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Abstract. This paper presents a finite element algorithm for solving
quasi-static Biot poroelasticity model. By introducing a total pressure,
we reformulate the Biot system into a coupled Stokes-parabolic equa-
tion. To efficiently solve it, we propose a parallel splitting approach. The
coupled system is decomposed into a Stokes subproblem and a parabolic
subproblem. These subproblems are then solved in parallel using a sta-
bilization technique. This parallel splitting approach different from se-
quential or iterative decoupling. The algorithm is proven to be uncon-
ditionally stable and theoretical results are validated through numerical
experiments.

Keywords: Biot model · Decoupled method · Unconditionally energy
stable · Finite element method.

1 Introduction.

This paper addresses the Biot model [3], which has widespread applications in
both geological and biological fields. Let Ω× [0, T ] ⊆ Rd, (d = 2, 3) be a bounded
polygonal domain with boundary ∂Ω. The classical 2-field formulation of quasi-
static poroelasticity model to be studied in this article is given by

−∇ · σ(u) + α∇p = f in ΩT := Ω × [0, T ],

∂t(c0p+ α∇ · u) +∇ · (−K

µf
(∇p− ρfg)) = q in ΩT ,

(1)

where
σ(u) = 2µε(u) + λ∇ · uI,

ε(u) =
1

2
(∇u+ (∇u)T ).

(2)

Here, u denotes the displacement vector of the solid and p denotes the pres-
sure of the solvent. f is the body force and g is the gravitational acceleration,
which is assumed to be a constant vector. I denotes the d × d identity matrix,
and ε(u) is known as the strain tensor. The parameters in the model are Lamé
constants λ and µ; the permeability tensor K = κI; the solvent viscosity µf
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, Biot–Willis constant α, and the constrained specific storage coefficient c0. In
addition, σ(u) is called the (effective) stress tensor. σ̂(u, p) = σ(u)− αpI is the
total stress tensor. vf = − K

µf
(∇p− ρfg) is the volumetric solvent flux.

The Biot model typically involves multiple physical phenomena, and there-
fore efficient numerical simulation methods for this model have been a focus
of research in recent years. As a natural alternative, numerical algorithms that
separate fluid mechanics from elasticity have become popular compared to solv-
ing large coupled systems. However, the major issue for decoupling methods is
instability [7, 9, 10], which is not only related to the time partition scale but also
to the material parameters. The main decoupling algorithms for the Biot model
are typically categorized into two groups: iterative decoupling algorithms and
sequential decoupling methods. Iterative methods, which achieve decoupling by
solving submodels iteratively at each time step, still require significant computa-
tional time. These iterative algorithms are further divided into four types [9, 10,
8]: drained split, undrained split, fixed strain split, and fixed stress split. Wheeler
et al. [12, 11] provided convergence analysis for the undrained and fixed stress
methods about two-field Biot model.

The other category is the sequential splitting methods, which decouple the
coupled term by using numerical solutions from the previous time step with-
out requiring iteration. These methods allow us to solve the elliptic equation
first, followed by the parabolic equation, or vice versa, in a sequential manner.
However, they often impose certain constraints on model parameters and time
steps. For two-field model, the method of first solving the elliptic equation and
then solving the parabolic equation has been proven that the convergence is
guaranteed under weak coupling conditions [1, 2]. Some methods enhance stabil-
ity by adding stabilizers. Riviere et al. [5, 6] originally ensured the stability of
the sequential splitting algorithm by adding a small first-order time term and
extended this approach to multiphase poroelasticity [14]. Recently, Cai et al.
[4] presented an optimal convergence analysis for two sequential methods about
three-field Biot model, utilizing a novel proof technique. This three-field model
introduces an intermediate variable, known as the total pressure, treating the
classical Biot model as a coupling of a generalized Stokes problem and a parabolic
problem. However, the aforementioned algorithms all involve sequentially solving
subproblems of the Biot model, and the stability of parallel methods for these
subproblems has rarely been considered.

