age [1]. For the first
time, projections suggest that the global population over 65 could soon exceed
the number of children under 5 [26]. This trend spans all regions worldwide [18].

In 2021, 761 million people worldwide were over 65, including 155 million
aged 80 or older (Table 1). By 2050, these numbers are expected to rise to 1.6
billion and 459 million, respectively. Older individuals constituted 9% of the
global population in 2021, a figure projected to reach 16% by 2050—meaning
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Table 1: The number of older people in the global society in 2021 and 2050 [28].
Year 2021 2050
The number of people over 65 years old 761 million 1.6 billion
The number of people over 80 years old 155 million 459 million
Percentage of people over 65 years old in total population 9% 16%

one in six people will be elderly. Additionally, life expectancy for those over
65 is expected to increase from 82 years in 2021 to 84 years by 2050 in more
developed regions [28]. Older people who live alone form a social group that
requires special attention, support, and care from others due to their health and
physical conditions. It may seem natural that this care can be provided by their
relatives, such as children or grandchildren, or if they do not have any, siblings,
or people from extended family. Statistical analyses have shown that, for the
most part, even when adult children no longer live with their parents, they still
live close to their place of residence, which certainly makes it easier for them
to provide help to their parents [27]. Elderly people can also benefit from the
help of employed home caregivers. Various types of social services, helping the
elderly, charities, and self-help groups, are also being established.

Nevertheless, the above-mentioned forms of assistance are often not practiced
continuously at any time of the day or night. Therefore, devices that enable reli-
ably calling for help at any time are needed, especially in situations of immediate
life-threatening risk caused by illness or accident. These may be electronic de-
vices, edge Internet of Things (IoT) solutions, or smartphones that enable remote
notification of appropriate people or services about the need to provide help. The
introduction of these solutions becomes a key element in caring for the health of
seniors, providing support for their families and caregivers, and contributing to
an improvement in the quality of life within an aging society.

This paper shows how the automatic call for help (ACH) can be initialized
through passive and active voice analysis on a mobile device. Section 3 discloses
the general idea and architecture of ACH with voice analysis models. Section 4
describes the algorithm designed to perform this process, and Section 5 explains
the created experimental environment with the ML models used for particular
phases of ACH. In Section 6, we experimentally test wake-up keyword detection
and voice-to-text transcription for various noise conditions. We also verify the ef-
fectiveness of different ML-based intention recognition models operating at edge
devices and those provided as web services. Our experiments confirm that ACH
can be efficiently performed with tiny ML models designed for smartphones.

2 Related works

In today’s society, where caring for the elderly and disabled plays a key role,
the use of smart technologies to create devices that enable calling for help has
become indispensable. These devices are intended to ensure a quick response in
emergency situations and provide a sense of security for both people in need
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of support and their caregivers [3]. The number of devices was developed and
described in the literature. They are usually equipped with a wearable IoT device
with a set of sensors and a stationary receiver with internet connectivity. The
stationary device can be a mobile phone, like in PhystioDroid created by Banos
et al. [7], or a separate device, like in the system developed by Lersilp et al. [17].
The carried device can have a form of the wristband [17], the belt mounted at the
waist level [30], or chest level [7]. Sensors can be integrated with the wheelchair
[14] or with the user’s clothes [13]. Wearable devices contain mainly sensors
for body temperature, movements, heart rate, blood pressure and haemoglobin
oxygen saturation SpO2. Critical features are the ability of the fall detection
[23], [16] and the alarm trigger, which can have a form of a large red SOS button
[17], [2]. In a more advanced system, the emergency situation can be cancelled
by a voice command or confirmed by the command or lack of it, causing the
notification of relatives or medical services.

