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Abstract. This paper investigates the fluid-solid coupling problem in
fractured porous elastic media. The geometry of the fractures is con-
sidered a potentially non-planar interface. The model equations are of
mixed-dimensional type, where the flow equations on the d − 1 dimen-
sional fracture surfaces are coupled with the d dimensional porous ma-
trix. This paper considers a strongly compressible fluid flow model, where
the density is chosen as the primary variable, in contrast to the slightly
compressible model discussed by Girault et al[5]. (Girault et al. Mathe-
matical Models and Methods in Applied Sciences. Vol. 25, No. 4 (2015)
587645), which takes pressure as the primary variable. We derive a ther-
modynamically consistent mathematical model and present its weak for-
mulation. Energy stability is established for continuous and semi-discrete
(in time) cases. The proposed model and numerical framework provide a
solid foundation for simulating strongly compressible flows while main-
taining thermodynamic consistency and stability.

Keywords: Poroelasticity · Fractured media · Thermodynamically
Consistent model · Energy Stability Analysis.

1 Introduction

In the fields of engineering and science, the coupled flow and geomechanics
problem is of significant importance in various applications, especially in hy-
draulic fracturing, CO2 injection and storage, sand production, and wellbore
stability prediction[7,13]. The successful resolution of these problems often de-
pends on effective management of subsurface mechanical stability. In fractured
media, the coupling of flow and geomechanics is particularly critical, as fractures
are not only regions of mechanical instability but also have a significant impact
on the flow profile. When fluid is injected underground, changes in fluid pressure
alter the in-situ stress conditions, which in turn cause changes in the porosity of
the matrix skeleton. This flow-geomechanics coupling is typically described by
the Biot equation under linear conditions, which captures the elastic effects of
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the porous skeleton through a linear elastic model and incorporates fluid pressure
into the stress tensor.

The presence of fractures adds complexity to the problem. We adopt the so-
called mixed-dimensional model to describe the influence of fractures, where
fractures are treated as two-dimensional surfaces embedded within a three-
dimensional porous matrix. The flow model on the fracture is defined by Darcy’s
law on the fracture surface. This model is intuitively meaningful because frac-
tures are typically thin and long structures, so the details of lateral flow are less
important, with the primary focus on the tangential flow along the fracture sur-
face. This mixed-dimensional model couples multiple physical processes across
domains of different dimensions, resulting in a mathematical model that couples
the Biot equation in the porous matrix with Darcys law on the fracture surface
through appropriate interface conditions.

For the fracture model, Girault et al. discussed the flow model of slightly
compressible fluids, the fluid compressibility cf is assumed to be small (e.g.
of the order of 10−8 or 10−9), where the fluid density is set to a very small
value. As a result, pressure was chosen as the primary variable, and numerical
approximations of the fluid flow in both the matrix and fractures were made
using continuous finite element and mixed finite element methods[5]. T. Almani
and K. Kumar, for the same model, performed simulations in 2022 using single-
rate and multirate undrained split iterative algorithms[2]. In 2024, they applied
a multirate fixed stress split iterative scheme to solve a fractured Biot model[3].

The second law of thermodynamics, a fundamental principle that governs
numerous physical processes, plays a critical role in the development of reliable
and comprehensive mathematical models across a wide range of scientific and
engineering applications[8,11]. This law generally asserts that the entropy of an
isolated system will increase over time. In the case of a specific isothermal pro-
cess, it leads to an energy dissipation law, which states that the total free energy
will decrease over time[10]. The energy dissipation law can also be interpreted
as a means of assessing or controlling stability in mathematical systems, a crit-
ical component of the well-posedness theory of mathematical models. Given its
significance, ensuring thermodynamic consistency, i.e., adherence to the second
law of thermodynamics, has become an increasingly important focus in the area
of porous media simulation.

This paper discusses a fractured Biot model for strongly compressible fluids,
where the fluid pressure is no longer a small constant. Therefore, starting from
the mass conservation equation for the fluid, we do not make physical approx-
imations to the model but directly treat the density as the primary variable.
The unknowns in our model are the displacement, density, and the leakage term
connecting the flow in the matrix to the flow in the fracture. We derive a ther-
modynamically consistent mathematical model and present its variational form.
The energy conservation property of the model is proven for both the continuous
and time-semi-discrete cases.