In this paper, we propose an unconditionally energy-stable parallel splitting
method. Our idea is inspired by [5, 4], but it is worth mentioning that we do
not require iterative solving or sequential solving; we can solve the elasticity
and parabolic subproblems in parallel. By introducing a total pressure variable,
we transform the classical two-field model into a three-field model, specifically a
Stokes-parabolic coupled problem. For this coupled equation, we propose a paral-
lel splitting algorithm that enables the parallel computation of the subproblems
after decoupling. The Stokes subproblem can be discretized using Taylor-Hood
elements that satisfy the inf-sup stability condition, while the parabolic problem
can be discretized using Lagrange elements. Furthermore, our proposed time-
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splitting algorithm can be extended to other discrete methods, including dis-
continuous Galerkin, weak Galerkin, and virtual element methods. Finally, we
provide numerical examples to validate the effectiveness and convergence of the
algorithm.

The structure of this paper is as follows. In Section 2, we introduce the mixed
formulation of the Biot equation. In Section 3, we present the unconditionally
energy-stable splitting parallel scheme. In Section 4, we provide numerical exam-
ples to verify the proposed parallel method. Conclusions are drawn in the final
Section 5.

2 Modeling equations and energy dissipation law

To close the above system, suitable boundary and initial conditions must be pre-
scribed. The following set of boundary and initial conditions will be considered
in this article:

σ̂(u, p)n = σ(u)n− αpn = f1 on Γt := ∂Ωt × [0, T ],

u = 0 on Γu := ∂Ωu × [0, T ],

vf · n = q1 on ΓN := ∂ΩN × [0, T ],

p = 0 on ΓD := ∂ΩD × [0, T ].

where n is the unit outward normal to the boundary, ∂Ωt ∪ ∂Ωu = ∂Ω and
∂ΩN ∪ ∂ΩD = ∂Ω with |Γu| > 0, |ΓD| > 0. Without loss of generality, the
above Dirichlet boundary conditions are assumed to be homogeneous. The initial
conditions are given by

u = u0, p = p0 in Ω × {t = 0}.

We note that in some engineering literature, the second Lamé constant µ is also
called the shear modulus and denoted by G, and B := λ + 2

3G is called the
bulk modulus. λ, µ and B are computed from the Young’s modulus E and the
Poisson ratio ν by the following formulas:

λ =
Eν

(1 + ν)(1− 2ν)
, µ = G =

E

2(1 + ν)
, B =

E

3(1− 2ν)
.

We introduce a variable [13],

ξ = αp− λ∇ · u. (3)

And assume that ρf = 0 for simplicity. Then problem (1)-(2) can be reformulated
as a coupled system of general Stokes equation (or mixed form of the linear
elasticity) and parabolic equation,

−∇ · (2µε(u)) +∇ξ = f ,

∇ · u+
1

λ
ξ − α

λ
p = 0,(

c0 +
α2

λ

)
∂tp−

α

λ
∂tξ +∇ · (−K∇p) = q,

(4)
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To study the weak form and energy analysis of the 3-field formulation (4), we
give the standard sobolev spaces, Wm,p. Hm(Ω) for Wm,2(Ω), and ‖ · ‖Hm(Ω)

for ‖ · ‖Wm,2(Ω); Hm
0,Γ (Ω) for the subspace of Hm(Ω) with the vanishing trace

on Γ ⊂ ∂Ω. We introduce the following functional spaces: V = {v ∈ H1
0,Γu

(Ω)},
W = L2(Ω), and M = {φ ∈ H1

0,ΓD
(Ω)}. A 3-tuple (u, ξ, p) ∈ V ×W ×M is

called a weak solution to (4), if it holds ∀t ∈ [0, T ],

2µ(ε(u), ε(v))− (ξ,∇ · v) = (f ,v) + 〈f1,v〉, (5)

(∇ · u, φ) + 1

λ
(ξ, φ)− α

λ
(p, φ) = 0, (6)(

c0 +
α2

λ

)
(∂tp, ψ)−

α

λ
(∂tξ, ψ) + (K∇p,∇ψ) = (q, ψ) + 〈q1, ψ〉, (7)

for ∀v ∈ V,∀φ ∈W, ∀ψ ∈M.

