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Abstract. This numerical study investigates natural convection and heat trans-

fer in a closed chamber with porous medium. The system combines a porous 

layer and a Newtonian fluid with temperature-dependent viscosity, subjected to 

time-dependent thermal excitation. Governing equations, formulated in dimen-

sionless stream function and vorticity variables, integrate mass, momentum, and 

energy conservation using the Darcy-Brinkman model and Boussinesq approx-

imation. The LTNE framework resolves thermal decoupling between the porous 

matrix and fluid, overcoming limitations of local thermal equilibrium assump-

tions. A finite difference numerical scheme is employed to solve the dimension-

less equations, analyzing the interplay of LTNE parameters (interphase heat 

transfer, parameters of solid structure) and periodic heating (frequency, ampli-

tude). Results demonstrate that LTNE conditions significantly alter thermal 

stratification, velocity asymmetry, and heat transfer rates (with the help of the 

Nusselt number). Elevated heating frequencies suppress convective instabilities, 

while variable viscosity amplifies thermal gradients. The porous-fluid conduc-

tivity ratio critically modulates thermal non-equilibrium, with lower ratios ex-

acerbating temperature disparities. This work validates the necessity of LTNE 

models for systems involving rapid thermal transients, heterogeneous media, or 

variable properties. The findings provide critical insights for optimizing thermal 

management in energy storage, electronic cooling, and geothermal systems. 

Keywords: Free convection, Closed rectangle, FDM, Periodically heating, Po-

rous-fluid interaction, Local thermal non-equilibrium conditions. 

1 Introduction 

Natural convection in porous-fluid systems remains a critical area of research due 

to its applications in geothermal energy extraction, thermal storage, and advanced 

electronics cooling [1]. While classical studies often rely on local thermal equilibrium 

(LTE) assumptions, recent advances emphasize the necessity of local thermal non-

equilibrium (LTNE) models to resolve thermal decoupling in dynamic systems. The 

investigation of natural convection in porous-fluid systems under local thermal non-

equilibrium (LTNE) conditions and variable viscosity builds upon foundational and 
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contemporary research. Rees and Pop [2] resolving thermal decoupling between fluid 

and solid phases in porous media, and demonstrated how interphase heat transfer 

parameters govern temperature disparities ‒ an important problem for modeling sys-

tems with rapid thermal transients. Expanding on variable property effects, Khanafer 

and Vafai [3] revealed that temperature-dependent viscosity amplifies thermal gradi-

ents and flow asymmetry, underscoring the necessity of property variation models. 

Saeid and Pop [4] further explored periodic heating in porous enclosures, identifying 

frequency-dependent suppression of convective instabilities and synchronization be-

tween heating cycles and flow oscillations, aligning with the abstract’s findings on γ-

driven dynamics. 

For energy storage applications, Baytas et al. [5] applied LTNE to solar-thermal 

storage systems, demonstrating thermal disequilibrium dominance under high-

frequency excitation and optimizing conductivity ratios to mitigate temperature dis-

parities. Replacing the original fifth reference, Dehghan et al. [6] advanced numerical 

methodologies by employing a multiscale approach to analyze LTNE in porous cavi-

ties with sinusoidal heating, validating computational frameworks for oscillatory 

thermal loads. Finally, Xiong et al. [7] integrated machine learning with LTNE mod-

els, achieving a 20% improvement in predicting interfacial heat transfer and support-

ing the need for advanced parameterization in dynamic systems. 

This study bridges these gaps by analyzing natural convection in a porous-fluid 

cavity with variable viscosity under periodic heating, employing an LTNE model and 

dimensionless formulation. The work advances prior research by coupling LTNE with 

temperature-dependent viscosity, quantifying frequency-amplitude-phase interactions 

in thermal non-equilibrium. The findings address actual needs in next-generation 

thermal management, such as high-power electronics and phase-change materials, 

where rapid transients and material heterogeneity demand precise modeling. 

2 The problem description 

The schematic of convective heat transfer in the studied cavity is illustrated in Figure 

1. The vertical walls are maintained at a constant cold temperature, while the horizon-

tal boundaries are thermally insulated. A thermally active heat source with time-

dependent heat generation    00.5 1 cos( )Q t Q ft   is embedded at the center of the 

lower boundary (f is volumetric thermal production frequency, t is dimensional time). 

The flow is assumed laminar, with the working fluid exhibiting temperature-

dependent viscosity   exp    with constant ζ [8]. The fluid is Newtonian, heat-

conducting, and governed by the Boussinesq approximation. Contrary to traditional 

local thermal equilibrium (LTE) assumptions, this study employs a local thermal non-

equilibrium (LTNE) model with fluid/solid matrix interface parameter ξ (Nield num-

ber), where different temperature fields are resolved for the fluid phase (Tf) and the 

porous solid matrix (Ts) within the porous part of the cavity. The porous matrix is 

isotropic, homogeneous, and permeable, allowing fluid penetration, while all external 

walls are impermeable. The governing equations adopt the transient Brinkman-
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extended Darcy model, coupled with separate energy conservation equations for the 

fluid and solid phases to account for interfacial thermal resistance and heat exchange. 

