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Abstract. For transport modelled by the time-dependent convection-
diffusion equation, positivity of numerical concentrations and mass con-
servation are two important properties numerical solvers should respect.
This paper investigates such a solver based on the implicit Euler time-
marching and finite volume discretization on quadrilateral meshes. The
solver uses mappedQ1 bilinear polynomials for approximation of the con-
centration. A new upwinding technique is adopted to handle convection
dominance. Flux correction is devised to ensure nonnegative numerical
concentrations. Matlab code modules based on efficient implementation
of this solver are incorporated into our package DarcyLite. Numerical
experiments are presented to illustrate the performance of the new solver.

Keywords: Convection-diffusion · Finite volumes · Flux correction ·
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1 Introduction

In this paper, we focus on implementation of a property-preserving finite volume
solver for the time-dependent convection-diffusion equation with boundary and
initial conditions prototyped as

∂tc+∇ · (vc−D∇c) = s(x, t), (x, t) ∈ Ω × (0, T ]

c(x, t) = cD(x, t), (x, t) ∈ ΓD × (0, T ],

(vc−D∇c) · n = fN (x, t), (x, t) ∈ ΓN × (0, T ],

c(x, 0) = c0(x), x ∈ Ω,

(1)

where Ω is a polygonal domain, T > 0 the final time for numerical simula-
tions, c(x, t) the unknown concentration of the substance being transported,
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v ∈ H(div, Ω) a known velocity, D a symmetric uniformly positive-definite ma-
trix for describing diffusion/dispersion, s(x, t) a known source. Here ΓD, ΓN are
respectively the Dirichlet and Neumann boundaries which do not overlap but
ΓD ∪ ΓN = ∂Ω, cD, fN are respectively the Dirichlet and Neumann data (con-
centration and flux), and c0(x) is the initial condition.

Transport problems modelled by the time-dependent convection-diffusion
equation are important for simulations of many real-world problems, e.g., ground-
water contamination [10], drug release [16], controlled drug delivery to vitreous
humors [14], and flow and transport in fractured media [1], just to name a few.

For the transport and similar problems, numerical methods need to respect
certain important physical properties, e.g., positivity (nonnegativity) of solu-
tion. There have been some successful efforts in this regard. Bound-preserving
discontinuous Galerkin method for compressible miscible displacement in porous
media were investigated in [3,2]. An efficient bound-preserving and energy sta-
ble algorithm for compressible gas flow in porous media was recently developed
in [6]. Finite volume methods with positivity-preserving have also been devel-
oped in [7,8] [9]. Some techniques have also been extended to time-fractional
convection-diffusion problems [21].

In this paper, we first investigate a finite volume solver on a quadrilateral
mesh for the time-dependent convection-diffusion equation with focus on its effi-
cient implementation. Then this transport solver is coupled with a weak Galerkin
finite element solver for Darcy flow on a quadrilateral mesh. The numerical ve-
locity obtained from the latter is fed into the former. The coupling provides an
integrated solver for transport in porous media. Note that spatial discretizations
on quadrilateral meshes are adopted, as done in [4,5,13,18], since quadrilateral
meshes can accommodate complicated geometry flexibly and may involve less
computation than that on triangular meshes. Matlab modules for these solvers
will be incorporated into our code package DarcyLite. These new efforts extend
our earlier work in [11,19,20].

The rest of this paper is organized as follows. Section 2 presents finite volume
discretization on quadrilaterals using mapped bilinear approximants, upwinding
treatment, and a positivity-correction technique for both convective and diffu-
sive fluxes. Section 3 combines these spatial discretization techniques with the
implicit Euler temporal discretization to develop a transport solver that is mass-
conservative and guarantees non-negativity of the numerical concentration. Sec-
tion 4 presents coupling of this transport solver with a Darcy solver. Section 5
discusses procedures and strategies for efficient implementation in Matlab. Sec-
tion 6 presents numerical results. Section 7 concludes the paper with remarks
on further work.