Lemma 1. Every weak solution (u, ξ, p) of problems (5)-(7) satisfies the follow-
ing energy law:

d

dt
E(t) + (K∇p,∇p) = (q, p) + 〈q1, p〉 − (∂tf ,u)− 〈∂tf1,u〉.

for t∈ [0, T ], where E(t)= 1
2

[
2µ‖ε(u(t))‖2L2(Ω)+

1
λ‖αp−ξ‖

2
L2(Ω)+c0‖p(t)‖

2
L2(Ω)

]
−

(f(t),u(t))− 〈f1(t),u(t)〉. Moreover, there holds

‖ξ‖L2(Ω) ≤ C
(
2µ‖ε(u)‖L2(Ω) + ‖f‖L2(Ω) + ‖f1‖L2(Γt)

)
,

where C is a positive constant.

3 Unconditionally energy stable parallel splitting method

We define the discrete formulation for a function φ at time tn+1 as φn+1, where
0 ≤ n ≤ N and n is integer. The time step size is denoted by ∆t = T/N ,
Dφn+1 = φn+1 − φn. Additionally, let C represent a generic positive constant
that remains independent of mesh and time sizes. Assume f1 = q1 = 0 on
boundary.

Initial step for n = 1, we solve the coupled scheme,

2µ(ε(u1), ε(v))−
(
ξ1,∇ · v

)
= (f1,v), (8)(

∇ · u1, φ
)
+

1

λ

(
ξ1, φ

)
− α

λ

(
p1, φ

)
= 0, (9)(

c0 +
α2

λ

)(
p1 − p0

∆t
, ψ

)
− α

λ

(
ξ1 − ξ0

∆t
, ψ

)
+ (K∇p1,∇ψ) = (q1, ψ). (10)

For n > 2, the coupling problem is split into subproblems to be computed in
parallel,

2µ(ε(un+1), ε(v))−
(
ξn+1,∇ · v

)
= (fn+1,v), (11)
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(
∇ · un+1, φ

)
+

1

λ

(
ξn+1, φ

)
=
α

λ
(pn, φ) , (12)(

c0 +
α2

λ

)(
pn+1 − pn

∆t
, ψ

)
+L

(
pn+1 − 2pn + pn−1

∆t
, ψ

)
+(K∇pn+1,∇ψ) = α

λ

(
ξn − ξn−1

∆t
, ψ

)
+ (qn+1, ψ), (13)

for ∀v ∈ V,∀φ ∈W, ∀ψ ∈M. Next, we prove the energy stability of the proposed
parallel time-splitting algorithm.

Theorem 1. For the initial step n = 1, (8)-(10) is stable in the sense of

2µ‖ε(u1)‖2L2(Ω) +
c0
2
‖p1‖2L2(Ω) +

1

2λ
‖αp1 − ξ1‖2L2(Ω) +

∆tκ

2
‖∇p1‖2L2(Ω)

6I(f1, q1) + I(u0, p0, ξ0),
(14)

where I(f1, q1) = CPFCK

4µ ‖f1‖2L2(Ω) +
∆tCPF

2κ ‖q1‖2L2(Ω) is the contribution of the
right sourse term, I(u0, p0, ξ0) = 2µ‖ε(u0)‖2L2(Ω) +

c0
2 ‖p

0‖2L2(Ω) +
1
2λ‖αp

0 −
ξ0‖2L2(Ω) is the contribution from the initial time t0 about displacement and pres-
sure.

Proof. Choose v = u1 − u0 in (8), and ψ = ∆tp1 in (10). After subtracting (9)
at t = t0, take φ = ξ1, we have

2µ(ε(u1), ε(u1 − u0))−
(
ξ1,∇ · (u1 − u0)

)
= (f1,u1 − u0),(

∇ ·
(
u1 − u0

)
, ξ1
)
+

1

λ

((
ξ1 − ξ0

)
, ξ1
)
− α

λ

(
p1 − p0, ξ1

)
= 0,(

c0 +
α2

λ

)(
p1 − p0, p1

)
− α

λ

(
ξ1 − ξ0, p1

)
+∆tκ(∇p1,∇p1) = (q1, ∆tp1).

Summing above equations up, and by Poincaré inequality and Korn inequality,
we can obtain (14). ut

For the convenience of writing, we define Dn+1
φ = φn+1 − φn.