 

Fig. 1. The configuration of considered system. 

2.1 The mathematical model 

The mathematical model has developed based on the classical Navier-Stokes equa-

tions, transformed using dimensionless variables “stream function“ and “vorticity“ 

[8]: 

,   ;
v u

u v
y x x y

   
    
   

 

The governing equations have been formulated and solved separately for each phase: 

the pure fluid domain, the porous layer, and the energy source. The constitutive equa-

tions in selected variables describing the process under consideration have been writ-

ten in the same way as in the case of the problem of natural convection of a fluid of 

variable viscosity in a closed 2D cavity with a heat-generating energy source on the 

bottom wall of the cavity and a porous layer (in the LTNE framework) [8]. 

The system of equations for the part with clear fluid can be written as follow: 
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The system of equations for the porous part of the cavity can be written as follow: 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_26

https://dx.doi.org/10.1007/978-3-031-97570-7_26
https://dx.doi.org/10.1007/978-3-031-97570-7_26


4  M. Astanina and M. Sheremet 

 
2 2

2 2x y

   
  

 
     (4) 

 

   2 2

2

2 2

2 2 2

2 2
2

2 2

fPr
u v

x y Ra Da xx y

Pr u v u v v u

Ra Da y Da x y x x y y xx y

        
                 

               
        

           

     (5) 

  
2 2

2 2

f f f f f

s fu v
x y x yRa Pr Ra Pr

        
        

       

     (6) 

  
 

 
2 2

2 2

1
1 s s s

f s
x yRa Pr Ra Pr

         
       

    
     (7) 

The energy equation for the periodic heat release heater is written as follows: 
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In this equation θ ‒ dimensionless temperature; τ ‒ dimensionless time; ,f hs  are 

thermal conductivity of working fluid and heater; ,f hs  are thermal diffusivity of 

working fluid and heater; γ ‒ oscillation frequency of the volumetric heat generation; 

s f/    is the thermal conductivity ratio (between liquid and solid matrix);

 3

0Ra g TL     ‒ Rayleigh number;  0Pr     ‒ Prandtl number. 

At the initial instant of time, the fluid in the cavity is stationary and all variables 

are equal zero. The boundary conditions correspond to the problem [8]. 

2.2 The solution methodology 

The governing equations along with initial and boundary conditions have been solved 

numerically using a finite difference method on a uniform grid [8]. A second-order 

accurate discretization scheme has been applied to approximate convective and diffu-

sive terms. Parabolic equations have been solved via Samarskii’s locally one-

dimensional scheme, while the resulting linear systems have been addressed using the 

Thomas algorithm. The stream function equations have discretized via a five-point 

stencil based on central differencing for second derivatives. To solve the resulting 

algebraic equations, the successive over-relaxation method has been employed, with 

the optimal relaxation parameter determined through numerical experimentation to 

ensure convergence efficiency. The final realization of the solution method has been 

made by development of home-made program code in C++ language. 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_26

https://dx.doi.org/10.1007/978-3-031-97570-7_26
https://dx.doi.org/10.1007/978-3-031-97570-7_26


Natural convection in periodically heated porous-fluid systems under local thermal non-

equilibrium conditions: a numerical study for enhanced thermal management 

A grid sensitivity analysis has been conducted to assess the convergence behavior 

of the numerical solution. Five grid resolutions have been tested: 50×50, 100×100, 

200×200 and 300×300 nodes. Figure 2 illustrates the temporal evolution of the aver-

age temperature within the periodically heated element for these grids under fixed 

dimensionless parameters (Pr=7.0, Ra=105, Da=10-4 (Darcy number), ε=0.8 (porosity 

of porous structure), ξ=100.0, ζ=1.0, γ=0.05, δ=0.5 (the dimensionless height of the 

porous layer)). The results exhibit periodic temperature oscillations synchronized with 

the heat source’s time-dependent power law. Minimal deviations have been observed 

between the 200×200 grid and smaller grids 300×300, confirming sufficient spatial 

accuracy. Consequently, the 200×200 grid has been selected for subsequent simula-

tions to balance computational efficiency and precision. 

 

Fig. 2. Influence of grid parameters on time dependences of average source temperature. 

It is worth noting, however, that the periodic heating from the source is directly re-

flected in the distribution of the average temperature at the source. The fluctuating 

values are directly correlated with the heating period of the source, and reflect the 

periodic heating load on the system. 