2 FV Q1-functions, Upwinding, and Flux Correction

For 2-dim problems, quadrilateral meshes are equally flexible as triangular meshes
in accommodation of complicated geometry. They may be in better agreement
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with physical features and involve less unknowns. For now, we consider shape-
regular quadrilateral meshes that do not contain hanging nodes.

Fig. 1. A bilinear mapping from the reference square [0, 1]2 to a general quadrilateral.

A convex quadrilateralK is viewed as a bilinear mapping image of the reference
element K̂ = [0, 1]2 (we may use Ê also), namely, the unit square. Assume the
four vertices Pi(xi, yi), 1 ≤ i ≤ 4 are oriented counterclockwise. The bilinear
mapping and its Jacobian matrix are expressed as

{
x = a1 + a2ξ + a3η + a4ξη,

y = b1 + b2ξ + b3η + b4ξη,
J(ξ, η) =

[
a2 + a4η a3 + a4ξ

b2 + b4η b3 + b4ξ

]
, (2)

where (ξ, η) are the reference coordinates in K̂. The coefficients are determined
as{

a1 = x1
b1 = y1

{
a2 = x2 − x1
b2 = y2 − y1

{
a3 = x4 − x1
b3 = y4 − y1

{
a4 = (x1 + x3)− (x2 + x4)
b4 = (y1 + y3)− (y2 + y4)

(3)

For finite volume discretization, we need 4 normal vectors on the 4 edges. They
are not outward unit vectors. Instead, their directions match the ξ−, η− axes.

Fig. 2. Normal vectors on the edges of a quadrilateral.

It is convenient to consider convex combinations of these normal vectors.

q1(ξ) = (1− ξ)q14 + ξ q23, q2(η) = (1− η)q21 + η q34. (4)
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Fig. 3. Primal nodes and sub-volumes.

Let ŵ(ξ, η) be a bilinear function defined on Ê = [0, 1]2 and w(x, y) be the
shape function after being mapped to E. Specifically, let the four nodal values
be wP1 , wP2 , wP3 , wP4 . It can be verified that

J(ξ, η)(∇w)|E = (wP2 − wP1)(1− η)q1(ξ) + (wP3 − wP4)η q1(ξ)

+ (wP4
− wP1

)(1− ξ)q2(η) + (wP3
− wP2

)ξ q2(η).
(5)

For finite volume discretizations based on the mapped bilinear shape functions
on a quadrilateral mesh, each quadrilateral/volume in the primal mesh is divided
into 4 sub-volumes by connecting the volume center with the 4 edge midpoints, as
shown in Fig.3. The sub-volumes surrounding a node, say P1, form a dual volume.
Applying the Gauss Divergence Theorem, an integral of a physical quantity on
the dual volume is converted to a line integral on those dual edges, for instance,
e1 that connects M1 (edge point) and O (element center). Clearly, ξ = 1

2 and
η ∈ [0, 12 ] on e1. Let Ch be the numerical concentration, then

J
(1
2
, η
)
(∇Ch)|e1

=
(
Ch(P2)− Ch(P1)

)
(1− η)q1

(1
2

)
+
(
Ch(P3)− Ch(P4)

)
η q1

(1
2

)
+
(
Ch(P4)− Ch(P1)

)1
2
q2(η) +

(
Ch(P3)− Ch(P2)

)1
2
q2(η).

(6)

2.1 A New Upwinding Technique

As shown in Fig. 3, one primal quadrilateral element is divided into 4 sub-
volumes, whereas several (usually 4 for a logically rectangular quadrilateral
mesh) sub-volumes surrounding a primal node form a dual volume. Here we
see M1OM4O2M5O3M6O4M1 form the dual volume for P1. For convenience, we
denote it as E∗

P1
.
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On the other hand, for a point (x, y) on a primal edge shared by two primal
elements E1, E2, we consider an averaged gradient

∇Ch(x, y) =
1

2

(
∇(Ch|E1

)(x, y) +∇(Ch|E2
)(x, y)

)
. (7)

For any point on e1, the reference coordinates are
(
1
2 , η
)
with η ∈ [0, 12 ]. Its

upstream point is defined as

(x∗(η), y∗(η)) =

{
FK(0, η) if

∫
e1
v · n1 ≥ 0,

FK(1, η) if
∫
e1
v · n1 < 0.