Theorem 2. For subsequent step n > 2, if L >
C̃µα2

λ2
, where constant C̃ is re-

lated to CPF and β0, from Poincare inequality and inf-sup condition respectively.
Then we have the following stability,

µ

N∑
n=1

‖ε(Dn+1
u )‖2L2(Ω)+c0

N∑
n=1

‖Dn+1
p ‖2L2(Ω)+

1

2λ

N∑
n=1

‖αDn+1
p −Dn+1

ξ ‖2L2(Ω)

≤C

(
N∑
n=1

I(fn+1, qn+1) + I(u0, p0, ξ0)

)
,

(15)

where I(fn+1, qn+1) is the contribution of the right sourse term, I(u0, p0, ξ0) is
the contribution from the initial time t0.
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Proof. Take the difference between equations (11) and (12) at the n + 1 time
step and the n time step,

2µ(ε(Dn+1
u ), ε(v))−

(
Dn+1
ξ ,∇ · v

)
= (Dn+1

f ,v), ∀v ∈ V, (16)(
∇ ·Dn+1

u , φ
)
+

1

λ

(
Dn+1
ξ , φ

)
=
α

λ

(
Dn
p , φ

)
, ∀φ ∈W, (17)

Equation (13) can be rewritten as(
c0 +

α2

λ

)(
Dn+1
p

∆t
, ψ

)
+ L

(
Dn+1
p −Dn

p

∆t
, ψ

)
+ (K∇pn+1,∇ψ)

=
α

λ

(
Dn
ξ

∆t
, ψ

)
+ (qn+1, ψ). (18)

Setting v = Dn+1
u , φ = Dn+1

ξ , and ψ = ∆tDn+1
p , we have

2µ(ε(Dn+1
u ), ε(Dn+1

u ))−
(
Dn+1
ξ ,∇ ·Dn+1

u

)
= (Dn+1

f , Dn+1
u ),(

∇ ·Dn+1
u , Dn+1

ξ

)
+

1

λ

(
Dn+1
ξ , Dn+1

ξ

)
=
α

λ

(
Dn
p , D

n+1
ξ

)
,(

c0 +
α2

λ

)(
Dn+1
p , Dn+1

p

)
+ L

(
Dn+1
p −Dn

p , D
n+1
p

)
+∆t(K∇pn+1,∇Dn+1

p )

=
α

λ

(
Dn
ξ , D

n+1
p

)
+∆t(qn+1, Dn+1

p ).

Taking above three equations sum up, we have

2µ‖ε(Dn+1
u )‖2L2(Ω)+

1

λ

(
Dn+1
ξ , Dn+1

ξ

)
−α
λ

(
Dn+1
p , Dn+1

ξ

)
+ c0‖Dn+1

p ‖2L2(Ω)

+
α2

λ

(
Dn+1
p , Dn+1

p

)
+ L

(
Dn+1
p −Dn

p , D
n+1
p

)
+∆t(K∇pn+1,∇Dn+1

p )

=(Dn+1
f , Dn+1

u ) +∆t(qn+1, Dn+1
p ) +

α

λ

(
Dn
p , D

n+1
ξ

)
− α

λ

(
Dn+1
p , Dn+1

ξ

)
+
α

λ

(
Dn
ξ , D

n+1
p

)
.

(19)

Noting that

1

2λ
‖αDn+1

p −Dn+1
ξ ‖2L2(Ω)=

α2

2λ
‖Dn+1

p ‖2L2(Ω)+
1

2λ
‖Dn+1

ξ ‖2L2(Ω)−
α

λ
(Dn+1
p ,Dn+1

ξ ) (20)

Taking (20) in (19), we have

2µ‖ε(Dn+1
u )‖2L2(Ω) +

1

2λ
‖Dn+1

ξ ‖2L2(Ω) + c0‖Dn+1
p ‖2L2(Ω) +

α2

2λ
‖Dn+1

p ‖2L2(Ω)

+
1

2λ
‖αDn+1

p −Dn+1
ξ ‖2L2(Ω)+

L

2

(
‖Dn+1

p ‖2L2(Ω)−‖D
n
p ‖2L2(Ω)+‖D

n+1
p −Dn

p ‖2L2(Ω)

)
+
∆tκ

2

(
‖∇pn+1‖2L2(Ω) − ‖∇p

n‖2L2(Ω) + ‖∇D
n+1
p ‖2L2(Ω)

)
=(Dn+1

f , Dn+1
u ) +∆t(qn+1, Dn+1

p )− α

λ

(
Dn+1
p −Dn

p , D
n+1
ξ

)
+
α

λ

(
Dn
ξ , D

n+1
p

)
.
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Summing over index n from 1 to N , we obtain