The paper is organized as follows: In Section 2, we introduce the domain
setup and the mathematical formulation of the compressible fluid-solid coupling
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model with fracture. In Section 3, we begin by defining the spatial domain and its
corresponding norm, and derive the variational formulation. In Section 4, for the
continuous form of the model, we define the total free energy and demonstrate
that it satisfies the energy dissipation law. In Section 5, we discretize the model
in time using the fully implicit backward Euler scheme and prove that the time
discretization satisfies energy stability.

2 Mathematical Model

2.1 Domain

We consider a fractured porous medium Ω ∈ Rd, where d = 2 or d = 3,
which is linear, elastic, and isotropic. The medium is assumed to be saturated
with a compressible single-phase fluid. The fractures are treated as non-planar
interfaces, denoted by C. To simplify the modeling process and avoid dealing
with curved elements, we assume that both ∂Ω and the fracture C are polygonal
surfaces. A diagram of our domain is shown in Figure 1.

In our analysis, although the fracture does not propagate (i.e., the crack front
remains stationary), the fracture width can still change over time due to fluid
injection into the crack and fluid leakage out of the crack into the surrounding
medium. We assume that the fracture width is small enough (compared to other
relevant length scales associated with the fracture) to allow the use of Reynolds
lubrication equation for modeling the flow within the fracture (see [15,14,6]).

To simplify, we do not specify the time dependence of the spaces, and we de-
note the scalar products in space using parentheses. If the domain of integration
is not specified, it is understood that the integrals are taken over the domain
Ω \ C.

Fig. 1: Diagram of domain, fracture, and boundaries.

2.2 Model

For coupling flow with mechanics, a quasi-static Biot model is assumed, where
the second-order time derivative for the displacement is ignored. The modeling
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equation system consists of

−∇ · σpor(w, p) = ρg, σpor(w, p) = σ(w)− αpI, ∀x ∈ Ω \ C, (1)

σ(w) = λ(∇ ·w)I+ 2Gϵ(w), ϵ(w) :=
1

2
(∇w +∇wT ), ∀x ∈ Ω \ C, (2)

σpor · n = −pn, ∀x ∈ C, (3)

where σpor is the Cauchy stress tensor, I is the identity tensor, w is the solids
displacement, p is the fluid pressure, σ(w) is the effective linear elastic stress
tensor. Here λ > 0 and G > 0 are the Lamé constants and α > 0 is the dimen-
sionless Biot coefficient, ρg is gravity loading term, let n denote the unit normal
vector to C exterior to Ω. Let τj , 1 ≤ j ≤ d− 1, be a set of orthonormal tangent
vectors on C. The balance of the normal traction vector and the conservation of
mass yield the interface conditions on each side (or face) of C:

σpor · n = −pn. (4)

Then the continuity of p through C yields [σpor]C ·n = 0. Formula (4) also implies

σpor · n · n = −p, σpor · n · τ = 0. (5)

For the fluid, we use a compressible single-phase model. The fluid mass bal-
ance in Ω \ C reads

∂ ((α∇ ·w + ϕ)ρf )

∂t
+∇ · (ρfu) = q, ∀x ∈ Ω \ C, (6)

u = −K

η
(∇p− ρfg), ∀x ∈ Ω \ C, (7)

where ρf is the fluid density, u is the velocity of the fluid, K is the permeability
tensor in the matrix, assumed to be symmetric, bounded, uniformly positive
definite in space and constant in time, η > 0 is the constant fluid viscosity, q
is a mass source or sink term taking into account injection into or out of the
reservoir. We assume the porosity ϕ relies on space, but is independent of time.

The conservation of mass in the fracture reads
∂ (wfracρf )

∂t
+∇C · (ρfufrac) = qfrac − ρfz, ∀x ∈ C, (8)

wfrac = − [w]C · n+, ufrac = −Kfrac

η
(∇p− ρfg), z = − [u]C · n+, (9)

where wfrac represents the width of the fracture, ∇C is the tangential derivative
along the fracture, ufrac is the flux unknowns in the fracture, Kfrac is the perme-
ability tensor in the fracture, qfrac is a known injection term into the fracture.
z = −ρf [u]C · n+ is the leakage term connecting the flow in the matrix to the
flow in the fracture. We assume that wfrac is bounded in C and vanishes on ∂C.