There is a group of systems relying on speech recognition technology, which
makes it easier to operate with, especially for people with lower digital tech-
nology skills, since speech is the most natural way of communicating between
people. Such systems usually consist of two main modules - Automatic Speech
Recognition (ASR) and then Natural Language Understanding (NLU) [8]. ASR
systems can recognise separate words, while more advanced NLU systems try to
understand their meaning when spoken in conjunction with other words. NLU
is still a complex task for computers [9], especially in an emergency situation,
when patients may not be able to speak clearly. Additional information can
be obtained with emotion detection [11]. The availability of high computing
power and artificial intelligence (AI) services in computing clouds has enabled
the creation of voice recognition systems in the form of voice assistants. These
are currently Apple’s Siri [6], Microsoft Cortana (2014), Amazon Alexa (2014),
and Google Assistant (2016). One of the newest achievements in this area is
the OpenAI Whisper [24]. Research shows that it can even successfully recog-
nise the speech for dysarthric patients [29]. Currently, the NLP in the cloud is
more effective than voice recognition technology built into end devices [6], but
constant development and miniaturisation of microcontrollers enable progress in
voice recognition on the Edge. In 2021, Mrozek et al. [20] also investigated ASR
approaches available in the cloud. However, their usage was highly dependent
on the availability of cloud services and stable Internet access. The current work
describes the system that moves this process to the Edge, which is essential in
situations of lack or poor Internet connection. However, we also compare the
Edge-based models with the external, cloud-based ones.

3 General Idea of Calling for Help

Our idea for calling for help in dangerous situations that may occur in seniors’
lives assumes the use of a smartphone to monitor the surrounding speech in
standby mode and wake up and react only when a monitored person (senior)
utters a call for help. Although not every senior may have one, smartphones are

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_2

https://dx.doi.org/10.1007/978-3-031-97573-8_2
https://dx.doi.org/10.1007/978-3-031-97573-8_2


4 B. Małysiak-Mrozek et al.

increasingly used by this group of people. As electronic devices, today’s smart-
phones not only provide connectivity in terms of voice and data transmission
but are also powerful enough to perform sophisticated computational opera-
tions, such as data analysis involving ML-based inference. This analysis may
cover ASR and NLU, as shown in Fig. 1. Some of these processes can also be
optionally implemented by invoking external services. However, such a flow re-
quires a stable internet connection, additional GSM data transmission from a
mobile device (such as a smartphone) to these services, and the constant avail-
ability of external services. Therefore, local, edge-based help summoning should
work more efficiently and support real-time reactions in the event of danger.
This will be verified experimentally (Section 6). In an emergency, the smart-
phone calls the caregiver or informs him of what happened. Another argument
for using smartphones is that they can detect dangerous situations (e.g., falls)
automatically based on built-in IMU sensors. This enables the integration of
various monitoring approaches into a single mobile device, suitable for use in
both smart home environments and outdoors in smarter cities.

 

smartphone 

Cloud 

NLU 

caregiver 

senior 

SR/STR 

NLU 

NLU 

Other web 

services 

GPT 

Fig. 1: General architecture of the senior monitoring environment with automatic
help summoning through speech analysis on a mobile device.

4 Speech Stream Processing for Help Summoning

Every day, people speak on many topics, formulating sentences consisting of
words that create a logical sequence of statements. Each statement can, therefore,
be treated as a stream of sentences and the words that compose them. Let S be
a statement stream with n sentences s spoken by a person:

S = {si|i = 1 . . . n, n ∈ N+}. (1)
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Each sentence si ∈ S consists of a different number of words w:

si =< w1, w2, . . . , wm >, (2)

where w1, w2, . . . , wm are particular words and m is a (varying) number of words
in a sentence.

Calling for help using smart devices that analyze speech consists of several
stages. The first one assumes that the intention to call for help appears after
saying a special wake-up keyword wk.

si =< w1, w2, . . . , [wk], . . . , wm >, (3)

where [wk] denotes that the keyword may appear optionally in a sentence. How-
ever, once it appears as a spoken word, it starts the second and the third stages
of the analysis for the rest of the statement stream:

S′ = {< wk, wk+1 . . . , wm >, si+1, . . . sn}. (4)

The process is, therefore, carried out in three stages, as shown in Fig. 2. In the
idle state, the device listens for the user to say a defined keyword, monitoring the
signal from the device’s built-in microphone. For the purposes of this work, we
chose the word help. It is easily recognized, short, characterized by clear sound,
and commonly used in situations requiring urgent intervention or support. After
detecting the utterance of a keyword, the application enters the active state in
which it transcribes the words spoken by the user, transforming speech into text.