This point is either on the line segment P1M4 or on the line segment P2M2.
Accordingly, for a point on e1, we define is the upwind approximation of
the concentration as (viewed as a Taylor expansion)

c(x, y) ≈ Cup

h = Ch((x
∗(η), y∗(η))) + h · ∇Ch(x

∗(η), y∗(η)), (8)

where h = [x− x∗(η), y − y∗(η)] is the position vector.

A new upwinding technique. Now we modify the discrete bilinear form for
convection as

Bh(Ch, ψh) =
∑

E∗
P∈E∗

h

∫
∂E∗

P

(v · n)Cup

h ψh, ∀Ch ∈ Uh, ∀ψh ∈ Wh, (9)

where Uh is the trial function space defined in (26) and Wh is the test function
space defined in (27).

2.2 Splitting of the Upwind Convective Flux

Consider the dual edge e1 in Fig. 3, shared by two sub-volumes (also two dual
volumes), which surrounds two primal nodes P1, P2, respectively.

Now consider the convective fluxes across the dual edge e1:

Fc
P1,e1 =

∫
e1

(v · n1)C
up

h ds, Fc
P2,e1 = −

∫
e1

(v · n1)C
up

h ds. (10)

Assume

∫
e1

(v · n1)ds ≥ 0. Utilizing the upwinding info, we obtain

Fc
P1,e1 =

∫ 1
2

0

v̂
(1
2
, η

)
· q1

(1
2

)(
Ch(x̂(η), ŷ(η)) + ĥ(η) · ∇Ch(x̂(η), ŷ(η))

)
dη

=

∫ 1
2

0

v̂
(1
2
, η

)
· q1

(1
2

)(
(1− η)CP1

h + ηCP4
h + ĥ(η) · ∇Ch(x̂(η), ŷ(η))

)
dη

=

∫ 1
2

0

v̂
(1
2
, η

)
· q1

(
1

2

)
dη CP1

h − 0× CP2
h

+

∫ 1
2

0

v̂
(1
2
, η

)
· q1

(1
2

)(
η(CP4

h − CP1
h ) + ĥ(η) · ∇Ch(x̂(η), ŷ(η))

)
dη,

(11)
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where v̂(ξ, η) = v ◦ FK(ξ, η) and ĥ(η) = FK( 12 , η)− FK(0, η).

Note P1, P2 are respectively the upstream and downstream nodes. We rewrite
the convective flux as

Fc
P1,e1 = κ

e1
CP1

h − 0× CP2

h +Rc
P1,e1 , (12)

where

κ
e1

=

∫ 1
2

0

v̂
(1
2
, η
)
· q1

(1
2

)
dη ≥ 0, (13)

Rc
P1,e1 =

∫ 1
2

0

v̂
(1
2
, η
)
·q1

(1
2

) (
η(CP4

h − CP1

h ) + ĥ(η) · ∇Ch(x̂(η), ŷ(η))
)
dη. (14)

The benefit of the rewriting is two-fold. Firstly, it demonstrates a quasi two-point
flux structure. Secondly, the remainder provides hints for positivity correction.

Accordingly, we rewrite the reverse flux as

Fc
P2,e1 = 0× uP2 − κe1

uP1 +Rc
P2,e1 , Rc

P2,e1 = −Rc
P1,e1 . (15)

2.3 Diffusive Flux and its Splitting

In a similar way, we consider the diffusive fluxes across the dual edge e1.