2µ

N∑
n=1

‖ε(Dn+1
u )‖2L2(Ω) +

1

2λ

N∑
n=1

‖Dn+1
ξ ‖2L2(Ω) + c0

N∑
n=1

‖Dn+1
p ‖2L2(Ω)

+
α2

2λ

N∑
n=1

‖Dn+1
p ‖2L2(Ω) +

1

2λ

N∑
n=1

‖αDn+1
p −Dn+1

ξ ‖2L2(Ω) (21)

+
L

2

(
‖DN+1

p ‖2L2(Ω) − ‖D
1
p‖2L2(Ω) +

N∑
n=1

‖Dn+1
p −Dn

p ‖2L2(Ω)

)

+
∆tκ

2

(
‖∇pN+1‖2L2(Ω) − ‖∇p

1‖2L2(Ω) +

N∑
n=1

‖∇Dn+1
p ‖2L2(Ω)

)

=

N∑
n=1

(Dn+1
f , Dn+1

u ) +

N∑
n=1

∆t(qn+1, Dn+1
p )

− α

λ

N∑
n=1

(
Dn+1
p −Dn

p , D
n+1
ξ

)
+
α

λ

N∑
n=1

(
Dn
ξ , D

n+1
p

)
.

And then we bound the four terms on the right side of (21). Applying the
Cauchy-Schwarz inequality, the Young’s inequality, the Poincaré inequality and
Korn inequality, we have

N∑
n=1

(Dn+1
f , Dn+1

u ) 6
µ

2

N∑
n=1

‖ε(Dn+1
u )‖2L2(Ω) +

CPFCk
2µ

N∑
n=1

‖Dn+1
f ‖2L2(Ω), (22)

N∑
n=1

∆t(qn+1, Dn+1
p ) 6

∆tκ

4

N∑
n=1

‖∇Dn+1
p ‖2L2(Ω)+

∆tCPF
κ

N∑
n=1

‖qn+1‖2L2(Ω). (23)

where CPF and CK are constants from Poincaré inequality and Korn inequality,
depending on the domain Ω. Specifically, using the inf-sup condition and (16),
we see that the following inequality holds

β0‖Dn+1
ξ ‖L2(Ω) 6 supv∈V

∣∣∣(Dn+1
ξ ,∇ · v

)∣∣∣
‖v‖H1(Ω)

= supv∈V

∣∣2µ (ε(Dn+1
u ), ε(v)

)
+
(
Dn+1

f ,v
)∣∣

‖v‖H1(Ω)

6 2µC‖ε(Dn+1
u )‖L2(Ω) + CPF ‖Dn+1

f ‖L2(Ω),

which means that

‖Dn+1
ξ ‖2L2(Ω) 6 C̃

(
µ2‖ε(Dn+1

u )‖2L2(Ω) + ‖D
n+1
f ‖2L2(Ω)

)
, (24)
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where constant C̃ related to β0 and CPF . For the third term, by Young inequality,
we have∣∣∣∣∣αλ

N∑
n=1

(
Dn+1
p −Dn

p , D
n+1
ξ

)∣∣∣∣∣ 6 α

λ

N∑
n=1

(
δ‖Dn+1

p −Dn
p ‖2L2(Ω)

2
+
‖Dn+1

ξ ‖2L2(Ω)

2δ

)
.

From (24) and taking δ =
C̃µα

λ
, we have∣∣∣∣∣αλ

N∑
n=1

(
Dn+1
p −Dn

p , D
n+1
ξ

)∣∣∣∣∣ 6 C̃µα2

2λ2

N∑
n=1

‖Dn+1
p −Dn

p ‖2L2(Ω)

+
µ

2

N∑
n=1

‖ε(Dn+1
u )‖2L2(Ω)+C

N∑
n=1

‖Dn+1
f ‖2L2(Ω).