 

START 

Was a wake-up 

keyword wk 

detected? 

Listen to the speech S 
Perform speech to text 

transcription 

Verify the intention in terms of 

calling for help 

Is there an 

intention to 

call for help? 

Initiate defined alarm 

procedures 

No 

Yes 

Yes 

No 

Fig. 2: General algorithm of automatic help summoning through speech analysis
on a mobile device.

In such a form, the transcribed speech can be classified more effectively us-
ing computer technology. Transcription continues until the user stops speaking
any more words for a defined period. The final stage covers the classification of
the user’s statements to recognize the intention to call for help. The application
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determines whether the user had actual intention to call for help or whether
his statement was accidental or unrelated to an emergency situation. The clas-
sification process relies on analyzing the content of the transcript and defining
the probability of an alarm situation occurring. If a true intention to call for
help is detected, the device is ready to initiate defined alarm procedures, e.g., to
inform the appropriate emergency services about the location and nature of the
reported event or to record this fact in a database available to the user’s care-
givers. Otherwise, the device remains idle, ready for any further sound signals.

5 Experimental Environment and Methods

To investigate the automatic call for help, we developed a mobile application
for a smartphone (Dart programming language and Flutter framework) with a
backend layer implementing the speech analysis algorithm presented in Fig. 2
and a frontend to visually observe the results of the analysis.

For keyword detection, we considered several solutions, including Pocket-
sphinx [15], Mycroft Precise, Snowboy, and Porcupine Wake Word by Picovoice,
and finally selected and tested the last one as it fitted our requirements. The
capability of detecting the wake word to stitch into active mode is particularly
valuable in voice-controlled applications and devices, offering a seamless and
efficient means of interaction [21]. The Porcupine supports multiple languages,
many target platforms, operating systems, and programming languages, which
allows building models optimized for a given device. In our case, we created an
Android model, and we trained it to detect the wake-up keyword help. Then, we
could process voice data fully locally on the device without the use of external
servers or services. This locality eliminated the impact of network delays, access
interruptions, or bandwidth limitations on the quality of voice analysis.

For the second stage of the speech analysis, i.e., speech-to-text transcription,
we considered several, mainly open-source toolkits and libraries, including Kaldi
[22], DeepSpeech engine by Mozilla [12], Pocketsphinx [15], and Vosk [4]. Based
on the comparisons of the quality and performance reported in [25], we focused
on Kaldi and Vosk and finally chose Vosk, which supports over 20 languages and
allows building small models (approx. 50MB) intended for use on smartphones
and single-board computers such as Raspberry Pi. They require relatively little
computing power and memory to operate [5].

For the fundamental stage of detecting the intention to call for help in the
user’s statements, we tested six analytical solutions. For local intent detection,
we created three different models using the TensorFlow Lite (TFLite) library.
Additionally, we created a fourth model using a light embedding approach. These
models have been optimized to operate on devices with limited resources and low
energy consumption, such as portable devices, smartphones, microcontrollers,
and embedded systems.