Fd
P1,e1 = −

∫
e1

D∇Ch · n1ds, Fd
P2,e1 = −

∫
e1

D∇Ch · (−n1)ds. (16)

Obviously, Fd
P1,e1

+Fd
P2,e1

= 0. Going through similar technical details, we obtain
a useful splitting (see [21] for more details)

Fd
P1,e1 = γe1

(CP1

h − CP2

h ) +Rd
P1,e1 , (17)

where

γ
e1

=

∫ 1
2

0

Dq1(
1
2 ) · q1(

1
2 )

JK( 12 , η)
(1− η)dη, (18)

and

Rd
P1,e1 =

∫ 1
2

0

η
Dq1(

1
2 ) · q1(

1
2 )

JK( 12 , η)
dη
(
CP4

h − CP3

h

)
+

∫ 1
2

0

1

2

Dq2(η) · q1(
1
2 )

JK( 12 , η)
dη
(
CP1

h − CP4

h

)
+

∫ 1
2

0

1

2

Dq2(η) · q1(
1
2 )

JK( 12 , η)
dη
(
CP2

h − CP3

h

)
.

(19)

Similarly,

Fd
P2,e1 = γ

e1

(
CP2

h − CP1

h ) +Rd
P2,e1 , Rd

P2,e1 = −Rd
P1,e1 . (20)
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2.4 Flux Correction for Positivity of Numerical Concentration

Flux splitting motivates a technique for positivity correction. First, we define

IP1,e1 = FP1,e1 + GP1,e1 =
(
γ

e1
+ κ

e1

)
uP1

− γ
e1
uP2

+Rd
P1,e1

+Rc
P1,e1

,

IP2,e1 = FP2,e1 + GP2,e1 = γ
e1
uP2

−
(
γ

e1
+ κ

e1

)
uP1

+Rd
P2,e1

+Rc
P2,e1

.
(21)

Setting Re1 = Rd
P1,e1 +Rc

P1,e1 = −Rd
P2,e1 −Rc

P2,e1 , we obtain

IP1,e1 =
(
γe1

+ κe1

)
uP1 − γe1

uP2 +Re1 ,

IP2,e1 = γe1
uP2 −

(
γe1

+ κe1

)
uP1

−Re1 .
(22)

Utilizing the positive and negative parts of Re1 , we rewrite

IP1,e1 =
(
γ

e1
+ κ

e1

)
uP1

− γ
e1
uP2

+R+
e1 −R−

e1 ,

IP2,e1 = γ
e1
uP2

−
(
γ

e1
+ κ

e1

)
uP1

−R+
e1 +R−

e1 .
(23)

We take an empirical large constant B > 0 to slightly nonlinearize the quantity.
For example, considering solute transport across the dual edge e1 that involves
concentration unknowns at node P1, P2, We have

ĨP1,e1 =

(
γ

e1
+ κ

e1
+

BR+
e1

BCP1

h + h2

)
CP1

h −

(
γ

e1
+

BR−
e1

BCP2

h + h2

)
CP2

h ,

ĨP2,e1 =

(
γ

e1
+

BR−
e1

BCP2

h + h2

)
CP2

h −

(
γ

e1
+ κ

e1
+

BR+
e1

BCP1

h + h2

)
CP1

h .

(24)

3 A Property-preserving FV-Q1 Transport Solver

Now we return to the time-dependent convection-diffusion problem (24). The
implicit Euler is employed for temporal discretization, whereas finite volumes
with mapped bilinear shape functions on quadrilaterals are used to approximate
the convective and diffusive fluxes. A new upwinding technique is utilized to hand
the convection-dominance, and the positivity-correction technique is applied to
both convective and diffusive fluxes. All these techniques combined lead to an
efficient transport solver that is mass-conservative and ensures non-negativity of
numerical concentrations.

First, a temporal partition is established for the time period [0, T ]:

0 = t0 < t1 < · · · < tn−1 < tn < · · · < tN = T.