(25)

For the last term, we have∣∣∣∣∣αλ
N∑
n=1

(
Dn
ξ , D

n+1
p

)∣∣∣∣∣ 6 1

2λ

N∑
n=1

‖Dn
ξ ‖2L2(Ω) +

α2

2λ

N∑
n=1

‖Dn+1
p ‖2L2(Ω) (26)

Taking (22), (23), (25) and (26) into (21), we have

µ

N∑
n=1

‖ε(Dn+1
u )‖2L2(Ω)+c0

N∑
n=1

‖Dn+1
p ‖2L2(Ω)+

1

2λ

N∑
n=1

‖αDn+1
p −Dn+1

ξ ‖2L2(Ω)

+
L

2
‖DN+1

p ‖2L2(Ω) +

(
L

2
− C̃µα2

2λ2

)
N∑
n=1

‖Dn+1
p −Dn

p ‖2L2(Ω)

+
∆tκ

2
‖∇pN+1‖2L2(Ω) +

∆tκ

4

(
N∑
n=1

‖∇Dn+1
p ‖2L2(Ω)

)

6C
N∑
n=1

‖Dn+1
f ‖2L2(Ω) +

∆tCPF
κ

N∑
n=1

‖qn+1‖2L2(Ω) +
1

2λ
‖D1

ξ‖2L2(Ω)

+
L

2
‖D1

p‖2L2(Ω) +
∆tκ

2
‖∇p1‖2L2(Ω)

Thus, if L >
C̃µα2

λ2
, we have

µ

N∑
n=1

‖ε(Dn+1
u )‖2L2(Ω)+c0

N∑
n=1

‖Dn+1
p ‖2L2(Ω)+

1

2λ

N∑
n=1

‖αDn+1
p −Dn+1

ξ ‖2L2(Ω)

6C
N∑
n=1

‖Dn+1
f ‖2L2(Ω) +

∆tCPF
κ

N∑
n=1

‖qn+1‖2L2(Ω) + Ifirst

=

N∑
n=1

I(fn+1, qn+1) + Ifirst.
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where Ifirst = 1
2λ‖D

1
ξ‖2L2(Ω) +

L
2 ‖D

1
p‖2L2(Ω) +

∆tκ
2 ‖∇p

1‖2L2(Ω) denotes the con-
tribution of the first time step. From Theorem 1, we have

Ifirst 6 C
(
I(f1, q1) + I(u0, p0, ξ0)

)
.

ut

Theorem 3. Under the same assumptions as in the Theorem 2, we obtain the
unconditionally stable energy inequality,

µ

2
‖ε(uN+1)‖2L2(Ω) +

(
c0
2

+
L

2

)
‖pN+1‖2L2(Ω) +

1

4λ
‖αpN+1 − ξN+1‖2L2(Ω)

+
κ∆t

2

N∑
n=1

‖∇pn+1‖2L2(Ω) 6 C

(
N∑
n=1

I(fn+1, qn+1) + I(u0, p0, ξ0)

)
,

(27)

where I(fn+1, qn+1) is the contribution of the right sourse term, I(u0, p0, ξ0) is
the contribution from the initial time t0.

Proof. Setting v = Dn+1
u in (11), making difference from n+1 to n for (12) and

taking φ = ξn+1, taking ψ = ∆tpn+1 in (13). Then summing three equations up,
we have

µ
(
‖ε(un+1)‖2L2(Ω) − ‖ε(u

n)‖2L2(Ω) + ‖ε(u
n+1 − un)‖2L2(Ω)

)
+

(
c0
2
+
L

2

)(
‖pn+1‖2L2(Ω)−‖p

n‖2L2(Ω)+‖p
n+1 − pn‖2L2(Ω)

)
+κ∆t‖∇pn+1‖2L2(Ω)

+
1

λ

(
ξn+1 − ξn, ξn+1

)
+
α2

λ

(
pn+1 − pn, pn+1

)
− α

λ

(
pn+1 − pn, ξn+1

)
(28)

+
α

λ

(
pn+1 − pn, ξn+1

)
− α

λ

(
pn − pn−1, ξn+1

)
− L(pn − pn−1, pn+1)

− α

λ

(
ξn+1 − ξn, pn+1

)
+
α

λ

(
ξn+1 − ξn, pn+1

)
− α

λ

(
ξn − ξn−1, pn+1

)
=
(
fn+1, Dn+1

u

)
+
(
qn+1, ∆tpn+1

)
.

Noting that

1

λ

(
ξn+1 − ξn, ξn+1

)
+
α2

λ

(
pn+1 − pn, pn+1

)
− α

λ

(
pn+1 − pn, ξn+1

)
− α

λ

(
ξn+1 − ξn, pn+1

)
=

1

2λ

(
‖αpn+1 − ξn+1‖2L2(Ω) − ‖αp

n − ξn‖2L2(Ω)

+‖αpn+1 − ξn+1 − (αpn − ξn) ‖2L2(Ω)

)
.