The first model (TF simple) is a simple sequential model acting as a classifier
composed of several layers (Fig. 3a). The initial layer is the TextVectorization,
tasked with transforming the text into a sequence of token indices. The next

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_2

https://dx.doi.org/10.1007/978-3-031-97573-8_2
https://dx.doi.org/10.1007/978-3-031-97573-8_2


Automatic Help Summoning through Speech Analysis on Mobile Devices 7
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Fig. 3: Local inference models for intent detection: (a) simple, (b) 1-layer Bidi-
rectional LSTM, (c) 2-layer Bidirectional LSTM, and (d) Embed&Class.

one, the Embedding layer, holds a vector for each word. Upon invocation, it
transforms sequences of word indices into sequences of vectors. The GlobalAver-
agePooling1D layer produces a constant-length output vector for each example
by computing the average across the sequence dimension. This approach allows
the model to manage variable-length input data in a straightforward manner,
which is crucial given the varying number of words in input statements. The
constant-length output vector is passed through a fully connected Dense neural
network layer with 16 hidden units. The final Dense layer is fully connected
with a single output node. The second model (TF 1-layer Bi-LSTM, Fig. 3b)
is slightly more complicated and uses the bidirectional LSTM recurrent neural
network and fixed-length representation of text in the Embedding. The third
model (TF 2-layer Bi-LSTM, Fig. 3c) differs from the second one by adding one
more recurrent bidirectional LSTM layer directly after the first existing bidi-
rectional LSTM layer and the Dropout layer, which helps prevent overfitting.
The fourth model, we named Embed&Class, operates in a different way. In the
first, embeddings are produced by the use of the Qdrant FastEmbed library 6, a
library designed for fast embedding and which can rely on lightweight quantized
language models based on Transformers, like bge-small-en-v1.5, a small-scale En-
glish text embedding model developed by BAAI (Beijing Academy of Artificial
Intelligence). This approach is then combined with a standard SVM classifier
that operates directly on the generated embedding vectors to detect intentions.
The SVM model is trained using a 10-fold cross-validation process. Input em-
bedding vectors used for learning are normalized. As parameters, the SVM uses
a ridge logistic regressor for data calibration, a polynomial kernel, and a C value
of 1.

6 https://github.com/qdrant/fastembed
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As an external tool for intent recognition and the fifth analytical solution, we
tested Azure Cognitive Services. It is a set of cloud services available in Microsoft
Azure that enable the integration of artificial intelligence and machine learning
across applications. These services offer pre-trained models for processing text,
video, and speech data, as well as services for analyzing geospatial data. The
default, pre-trained model has been tuned by us to the problem of calling for
help. Specifically, the model was tuned to assign the sentence to one of two
classes - the class of sentences containing or not the intention of calling for help.

As the last analytical approach, we also tested the external GPT-3.5 (Gen-
erative Pre-trained Transformer 3.5) service by OpenAI. It provided a stable
(at the time of system implementation) and advanced language model based on
the Transformer architecture, a neural network specifically designed to process
sequences of data, such as text.

6 Experiments

All three stages of the speech analysis were experimentally tested on Samsung
S20 with Android 13 using the implemented mobile application to assess the
feasibility of performing automated calling for help at the Edge.

6.1 Wake-up Keyword Detection

To assess the quality of wake-up word detection, we utilized a dataset comprising
300 voice recordings in WAV format, with a sampling frequency of 16 kHz. The
dataset was balanced, comprising 150 speech recordings with the help wake-up
word among other sentences spoken, and 150 recordings without the wake-up
word. The dataset was created based on sentences from the Kaggle Medical
Speech, Transcription, and Intent dataset [19] with audio statements related
to typical medical symptoms along with their transcriptions. Since this dataset
does not contain any sentences with the wake-up word, based on its content, we
recorded 300 statements with ten 60+ volunteers speaking 30 selected sentences
that contained or did not contain the wake-up word from a distance of 40 cm.

The detection process was treated as a two-class classification problem, where
the output of the detector was a logical value indicating whether it recognized the
keyword in the recording or not. Based on the obtained confusion matrix, where
a True Positive was a correctly detected recording with the wake-up word, while
the True Negative was a correctly detected recording without a wake-up word,
we calculated the values of performance metrics, including accuracy, precision,
recall, and F1-score (Table 2). The research was carried out on original recordings
and the recordings with white noise added. The maximum amplitude of the
recording was assumed as the default value for the maximum noise amplitude.
We also tested the recordings with added noise of the amplitudes reduced by 20,
40, and 60 dB compared to the default value.