When a uniform partition is adopted, we have ∆t = T/N, tn = n∆t, 0 ≤ n ≤ N .
A straightforward transport solver takes the following form(
C

(n)
h − C

(n−1)
h

∆t
, ψ

)
+
(
(v · n)C(n)

h , ψ
)
+
(
(−D∇C(n)

h ) · n, ψ
)
=

(
s(·, tn), ψ

)
.

(25)
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This leads to a time-marching algorithm. When finite volume methods are used
for spatial discretization, the 2nd and 3rd terms on the RHS are usually con-
verted to line integrals.

Let Eh be a quadrilateral mesh for Ω ⊂ R2. Mathematically, the trial space
based on the mapped bilinear shape functions is defined as

Uh = {Ch ∈ C(Ω) : Ch|E = Ĉh ◦ F−1
E , Ĉh ∈ Q1(Ê), ∀E ∈ Eh}

= Span{ϕP : P ∈ Ph},
(26)

where ϕP represents a typical nodal basis function, and {Ph} is the collection of
all nodes in Eh. Accordingly, the test space is defined on the dual mesh E∗

h,
which consists of the dual volumes surrounding the nodes in the primal mesh

Wh = {ψ ∈ L2(Ω) : ψ|E∗
P
= const, ∀E∗

P ∈ E∗
h}. (27)

Transport Solver (FV with upwinding & flux correction). Set C
(0)
h as

the nodal interpolation of the initial condition. For 1 ≤ n ≤ N , seek C
(n)
h ∈ Uh

so that (
C

(n)
h , ψP

)
+∆t

(
Ãh(C

(n)
h , ψP ) + B̃h(C

(n)
h , ψP )

)
=
(
C

(n−1)
h , ψP

)
+∆t

(
s(n), ψP

)
, ∀P ∈ Ph,

(28)

where the modified bilinear forms Ãh, B̃h have already incorporated positivity-
correction and upwinding treatment and thus satisfy

Ãh(c
n
h, ψP ) + B̃h(c

n
h, ψP ) =

∑
e⊂∂E∗

P

ĨP,e. (29)

Note that (28) is a typical time-marching scheme for a time-dependant problem.
Within each time step, it is actually a slightly nonlinear problem, due to the flux
correction in (24). A Picard iterative algorithm is usually employed along with
a stopping criterion. More details can be found in [21].

For real-world applications, a transport problem is usually coupled with other
problems, e.g., flow in porous media. Then the velocity in the transport problem
is obtained from another numerical solver for the Darcy equation. When the
Darcy flow equation is solved by the weak Galerkin (P1, P1;AC1) finite element
method on the same quadrilateral mesh (as used by the transport solver), we
can utilize the numerical velocity vh ∈ AC1(Eh) in a nice way. Such a coupling
will be accounted in a later section of this paper.

4 Coupling with a Weak Galerkin (WG) Darcy Solver

In this paper, we would like to address transport in porous medium, which is
usually modelled mathematically as coupling of the Darcy equation and the
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time-dependant convection-diffusion equation. For simplicity, here we consider
a one-way coupling. This means the velocity depicted by the Darcy equation is
utilized in the transient transport equation, but the solute transport does not
affect the flow in the porous medium. The coupled problem is described as{

∇ · (−K∇p) = ∇ · v = f(x), x ∈ Ω,

∂tc+∇ · (vc−D∇c) = s(x, t), (x, t) ∈ Ω × (0, T ],
(30)

where p(x) is the fluid pressure,K is a 2×2 permeability matrix that is uniformly
symmetric positive-definite, f(x) is an external force; whereas c,D, s in the 2nd
equation of (30) bear the same meaning as that in Equation (1).

{
p|ΓD

D
= pD,

(−K∇p)|ΓD
N

= uN ,


c|ΓT

D ×(0,T ] = cD,

(vc−D∇c) · n|ΓT
N ×(0,T ] = fN ,

c(x, 0) = c0(x), x ∈ Ω.