For any function f defined in Ω \ C that has a trace, let f∗ denote the trace
of f on C. Then we define the jump of f on C in the direction of n+ by

[f ]C = f+ − f−.
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The total fluid compressibility by

dρf
dp

= ρfcf , ρ = ρR(1− ϕ) + ϕρf , ∀x ∈ Ω,

where the compressibility cf = cf (p) can be obtained from the fluid density
ρf = ρf (p), ρR is the density of the solids.

Summarizing, the equations in Ω \ C are (1) and (6), and the equation in
C is (8); the corresponding unknowns are w, ρf , and z. These equations are
complemented in the next section by boundary and initial conditions.

We set the following boundary conditions and initial conditions in this paper:

σpor · n = −pn, ∀x ∈ C, w = 0, u · n = 0, ∀x ∈ ∂Ω,

(α∇ ·w + ϕ)ρf (0) = (α∇ ·w0 + ϕ)ρ0f .

For ease of presentation, we assume the gravity acceleration g = 0 in the rest
of the paper.

3 Variational Formulation

3.1 Space

Next, we present the variational formulation. We shall use the standard no-
tations and definitions for Sobolev spaces[1] throughout the paper. Let Γ be a
part of ∂Ω with positive measure.

W := {v ∈ L2(Ω); v⋆ ∈ H1(Ω \ C), ⋆ = Ω \ C},

normed by the graph norm: ∥v∥2W = ∥v⋆∥2H1(Ω\C).
The space for the displacement is

V = {v ∈ W d; [v]Γ\C = 0,v⋆
|∂Ω = 0, ⋆ = Ω \ C}, (10)

with the norm of W d: ∥v∥2V =
∑d

i=1 ∥vi∥2W .
We denote the space H1(C):

H1(C) = {z ∈ L2(C);∇Cz ∈ L2(C)d−1},

equipped with the norm: ∥z∥2H1(C) = ∥z∥2
H

1
2 (C)

+ ∥∇Cz∥2L2(C).
We can specify the pressure space Q :

Q := {q ∈ H1(Ω); qc ∈ H1(C)}, where qc = q|C , (11)

equipped with the graph norm: ∥q∥2Q = ∥q∥2H1(Ω) + ∥qc∥2H1(C).
The space of traces of functions of H1(Ω) on Γ (or on any Lipschitz curve

in Ω) is H
1
2 (Γ ), which is a proper subspace of L2(Γ ). Its dual space is denoted

by H− 1
2 (Γ ). The space for the width of the fracture is

ΘC := H
1
2 (C). (12)
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3.2 Weak Formulation

Let w, ρf , and z be a sufficiently smooth solution of the coupled model, and
let v ∈ V and θ ∈ Q be test displacement and test density functions, respectively.
First, we take the scalar product of (1) in Ω \ C with v, apply Greens formula
separately in Ω \ C, use the symmetry of σ and the continuity of σpor ·n+ on C:

(λ(∇ ·w),∇ · v)Ω\C + (2Gϵ(w), ϵ(v))Ω\C − (αp,∇ · v)Ω\C − (σpor · n+, [v])C = 0.

Noting that

[v]C = ([v]C · n+)n+ +

d−1∑
j=1

([v]C · τ+j )τ+j ,

and using (5), we write

−(σpor · n+, [v])C = −(σpor(w, p)n+ · n+, [v] · n+)C

−
d−1∑
j=1

(σpor(w, p)n+ · τ+j , [v] · τ+j )C

= (p, [v] · n+)C .

This gives the variational equation of the displacement: Find w ∈ L∞(0, T ;V ),
such that

(λ(∇ ·w),∇ · v)Ω\C + (2Gϵ(w), ϵ(v))Ω\C − (αp,∇ · v)Ω\C + (p, [v] · n+)C = 0.
(13)

Next, we take the scalar product of (6) in Ω \ C with θ ∈ Q, apply Greens
formula separately in Ω \ C, and use the continuity of θ through C: Find ρf ∈
L∞(0, T ;L2(Ω)) ∩ L∞(0, T ;Q), such that

(ρf
∂(α∇ ·w)

∂t
, θ)Ω\C + ((α∇ ·w + ϕ)ρfcf

∂p

∂t
, θ)Ω\C (14)

+ (ρf · K
η
∇p,∇θ)Ω\C − (ρf [

K

η
∇p] · n+, θ)C = (q, θ)Ω\C .