As can be observed, the accuracy of detecting the wake-up word was the
highest for the original sound and is as high as 98%. As white noise is added,

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97573-8_2

https://dx.doi.org/10.1007/978-3-031-97573-8_2
https://dx.doi.org/10.1007/978-3-031-97573-8_2


Automatic Help Summoning through Speech Analysis on Mobile Devices 9

Table 2: Performance of the wake-up word detection
Accuracy Precision Recall F1-score

Original sound 0.980 0.993 0.967 0.980
With white noise (-60 dB) 0.963 1.000 0.927 0.962
With white noise (-40 dB) 0.943 1.000 0.887 0.940
With white noise (-20 dB) 0.827 1.000 0.653 0.790
With white noise (-0 dB) 0.500 N/A 0.000 N/A

the accuracy decreases, but for noise with an amplitude reduced by 60 and
40 dB, the detector still achieves satisfactory results above 94%. Adding noise
with an amplitude reduced by 20 dB causes a significant deterioration of the
model’s accuracy, which drops to 82.7%. The effect of adding noise with the
default amplitude is the complete cessation of detection of the wake-up word,
as evidenced by an accuracy value of 50% combined with a sensitivity (recall)
of zero. Precision values of 1 in most analyzed cases suggest that the model is
never triggered by phrases not containing the help word. The exception is only
one case for the original sound, which contributed to the precision value in this
case being 0.993. However, this is still a very high value. The key metric in the
context of the considered application of the detector is sensitivity (recall). It tells
us what proportion of real distress calls were correctly detected. For the original
sound, the value of this metric reached 0.967. This is a satisfactory result. The
sensitivity for recordings with added noise is slightly worse. However, for a noise
amplitude reduced by 60 dB, the model still achieves a value exceeding 90%. As
the amplitude of the added noise increases, the sensitivity value decreases, and
for noise with an amplitude reduced by 20 dB, the software detects only about
two-thirds of the distress calls. Adding noise at the default high amplitude means
that the wake-up word is not detected in any of the test recordings, as evidenced
by a sensitivity value of zero. The values of the F1-score, which is the harmonic
mean of precision and sensitivity, also show similar behavior and decrease as
the amplitude of the added noise increases. However, it is worth noting that the
noise values corresponding to the two highest considered amplitudes are rarely
encountered in real-life conditions.

6.2 Transcription of the Speech

To examine the accuracy of the transcriptions of the statements, we used pre-
pared recordings and reference data in the form of transcriptions of the spoken
sentences. The research was carried out on 1,200 recordings, which included 30
statements for each of the two classes - statements with the intention to call for
help and neutral statements, recorded twice by 10 people. The statements with
the intention to call for help or containing descriptions of medical symptoms
along with their transcription were taken from the KAGGLE Medical Speech,
Transcription, and Intent dataset [19]. The neutral sentences were taken from
the KAGGLE TED Talks Transcripts for NLP dataset containing transcripts of
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talks given on various topics at TED scientific conferences [10]. The recordings
were provided as input to the Vosk model, which produced their transcriptions.
Transcriptions from the Vosk model were compared to reference transcripts to
determine their accuracy. For this purpose, we used the following quality mea-
sures:

– Word Error Rate (WER) - the ratio of the total number of word errors
(substitutions S, deletions D, or insertions I) to the number of words N in
the reference transcription:

WER =
S +D + I

N
, (5)

– Sentence Error Rate (SER) - the percentage of transcripts containing at
least one incorrect word:

SER =
F

M
, (6)

where S is the number of words replaced with other words relative to the refer-
ence transcription, D is the number of words omitted (deleted) relative to the
reference transcription, I is the number of words inserted additionally to the
reference transcription, N is the total number of words in the reference tran-
scription, F is the number of transcriptions containing at least one incorrect
word, M is the total number of transcriptions. Particular ratios of S/N , D/N ,
and I/N in our experiments are presented in Table 3.