(31)

There are many popular numerical methods for Darcy flow problems: discon-
tinuous Galerkin (DG) methods, enriched Galerkin (EG) methods [15], weak
Galerkin (WG) methods [13,12], and the classical mixed finite element methods
(MFEMs). For good Darcy solvers, two important properties need to be satisfied.

– Local mass conservation;

– Normal flux continuity.

The latter implies that the numerical velocity from a Darcy solver is inH(div, Ω).

The above Darcy flow problem is essentially is an elliptic boundary value prob-
lem. It has been proved in [13] that the weak Galerkin (Pk, Pk;ACk) (with
k ≥ 0) finite element methods for quadrilateral meshes indeed satisfy the afore-
mentioned two properties. The velocity after a local post-processing (here Qh is
an elementwise L2-projection into the ACk space)

vh = Qh(−K∇wph)

is actually in the global AC-space, which is a finite-dim subspace of H(div, Ω).

To match the 2nd order spatial accuracy by the mapped Q1 finite volume
solver for transport problems, we choose WG(P1, P1;AC1) solver for Darcy flow.
Inside each primal quadrilateral element, the numerical velocity is a linear com-
bination of the following 10 basis functions:[
1
0

]
,

[
X
0

]
,

[
Y
0

]
,

[
0
1

]
,

[
0
X

]
,

[
0
Y

]
,

[
X2

XY

]
,

[
XY
Y 2

]
,PE

[
1− x̂2

2x̂ŷ

]
,PE

[
2x̂ŷ

1− ŷ2

]
,

where X = x− xc, Y = y − yc with (xc, yc) being the element center, PE is the
Piola transform, and (x̂, ŷ) are the coordinates in the reference square Ê = [0, 1]2.
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5 Procedures and Strategies for Efficient Implementation

The transport solver investigated in this paper has been implemented in Matlab
and new code modules have been incorporated into our package DarcyLite.
These include the following major functions

[DualMesh] = function FV_GenDualMesh(QuadriMesh);

TransCD_QuadriFVQ1_AsmGlbMassMat(DualMesh);

TransCD_QuadriFVQ1_AsmConvFluxUpwndPosCorr( ...

DualMesh, Ch, NumerVelCofAC1, BigB);

TransCD_QuadriFVQ1_AsmDiffFluxPosCorr(DualMesh, Ch, BigB);

TransCD_QuadriFVQ1_AsmSource(DualMesh, t, fxns);

TransCD_QuadriFVQ1_AsmBndryConds(GlbMat, GlbRHS, BndryEdge, EdgeVal);

respectively for

(i) Generating the dual mesh based on a known primal quadrilateral mesh;

(ii) Assembling the global mass matrix (using the lump of mass technique), See
[17,21,22];

(iii) Assembling the global stiffness matrix for the convective flux with upwinding
treatment and positivity-correction;

(iv) Assembling the global stiffness matrix for the diffusive flux with positivity-
correction;

(v) Assembling the global RHS with contribution from the source term, which
is just easy numerical integration on sub-volumes;

(vi) Modifying the algebraic system as the boundary conditions are enforced.

Note the Picard iterations are nested inside the time-marching loop and needs
to repeat (iii), (iv), (vi) for each iteration.

5.1 Dual Mesh Data Structure

The dual mesh used by our finite volume method consists of the sub-volumes and
all related geometric and topological info, e.g., the volume/element centers, edge
midpoints, the normal vectors on the dual edges. We handle the nodes in the
primal quadrilateral mesh along with the element centers and edge midpoints
altogether. Secondary info includes adjacency of such points and sub-volumes.

The above info will be extensively used for computation of the convective and
diffusive fluxes across the dual edges and also assembly of the resulting matrices.
The computation is performed on the dual edges, but the assembly is node-wise
for the whole (quadrilateral) mesh.