Figure 3 shows the distributions of the stream function and temperature function 

for fixed values of Rayleigh, Darcy and Prandtl numbers. The isolines illustrate the 

formation of convective flow in the cavity. The convective flow is initiated by the 

action of the temperature difference between the vertical boundaries of the region. 

The data obtained on the basis of the developed numerical technique (Figure 3b) illus-

trate good agreement with the results of [9]. 
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Fig. 3. Stream function and isotherms at Ra=106, Da = 10-5, Pr = 0.71. 

3 Results 

Numerical calculations for the problem have been performed for different thermo-

physical and geometrical properties of the porous skeleton, energy source, interfacial 

interaction, and for fluid with constant and variable viscosity. According to the ob-

tained distributions of isolines of the stream function and temperature, as well as the 

integral characteristics of flow and heat transfer, the influence of the determining 

parameters on the operation of a thermal system with a periodic type of heating has 

been analyzed. The following ranges of determining dimensionless parameters have 

been considered: Pr=7.0, Ra=105, ε=0.8, Da=10-4‒10-3, ξ=10.0‒1000.0, ζ=0.0‒1.0, 

γ=0.01‒0.1, δ=0.0‒1.0. 

Figure 4 shows the time-dependences of the integral characteristics of heat transfer 

and flow (mean source temperature, maximum fluid flow rate in the cavity, mean 

number at the energy source surface) for different values of Darcy number (Da) and 

viscosity change parameter (ζ) for ξ=10.0, γ=0.1, δ=0.5. It should be noted that at ζ=0 

we consider the case of a fluid of constant viscosity, and at ζ=1 we consider a fluid 

with variable viscosity (due to the chosen law of viscosity dependence). The obtained 

distributions confirm the obtained data in Figure 2. In this case the period of oscilla-

tion from the source γ=0.1, i.e. more in comparison with Figure 2, where γ=0.05. An 

increase in the parameter γ results in a reduction of both the oscillation period and 

amplitude. Notably, the maximum temperature and flow intensity are observed at the 

lowest γ value, while the minimum values occur at the highest γ. An increase in the 

permeability of the porous layer (Da) leads to a decrease in the temperature of the 

source by increasing the flow in the cavity and the intensity of fluid mixing in the 

cavity (Figure 3b). 
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Fig. 4. Influence of Darcy number and viscosity change parameter on integral characteristics. 

The minimum heat load is observed in the case of intermittent viscosity and maxi-

mum Darcy number. Taking into account the dependence of fluid viscosity on tem-

perature shows more realistic results, since in thermal systems the thermophysical 

properties of the fluid strongly depend on the properties of the environment. 

Figure 5 illustrates the evolution of fluid flow within the cavity over one oscillation 

cycle of the heater under fixed dimensionless parameters. The flow dynamics are 

analyzed for time step τ=275. This point in time is reflected in the maximum heat load 

of the system, according to the periodic heating law from the heating element on the 

bottom wall of the cavity. The case of variable viscosity (dashed lines) characterizes 

by more intensive flow and heat dissipation from the heater due to the reduction of 

viscous forces in the fluid due to the adopted law of viscosity change. 

 

Fig. 5. Isolines of the stream function (a) and isolines of fluid (b) and solid structure (c) tem-

perature for Ra=105, ξ=1000, γ=0.1, Da=10-3, ζ=0 (solid lines), ζ=1 (dashed lines) for τ=275. 

The results reveal the development of a time-dependent symmetric flow pattern, driv-

en by the thermal gradient between the heating element and the cooled sidewalls. A 

peak in heat transfer enhancement occurs at the mid-period stage (Tτ/2, τ=275), where 

fluid motion is most pronounced. Additionally, the porous structure within the cavity 

acts as a thermal energy accumulator, moderating heat distribution during the oscilla-

tory process. This non-steady flow regime underscores the interplay between thermal 

forcing and energy storage in the system. 
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4 Conclusion 

In the present study numerical modeling of convective heat transfer processes in a 

closed two-dimensional partially porous cavity in the presence of a source of periodic 

heat release has been carried out. In addition, a local thermal non-equilibrium model 

has been used to describe the thermal interaction between the porous layer and the 

fluid. Key findings reveal that the oscillation frequency parameter γ exerts dominant 

control over the system’s dynamic response: higher γ values suppress convective 

instabilities, reduce oscillation amplitudes, and diminish flow intensity, while lower γ 

amplifies thermal gradients and maximizes heat transfer rates. The Darcy number 

(Da) emerges as a pivotal factor governing porous-fluid interaction, with increased 

permeability enhancing fluid mixing and reducing source temperatures. Notably, vari-

able viscosity (ζ) introduces secondary effects, elevating flow intensity but underscor-

ing the importance of temperature-dependent property modeling for realistic thermal 

systems. 
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