When assessing the transcription quality, we did not consider capitalization
and punctuation. Each transcription was changed to all lowercase letters, and
punctuation was removed completely. Similarly to the wake-up word detection,
experiments were performed on original recordings and recordings with added
white noise. By default, the maximum amplitude of the noise was assumed to
be equal to the maximum amplitude of the original recording. Additionally, we
analyzed the recordings with additional noise, whose amplitudes were reduced
by 20, 40, and 60 decibels compared to the default value.

Table 3: The ratio of the number of substitutions S, deletions D and insertions
I to the number of all words in the reference transcript (µ - mean, σ - standard
deviation)

S D I
µ σ µ σ µ σ

Original sound 0.063 0.107 0.016 0.044 0.012 0.046
With the white noise (-60 dB) 0.064 0.105 0.019 0.051 0.012 0.042
With the white noise (-40 dB) 0.079 0.129 0.094 0.244 0.010 0.036
With the white noise (-20 dB) 0.207 0.191 0.293 0.330 0.007 0.035
With the white noise (-0 dB) 0.119 0.077 0.879 0.077 0.000 0.000
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For original sound, the speech-to-text transcription with the Vosk model
achieved very good results (Table 4). The mean value of the WER error is
9.228%, and the standard deviation is 13.635%. Noteworthy is the median value
of zero. This proves that a large group of recordings was transcribed flawlessly.
Taking into account the specificity of the WER metric and its lowest possible
value equal to zero, at least half of all recordings belong to this group.

Table 4: WER values for the speech-to-text transcription
WER

Mean (%) Standard Median (%)deviation (%)
Original sound 9.228 13.635 0,000

With white noise (-60 dB) 9.520 13.236 0.000
With white noise (-40 dB) 18.368 27.102 9.100
With white noise (-20 dB) 50.737 33.952 50.000
With white noise (-0 dB) 99.907 0.737 100.000

As the amplitude of noise added to recordings changes, the ratios of substitu-
tions, deletions, and insertions to the total words in the reference transcription
also change. Higher noise amplitude increases deletions and substitutions (ex-
cept at maximum amplitude) while reducing insertions (Table 3). Substitutions
and deletions had the most significant impact on the WER metric. For original
recordings and those with -60 dB noise, substitutions contributed about 0.06 to
the ratio, with deletions three to four times lower. In contrast, for noise levels at
-40, -20, and 0 dB, deletions had a greater influence. Substitution ratios ranged
from 0.079 to 0.207, while deletion ratios spanned 0.094 to 0.879. Insertions had
minimal impact on WER, regardless of noise level. The average insertion ratio
was a maximum of 0.012, indicating the model rarely added unnecessary words
to the transcription.

The SER error value increased with higher noise amplitude (Table 5). For
original recordings, the SER was 7.917%, meaning 1,105 out of 1,200 recordings
were transcribed correctly. Low-amplitude noise had little impact on results,
with significant discrepancies only at noise levels of -40 dB or higher. Even with
SER below 20%, these transcriptions can still aid in detecting intent to call for
help when better-quality recordings are unavailable. However, the highest noise
levels (-0 dB and -20 dB) produced the worst results, making transcriptions
under these conditions unsuitable for emergency call procedures.

6.3 Detecting Intentions to Call for Help

For intention detection, we used the same transcription set as the previous
experiment, dividing it 80:20 into balanced training and test sets with utter-
ances expressing or not expressing the intent to call for help. Several models
were trained and tested, including TF Simple, TF 1-layer Bi-LSTM, TF 2-layer
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Table 5: SER values for the speech-to-text transcription (M = 1200)
The number of transcripts

containing at least one incorrect word F
SER (%)

Original sound 95 7.917
With white noise (-60 dB) 99 8.250
With white noise (-40 dB) 230 19.167
With white noise (-20 dB) 788 65.667
With white noise (-0 dB) 1200 100.000

Bi-LSTM, Embed&Class, Azure Cognitive Services, and GPT 3.5. The Em-
bed&Class model uses three different kinds of input leading to three variations,
standard rough sentences (Embed&Class), rough sentences with metadata like
message titles, if available (Embed&Class-T), or messages titles and intention
prompts, if available (Embed&Class-TP). The task was treated as a two-class
classification, where models identified whether a statement indicated the intent
to call for help. Test set utterances were classified by the models, and results were
compared with reference data to build confusion matrices and calculate metrics,
including accuracy, precision, sensitivity, and F1-score. We also measured the
classification times for each model (see Table 6).