On the other hand, computations of the mass matrices and contributions from
the source term are conducted on the sub-volumes, which are treated (regarding
numerical integration) in a similar way as the quadrilaterals in the primal mesh.
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5.2 Standard and Mapped Shape Functions on Quadrilaterals

Note that Ch is a linear combination of four mapped Q1 nodal basis functions
ϕi(x, y), 1 ≤ i ≤ 4. For each such basis function, ϕ(x, y) = ϕ̂(x̂, ŷ), where

ϕ̂1 = (1− x̂)(1− ŷ), ϕ̂2 = x̂(1− ŷ), ϕ̂3 = x̂ŷ, ϕ̂4 = (1− x̂)ŷ. (32)

∇̂ϕ̂1 =

[
−(1− ŷ)
−(1− x̂)

]
, ∇̂ϕ̂2 =

[
1− ŷ
−x̂

]
, ∇̂ϕ̂3 =

[
ŷ
x̂

]
, ∇̂ϕ̂4 =

[
−ŷ
1− x̂

]
, (33)

∇ϕ =

[
∂xϕ

∂yϕ

]
=

[
∂xϕ̂

∂yϕ̂

]
=

 ∂x̂
∂x

∂ŷ
∂x

∂x̂
∂y

∂ŷ
∂y

[∂x̂ϕ̂
∂ŷϕ̂

]
= (J−1)T ∇̂ϕ̂. (34)

The above Transpose of the Inverse of the Jacobian matrix (referred as JIT),
along with the formulas are very useful for mesh-wise calculations (not through
looping over all individual elements), namely, the vectorization feature/technique
discussed in [12].

5.3 Positivity-correction for Diffusive and Convective Fluxes

The positive and negative parts of a quantity can be easily implemented as

Rp = (abs(R) + R)/2; Rn = (abs(R)− R)/2;

An empirical large positive parameter B is set for the nonlinearization in (24).
For Picard iterations, we set a maximal number of iterations allowed (MaxItr)
and a threshold (ε) for maximal componentwise discrepancy (vector ∞-norm)
between two successive approximations.

– This applies to both convective and diffusive fluxes across all four dual edges.

– Treatment for fluxes in the opposite directions is also performed.

5.4 Picard Iterations and Solving Linear Systems

The positivity correction for fluxes involves nonlinear approximation to the nodal
concentration, which is used in calculations of both convective and diffusive
fluxes. At each time step, a Picard iteration loop is embedded with MaxItr, usu-
ally 100, specified for the maximal number of iterations, and epsilon, usually
10−4, specified for the acceptable discrepancy between two successive approxi-
mations. Within the loop, a large-size sparse linear system is solved for the nodal
concentration. For now, Matlab built-in backslash is used.
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5.5 Coupling with WG(P1, P1;AC1) Darcy Solver

In this paper, we have discussed also the coupling of the FV Q1 transport solver
with the WG(P1, P1;AC1) Darcy solver. This is a viable choice. The numerical
pressure and concentration are all approximated on the same quadrilateral mesh.
The numerical velocity obtained from post-processing will also be used on the
same quadrilateral mesh. Specifically, it is in the AC1(Eh) space, which has
normal continuity across the edges in the primal quadrilateral mesh Eh. As the
convective and diffusive fluxes are computed on the dual edges, velocity normal
continuity is obvious.

6 Numerical Experiments

This section presents numerical results to demonstrate positivity-preserving of
the new transport solver investigated in this paper. A time-dependent convection-
diffusion problem is solved by the finite volume Q1 method that has incorporated
a new upwinding technique and flux correction for positivity of numerical con-
centration. A numerical velocity is fed by the WG(P1, P1;AC1) solver that solves
the Darcy equation with the permeability shown in Fig. 4 left panel.

Fig. 4. Ex.1: left: Permeability profile; Right: Numerical pressure and velocity by WG.