Finally, the third variational equation is obtained by taking the scalar prod-
uct of (8) with θc ∈ ΘC , applying Greens formula in C, and taking the time
derivative out of the integral, and we obtain:

(−ρf
∂([w] · n+)

∂t
, θc)C − ([w] · n+ρfcf

∂p

∂t
, θc)C + (ρf · Kfrac

η
∇p,∇θc)C (15)

+(ρfu
frac · n, θc)C + (ρfz, θc)C = (qfrac, θc)C .

Remark 1. when wfrac = 0 on the boundary of C, the boundary term vanishes.
In other words, our paper discusses the scenario under the assumption shown in
Figure 2(a), excluding the situation in Figure 2(b).
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(a) Type 1 (b) Type 2

Fig. 2: The fracture cross-sectional diagram.

We again derive the third variational formulation as:
Find z ∈ L2(0, T ;H− 1

2 (C)), such that

(−ρf
∂([w] · n+)

∂t
, θc)C − ([w] · n+ρfcf

∂p

∂t
, θc)C + (ρf · Kfrac

η
∇p,∇θc)C (16)

+(ρfz, θc)C = (qfrac, θc)C .

4 Energy

In this section, we first introduce the total free energy of the model and then
derive the energy dissipation law for the model in the continuous case. According
to the second law of thermodynamics, the total free energy in a closed system
will dissipate over time[10].

4.1 Total Free Energy Definitions

We describe the Helmholtz free energy density determined by the Peng-
Robinson equation of state [12]. The temperature is constant in the entire fluid-
solid system. The Helmholtz free energy density f(ρf ) is expressed as a function
of molar density ρf as follows:

f(ρf ) = fide(ρf ) + frep(ρf ) + fatt(ρf ), (17)
fide(ρf ) = ρfRT ln(ρf ), (18)
frep(ρf ) = −ρfRT ln(1− β2ρf ), (19)

fatt(ρf ) =
β1(T )ρf

2
√
2β2

ln

(
1 + (1−

√
2)β2ρf

1 + (1 +
√
2)β2ρf

)
, (20)

where ρf is the molar density, T is the temperature, and R refers to the univer-
sal gas constant. Here, fide represents the free energy density of homogeneous
ideal gas, while frep and fatt stand for the free energy contributions from the
intermolecular repulsion and attraction effects, respectively. Let Tr = T/Tc be
the reduced temperature, where Tc is the critical temperature. The parameters
β1 and β2 can be determined by the critical properties and the acentric factor,

β1 = 0.45724
R2T 2

c

Pc

[
1 +m(1−

√
Tr)
]2

, β2 = 0.07780
RTc

Pc
, (21)
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where Pc stands for the critical pressure and m is calculated from the acentric
factor ω as follows:

m = 0.37464 + 1.54226ω − 0.26992ω2, ω ≤ 0.49, (22)
m = 0.379642 + 1.485030ω − 0.164423ω2 + 0.016666ω3, ω > 0.49. (23)

The chemical potential, denoted by µ, is defined as the derivative of f(ρf )
with respect to molar density:

µ(ρf ) = f ′(ρf ). (24)

We describe the following relationship between pressure, Helmholtz free en-
ergy density, and chemical potential [4,10,12]:

p = ρfµ(ρf )− f(ρf ). (25)

We can derive the relation between the pressure gradient and the chemical po-
tential gradient as

∇p = ∇(ρfµ(ρf )− f(ρf )) = ρf∇µ(ρf ) + µ(ρf )∇ρf − µ(ρf )∇ρf = ρf∇µ(ρf ).
(26)

We define the total free energy Etot within the system as

Etot(t) = H(t) + Ef (t) + Efrac(t), (27)

where

H(t) =

∫
Ω\C

H(w)dx =
1

2

∫
Ω\C

σ(w) : ε(w)dx, (28)

Ef (t) =

∫
Ω\C

ϕefff(ρf )dx, Efrac(t) =

∫
C
wfracf(ρf )ds, (29)

we assume that ϕeff = α∇ ·w + ϕ > 0.