Table 6: Classification performance and time while detecting the intention to
call for help (µT - mean execution time, σT - standard deviation)

Accuracy Precision Sensitivity F1-score µT (s) σT (s)
TF simple 0.900 0.910 0.887 0.899 0.038 0.012

TF 1-layer Bi-LSTM 0.887 0.869 0.912 0.890 0.044 0.003
TF 2-layer Bi-LSTM 0.894 0.889 0.900 0.894 0.042 0.005

Embed&Class 0,997 0,997 0.995 0,997 0.030 0.004
Embed&Class-T 0,998 0,998 0.997 0,998 0.031 0.004

Embed&Class-TP 1.000 1.000 1.000 1.000 0.032 0.004
Azure Cognitive Services 0.981 0.975 0.988 0.981 0.207 0.038

GPT 3.5 0.881 0.867 0.900 0.883 0.795 0.219

The accuracy of local TensorFlow models working on the edge device did not
exceed 90%. Among them, the TF simple model had the highest precision, mak-
ing it the most effective at identifying emergency calls, though it detected about
1 in eleven calls incorrectly. The 1-layer Bi-LSTM model achieved the highest
sensitivity, but cases of missed emergency calls remain. Differences in F1-scores
among these models were minimal. GPT 3.5 performed the worst among remote
models, with an accuracy of 88.1% and the lowest precision and F1-score. In
contrast, Azure Cognitive Services delivered better results, with a 98.1% accu-
racy. However, the best results are obtained by the local Embed&Class models
that outperforms all models, even remote prompt-based ones, with a minimum
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of 99.7% accuracy. Although simpler than the local TensorFlow models, these
models even reaches 100% accuracy whenever additional metadata are used for
learning (Embed&Class-TP).

Inference times for statement classification were shortest with TensorFlow
and Embed&Class models running locally on the edge device, averaging 30–44
milliseconds, enabling near-instant detection of help intent. Remotely invoked
models were slower due to communication delays. GPT 3.5 had the worst per-
formance, averaging nearly 800 milliseconds, with some cases taking up to 2,334
milliseconds—about 20 times slower than local models. Azure Cognitive Services
performed better, with an average classification time of 207 milliseconds, a rea-
sonable result for a cloud-based solution requiring internet access. While both
remote services are acceptable for this application, their differing speeds may
affect user experience.

7 Discussion and Concluding Remarks

Our experiments demonstrated that we can successfully perform automatic help
calls through speech and text data analysis at the Edge. An interesting finding
from these experiments is that lightweight AI/ML models running on Edge de-
vices may outperform remote prompt-based models for this specific task, whilst
working locally on smartphones. This not only accelerates the initiation of help
requests or caregiver alerts while challenging previous results, such as those
presented in [20], which suggested that cloud-based services often offer better
accuracy, but also highlights how these services can be hindered by limited or
delayed internet connectivity.

The rapid evolution of language models, including their lighter versions, is
significantly transforming this landscape, notably enhancing the efficiency and
accuracy of local approaches. These advancements ensure continuous, unobtru-
sive, and discreet monitoring of seniors, enhancing their sense of security without
infringing on their independence. In fact, local solutions may even strengthen
their autonomy by reducing the reliance on remote systems. Regardless of the
approach used—whether local Edge-based, remote cloud-based, or hybrid—all
of them contribute to enhancing the lives of older adults by making smart tech-
nologies accessible across generations and promoting their inclusion in modern
society.
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