Fig. 5. Ex.1 (T = 0.5): Numerical concentrations at t = 0, T
2
, T ; No negative values.
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Example 1 (Positivity). The domain is Ω = [0, 1]2. For fluid flow, the perme-
ability takes value 1 or 10−6 on a 20× 20 grid, demonstrating heterogeneity. A
Dirichlet condition p = 1 is posed on the left side x = 0, whereas p = 0 is posed
on x = 1. A no-flow condition is posed on the top and bottom sides, as shown in
Fig. 4 left panel. A transport problem is posted on the same domain Ω = [0, 1]2

with the final simulation time T = 0.25. The initial condition for concentration
is set as a Gaussian hump centred as (xc, yc) = (0.25, 0.50) and 2σ2 = 0.01:

c0(x, y) = exp

(
− (x− xc)

2 + (y − yc)
2

2σ2

)
,

which is numerically compactly supported. The diffusion is D = 10−6I but there
is no source. For boundary conditions, we set the left side as inflow, but the
right, top, and bottom sides as outflow/flow.

A uniform rectangular mesh was adopted for both flow and transport. The
flow problem was solved by the WG(P1, P1;AC1) with h = 1/40. The numerical
pressure and velocity can be found in Fig. 4 left panel. For the transport solver,
we choose ∆t = T/40. For positivity-correction based on Picard iterations, we
choose the parameters as B = 1010, MaxItr = 100, ϵ = 10−4. Recall B > 0 is a
big constant used in (24) for positivity correction. Here ϵ = 10−4 is a threshold
for discrepancy of approximate solutions in the Picard iterations. Shown in Fig. 5
are the concentration profiles at t = 0, T/2, T , respectively. More specifically,
we use the the nodal values of the numerical concentration to generate element
averages for presentation. Clearly, no negative values are observed.

7 Discussion

To conclude, we discuss extension of the mathematical and implementation tech-
niques developed in this paper.

Fig. 6. TQuad: A triangle is divided into three quadrilaterals

#1. Extension to triangular meshes with P1 approximants Although
a triangle can be divided into three convex quadrilaterals, as shown in Fig. 6,
and the transport solver in this paper can be applied, we are more interested in
extending the upwinding and flux correction techniques to transport solvers to
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triangular meshes. Some preliminary results are already available. A complete
account will be presented in our future work.

#2. Transport with reaction. This is nontrivial for nonlinear reaction, espe-
cially for maintaining positivity. It is being investigated by our group and will
be presented in our future work.

#3. Other choices for time-marching. The implicit Euler (IE) is a good
choice due to its usefulness in positivity-preserving. However, it is only 1st order
accurate in temporal approximation. We are exploring the following options.
– The 2nd order Runge-Kutta method ;
– Leap-frog scheme.

#4. Combination with characteristic tracking? The numerical solver stud-
ied in this paper is in the Eulerian approach. It is relatively easier for implemen-
tation, since no tracking along characteristic is involved. With the latter, La-
grangian or Eulerian-Lagrangian approaches are adopted. These two approaches
incur smaller errors in temporal discretization, but need to deal with certain
technical details in characteristics-tracking.

#5. Time-fractional convection-diffusion problems. Interestingly, some
techniques discussed in this paper can be extended to time-fractional 2-dim
convection-diffusion problems [21]. The major achievements rely on a novel 3-
part decomposition of the standard L1 approximation of the Caputo derivative.
The introduction of a transition term between the current and history terms
plays a critical role in maintaining positivity of numerical solutions.

#6. Extension to 3-dim problems. This is undoubtedly an important project,
as we aim at large-scale simulations for drug delivery and petroleum reservoir.
Although there is no big changes in the numerical schemes, 3-dim implementa-
tions of dual mesh structures, upwinding, and flux corrections need further effi-
cient strategies, which need to be consistent with our other existing techniques
[5,19,20]. C++ code modules will be furnished in our in-house packageDarcy+.
This is currently investigation and will be reported in our future work.

On the list, Item #2 is challenging, Item #5 feasible, while Item #6 is promising.

Acknowledgements. We express our sincere thanks to Prof. Yonghai Li (Jilin
University, China) for the stimulating discussion.
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