4.2 Energy dissipation law

We now derive the equation for the variation of total free energy with respect
to time. For the total solid elastic energy H(t), we deduce that

∂H(t)

∂t
=

1

2

∫
Ω\C

∂(σ(w) : ε(w))

∂t
dx (30)

=

∫
Ω\C

σ(w) : ∇∂w

∂t
dx = −

∫
Ω\C

∇ · σ(w)
∂w

∂t
dx.

For the variational equation of the displacement (13), taking the test function
v = ∂w

∂t , we have,

0 = (λ(∇ ·w)I,∇∂w

∂t
)Ω\C + (2Gϵ(w),∇∂w

∂t
)Ω\C
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− (αpI,∇∂w

∂t
)Ω\C + (p, [∇∂w

∂t
] · n+)C

= −
∫
Ω\C

∇ · σ(w)
∂w

∂t
dx−

∫
Ω\C

p
∂(α∇ ·w)

∂t
dx+

∫
C
p
∂[w] · n+

∂t
ds.

Thus, we can get the following equation,

∂H(t)

∂t
=

∫
Ω\C

p
∂(α∇ ·w)

∂t
dx︸ ︷︷ ︸

1⃝

−
∫
C
p
∂[w] · n+

∂t
ds︸ ︷︷ ︸

2⃝

. (31)

Noting these equations that u = −K
η ∇p, ∂ϕ

∂t = 0, p = ρfµ(ρf ) − f(ρf ) and
∇p = ρf∇µ(ρf ), the variation of Ef (t) with time is derived as

∂Ef (t)

∂t
=

∫
Ω\C

∂ϕefff(ρf )

∂t
dx =

∫
Ω\C

∂(α∇ ·w + ϕ)f(ρf )

∂t
dx (32)

=

∫
Ω\C

f(ρf )
∂(α∇ ·w + ϕ)

∂t
dx+

∫
Ω\C

(α∇ ·w + ϕ)
∂f(ρf )

∂t
dx

=

∫
Ω\C

f(ρf )
∂(α∇ ·w + ϕ)

∂t
dx−

∫
Ω\C

∂(α∇ ·w + ϕ)

∂t
µ(ρf )ρfdx

+

∫
Ω\C

∂(α∇ ·w + ϕ)ρf
∂t

µ(ρf )dx

=

∫
Ω\C

(f(ρf )− µ(ρf )ρf )
∂(α∇ ·w + ϕ)

∂t
dx

+

∫
Ω\C

∂(α∇ ·w + ϕ)ρf
∂t

µ(ρf )dx

= −
∫
Ω\C

p
∂(α∇ ·w + ϕ)

∂t
dx+

∫
Ω\C

(q −∇ · (ρfu))µ(ρf )dx

= −
∫
Ω\C

p
∂(α∇ ·w)

∂t
dx+

∫
Ω\C

qµ(ρf )dx−
∫
Ω\C

K

η
ρf∇µ(ρf )∇pdx

+

∫
C
µ(ρf )ρf

[
K

η
∇p

]
· n+ds

= −
∫
Ω\C

p
∂(α∇ ·w)

∂t
dx︸ ︷︷ ︸

1⃝

+

∫
C
µ(ρf )ρf

[
K

η
∇p

]
· n+ds︸ ︷︷ ︸

3⃝

+

∫
Ω\C

qµ(ρf )dx−
∫
Ω\C

K

η
|ρf (∇µ(ρf ))|2dx.

For flow equation in the fracture, we note that wfrac = − [w]C · n+,ufrac =
−Kfrac

η ∇p, z = − [u]C · n+, and can derive,

∂Efrac(t)

∂t
=

∫
C

∂wfracf(ρf )

∂t
ds =

∫
C
wfrac

∂f(ρf )

∂t
ds+

∫
C
f(ρf )

∂wfrac

∂t
ds (33)
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=

∫
C
wfracµ(ρf )

∂ρf
∂t

ds+

∫
C
(ρfµ(ρf )− p)

∂wfrac

∂t
ds

=

∫
C
(wfracµ(ρf )

∂ρf
∂t

+ ρfµ(ρf )
∂wfrac

∂t
)ds−

∫
C
p
∂wfrac

∂t
ds

=

∫
C
µ(ρf )

∂(wfracρf )

∂t
ds−

∫
C
p
∂wfrac

∂t
ds

=

∫
C
µ(ρf )(q

frac − ρfz −∇C · (ρfufrac))ds−
∫
C
p
∂wfrac

∂t
ds

=

∫
C
p
∂[w] · n+

∂t
ds︸ ︷︷ ︸

2⃝

−
∫
C
µ(ρf )ρf

[
K

η
∇p

]
· n+ds︸ ︷︷ ︸

3⃝

+

∫
C
µ(ρf )q

fracds−
∫
C

Kfrac

η
|ρf (∇µ(ρf ))|2ds.

Since the total free energy is always decreasing over time, in general there should
exist a phenomenological coefficient ηs ≥ 0 such that −∇ · σ(w) = ∇ · ηs∇ws,
where ws = ∂w

∂t , which ensures that the right-hand side of (30) is always less
than zero as follows

−
∫
Ω\C

∇ · σ(w)
∂w

∂t
dx =

∫
Ω\C

∇ · ηs∇ws ·wsdx = −
∫
Ω\C

ηs∇ws : ∇wsdx ≤ 0.

Let’s add the above equations (31)−(33) together, we can deduce that the model
obeys the energy dissipation law within a closed system,

∂Etot

∂t
=

∂H(t)

∂t
+

∂Ef (t)

∂t
+

∂Efrac(t)

∂t
(34)

=

∫
Ω\C

qµ(ρf )dx−
∫
Ω\C

K

η
|ρf (∇µ(ρf ))|2dx

+

∫
C
µ(ρf )q

fracds−
∫
C

Kfrac

η
|ρf (∇µ(ρf ))|2ds,

which indicates that the total energy is always dissipated with time.

Theorem 1. For the closed system with the boundary conditions w = 0 and
u · n = 0 on the boundary ∂Ω, where n denotes the normal unit outward vector
to ∂Ω, the gravity g = 0, q = 0 and qfrac = 0. The coupled model (P ) satisfies
the following discrete energy dissipation law as

∂Etot

∂t
+

∫
Ω\C

K

η
|ρf (∇µ(ρf ))|2dx+

∫
C

Kfrac

η
|ρf (∇µ(ρf ))|2ds ≤ 0. (35)

5 Time-Discrete Scheme

The energy dissipation law is a fundamental principle followed by nature,
which is also inherent in our proposed model. Therefore, an effective numerical
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method should maintain this law. In this section, we develop an energy-stable
time-discrete scheme. We divide the time interval [0, T ] into N time steps as
0 = t0 < t1 < · · · < tN = T and denote the time step size by ∆t = tn+1 − tn.
For any variable v, the superscript n in vn indicates the approximation of v at
the time tn.

5.1 Implicit scheme

We propose the following implicit scheme

−∇ · (λ(∇ ·wn+1)I+ 2Gϵ(wn+1)− αpn+1I) = 0, ∀x ∈ Ω \ C, (36)
(σpor)n+1 · n = −pn+1n, ∀x ∈ C, (37)
(ϕ+ α∇ ·wn+1)ρn+1

f − (ϕ+ α∇ ·wn)ρnf
∆t

+∇ · (ρn+1
f un+1) = qn+1, ∀x ∈ Ω \ C,

(38)

un+1 = −K

η
∇pn+1, ∀x ∈ Ω \ C, (39)

wn+1
frac ρ

n+1
f − wn

fracρ
n
f

∆t
+∇C · (ρn+1

f (ufrac)n+1) = (qfrac)n+1 + ρn+1
f

[
un+1

]
C · n+,

(40)

wn+1
frac = −

[
wn+1

]
C · n+, (ufrac)n+1 = −Kfrac

η
∇pn+1, ∀x ∈ C, (41)

dρf
dp

=
ρn+1
f − ρnf

pn+1 − pn
,
ρn+1
f − ρnf

pn+1 − pn
= ρn+1

f cn+1
f , ∀x ∈ Ω. (42)

In (36), we approximate the pressure of pn+1 using (42).

Remark 2. If the fluid compressibility cf is assumed to be small (e.g., of the
order of 10−8 or 10−9), and ρfcf is also small. When we use (42) to calculate
the pressure, 1

ρn+1
f cn+1

f

becomes a very large number, which causes a significant
error in our pressure calculation. Therefore, this paper emphasizes that the ap-
plicability of the proposed model is based on the assumption that the fluid has
a large compressibility coefficient.

5.2 Discrete energy dissipation law of the implicit scheme

We now show that the implicit scheme follows a discrete energy dissipation
law. We first derive the discrete chemical potentials that preserve the energy
stability at the time-discrete level. For ρn+1

f > 0 and ρnf > 0, µn+1 = µ(ρn+1
f ),

using the convexity of f(ρf ), we can deduce that

f(ρn+1
f )− f(ρn+1

f ) ≤ µn+1(ρn+1
f − ρnf ). (43)
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For the derivation of inequality (43), the detailed procedure can be found in the
literatures[9,12]. We define the discrete total energy as

En+1
tot = Hn+1 + En+1

f + (Efrac
f )n+1. (44)

Using (28), we deduce that

Hn+1 −Hn =
1

2

∫
Ω\C

(
σn+1 : ε(wn+1)− σn : ε(wn)

)
dx

=
1

2

∫
Ω\C

λ
(
|∇ ·wn+1|2 − |∇ ·wn|2

)
dx

+

∫
Ω\C

G
(
ε(wn+1) : ε(wn+1)− ε(wn) : ε(wn)

)
dx

=

∫
Ω\C

λ∇ ·wn+1∇ · (wn+1 −wn)dx− 1

2

∫
Ω\C

λ|∇ · (wn+1 −wn)|2dx

+

∫
Ω\C

2Gε(wn+1) :
(
ε(wn+1)− ε(wn)

)
dx−

∫
Ω\C

G|ε(wn+1)− ε(wn)|2dx

≤
∫
Ω\C

(
λ∇ ·wn+1 · I + 2Gε(wn+1)

)
: ∇(wn+1 −wn)dx

= −
∫
Ω\C

∇ · σn+1 ·
(
wn+1 −wn

)
dx.

For the variational expression of the displacement (13) in t = tn+1, by choosing
the test function v = wn+1−wn

∆t , we can derive the following result,

0 = (−∇ · (λ(∇ ·wn+1)I+ 2Gϵ(wn+1)− αpn+1I),
wn+1 −wn

∆t
)Ω\C (45)

= (σn+1,∇wn+1 −wn

∆t
)Ω\C − (αpn+1I,∇wn+1 −wn

∆t
)Ω\C

− ((σpor)n+1 · n+,
wn+1 −wn

∆t
)C

= (−∇ · σn+1,
wn+1 −wn

∆t
)Ω\C − (pn+1,

α∇ ·wn+1 − α∇ ·wn

∆t
)Ω\C

+ (pn+1,

[
wn+1

]
· n+ − [wn] · n+

∆t
)C .

Thus, we can obtain the following inequality,

Hn+1 −Hn

∆t
≤
∫
Ω\C

pn+1α∇ ·wn+1 − α∇ ·wn

∆t
dx︸ ︷︷ ︸

1⃝

−
∫
C
(pn+1

[
wn+1

]
· n+ − [wn] · n+

∆t
ds.︸ ︷︷ ︸

2⃝
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We use the properties of the energy function f(ρf ), for the equations of fluid
flow in Ω \ C, can derive,

En+1
f − En

f

∆t
=

∫
Ω\C

(α∇ ·wn+1 + ϕ)f(ρn+1
f )− (α∇ ·wn + ϕ)f(ρnf )

∆t
dx (46)

=

∫
Ω\C

f(ρn+1
f )

α∇ ·wn+1 − α∇ ·wn

∆t
dx

+

∫
Ω\C

(α∇ ·wn + ϕ)
f(ρn+1

f )− f(ρnf )

∆t
dx

≤
∫
Ω\C

(ρn+1
f µn+1 − pn+1)

α∇ ·wn+1 − α∇ ·wn

∆t
dx

+

∫
Ω\C

(α∇ ·wn + ϕ)µn+1
ρn+1
f − ρnf

∆t
dx

≤
∫
Ω\C

µn+1
(ϕ+ α∇ ·wn+1)ρn+1

f − (ϕ+ α∇ ·wn)ρnf
∆t

dx

−
∫
Ω\C

pn+1α∇ ·wn+1 − α∇ ·wn

∆t
dx

≤
∫
Ω\C

µn+1(qn+1 −∇ · (ρn+1
f un+1))dx−

∫
Ω\C

pn+1α∇ ·wn+1 − α∇ ·wn

∆t
dx

≤
∫
Ω\C

µn+1qn+1dx+

∫
C
µn+1ρn+1

f

[
K

η
∇pn+1

]
· n+ds︸ ︷︷ ︸

3⃝

−
∫
Ω\C

K

η
|ρn+1

f ∇µn+1|2dx−
∫
Ω\C

pn+1α∇ ·wn+1 − α∇ ·wn

∆t
dx︸ ︷︷ ︸

1⃝

.

Using the equation for conservation of mass in a fracture C, we derive the fol-
lowing energy inequality,

(Efrac
f )n+1 − (Efrac

f )n

∆t
=

∫
C

wn+1
frac f(ρ

n+1
f )− wn

fracf(ρ
n
f )

∆t
ds (47)

=

∫
C
f(ρn+1

f )
wn+1

frac − wn
frac

∆t
ds+

∫
C
wn

frac

f(ρn+1
f )− f(ρnf )

∆t
ds

≤
∫
C
(ρn+1

f µn+1 − pn+1)
wn+1

frac − wn
frac

∆t
ds+

∫
C
wn

fracµ
n+1

ρn+1
f − ρnf

∆t
ds

≤
∫
C
µn+1

wn+1
frac ρ

n+1
f − wn

fracρ
n
f

∆t
ds+

∫
C
pn+1

[
wn+1

]
C · n+ − [wn]C · n+

∆t
ds

≤
∫
C
µn+1((qfrac)n+1 + ρn+1

f

[
un+1

]
C · n+ −∇C · (ρn+1

f (ufrac)n+1))ds
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+

∫
C
pn+1

[
wn+1

]
C · n+ − [wn]C · n+

∆t
ds

≤
∫
C
µn+1(qfrac)n+1ds−

∫
C
µn+1ρn+1

f

[
K

η
∇pn+1

]
· n+ds︸ ︷︷ ︸

3⃝

−
∫
C

Kfrac

η
|ρn+1

f ∇µn+1|2ds+
∫
C
pn+1

[
wn+1

]
C · n+ − [wn]C · n+

∆t
ds︸ ︷︷ ︸

2⃝

.

The implicit scheme satisfies the following discrete energy dissipation law:

En+1
tot − En

tot

∆t
=

Hn+1 −Hn

∆t
+

En+1
f − En

f

∆t
+

(Efrac
f )n+1 − (Efrac

f )n

∆t
(48)

≤
∫
Ω\C

µn+1qn+1dx−
∫
Ω\C

K

η
|ρn+1

f ∇µn+1|2dx

+

∫
C
µn+1(qfrac)n+1ds−

∫
C

Kfrac

η
|ρn+1

f ∇µn+1|2ds,

which shows that the total discrete energy decreases with each time step.

Theorem 2. For the closed system with the boundary conditions wn+1 = 0 and
un+1 · n = 0 on the boundary ∂Ω, where n denotes the normal unit outward
vector to ∂Ω, the gravity g = 0, qn+1 = 0 and (qfrac)n+1 = 0. The implicit
scheme satisfies the following discrete energy dissipation law:

En+1
tot − En

tot

∆t
+

∫
Ω\C

K

η
|ρn+1

f ∇µn+1|2dx+

∫
C

Kfrac

η
|ρn+1

f ∇µn+1|2ds ≤ 0. (49)

6 Conclusions

In conclusion, this paper presents a comprehensive investigation of the fluid-
solid coupling problem in fractured porous elastic media, explicitly accounting
for the geometry of fractures as potentially non-planar interfaces. The derived
model, which involves mixed-dimensional equations, successfully couples the flow
on the d−1 dimensional fracture surfaces with the d dimensional porous matrix.
By adopting a strongly compressible fluid flow model with density as the primary
variable, this work contrasts with previous studies that used pressure as the pri-
mary variable for slightly compressible fluids. A thermodynamically consistent
mathematical model is developed, and its weak formulation is provided. Addi-
tionally, energy stability is rigorously established for both the continuous and
semi-discrete formulations in time. The proposed model and numerical frame-
work offer a robust and stable platform for simulating strongly compressible fluid
flows, ensuring both thermodynamic consistency and computational reliability.
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