Summing over index n from 1 to N for (28), we have

µ

(
‖ε(uN+1)‖2L2(Ω) − ‖ε(u

1)‖2L2(Ω) +

N∑
n=1

‖ε(un+1 − un)‖2L2(Ω)

)
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+

(
c0
2

+
L

2

)(
‖pN+1‖2L2(Ω) − ‖p

1‖2L2(Ω) +

N∑
n=1

‖pn+1 − pn‖2L2(Ω)

)

+ κ∆t

N∑
n=1

‖∇pn+1‖2L2(Ω) +
1

2λ

(
‖αpN+1 − ξN+1‖2L2(Ω) − ‖αp

1 − ξ1‖2L2(Ω)

+

N∑
n=1

‖αpn+1 − ξn+1 − (αpn − ξn) ‖2L2(Ω)

)
(29)

=

N∑
n=1

(
fn+1,un+1 − un

)
+

N∑
n=1

(
qn+1, ∆tpn+1

)
− α

λ

N∑
n=1

(
Dn+1
p −Dn

p , ξ
n+1
)

− α

λ

N∑
n=1

(
Dn+1
ξ −Dn

ξ , p
n+1
)
+ L

N∑
n=1

(pn − pn−1, pn+1)

·
=T1 + T2 + T3 + T4 + T5.

We bound the terms T1 and T2 similar to (22)-(23). For the third term, we have

T3 =

N∑
n=1

−α
λ

(
Dn+1
p −Dn

p , ξ
n+1
)

(30)

=

N∑
n=1

(
−α
λ

(
Dn+1
p , ξn+1

)
+
α

λ

(
Dn
p , ξ

n
)
+
α

λ

(
Dn
p , D

n+1
ξ

))
=− α

λ

(
DN+1
p , ξN+1

)
+
α

λ

(
D1
p, ξ

1
)
+
α

λ

N∑
n=1

(
Dn
p , D

n+1
ξ

)
6
α2

2λδ
‖DN+1

p ‖2L2(Ω) +
δ

2λ
‖ξN+1‖2L2(Ω) +

α2

2λ
‖D1

p‖2L2(Ω) +
1

2λ
‖ξ1‖2L2(Ω)

+

N∑
n=1

(
1

2λ
‖Dn+1

ξ ‖2L2(Ω) +
α2

2λ
‖Dn

p ‖2L2(Ω)

)
.

Noting that

‖Dn+1
ξ ‖2L2(Ω) 6 C̃

(
µ2‖ε(Dn+1

u )‖2L2(Ω) + ‖D
n+1
f ‖2L2(Ω)

)
,

Thus, we have

α2‖Dn+1
p ‖2L2(Ω) 6‖αD

n+1
p −Dn+1

ξ ‖2L2(Ω) + ‖D
n+1
ξ ‖2L2(Ω)

6‖αDn+1
p −Dn+1

ξ ‖2L2(Ω)+C̃
(
µ2‖ε(Dn+1

u )‖2L2(Ω)+‖D
n+1
f ‖2L2(Ω)

)
,

Then, by the Theorem 2, we can bound

N∑
n=1

(
1

2λ
‖Dn+1

ξ ‖2L2(Ω) +
α2

2λ
‖Dn

p ‖2L2(Ω)

)
(31)
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6
N∑
n=1

1

2λ
‖αDn

p −Dn
ξ ‖2L2(Ω) +

N+1∑
n=1

C

λ

(
µ2‖ε(Dn

u)‖2L2(Ω) + ‖D
n
f ‖2L2(Ω)

)
6C

(
N∑
n=1

I(fn+1, qn+1) + I(u0, p0, ξ0)

)
.

Taking δ = λ
2C̃µ

in (30), such that

δ

2λ
‖ξN+1‖2L2(Ω) 6

µ

4
‖ε(uN+1)‖2L2(Ω) + C‖fN+1‖2L2(Ω).

Thus by (31), we have

T3 =

N∑
n=1

−α
λ

(
Dn+1
p −Dn

p , ξ
n+1
)
6C

(
N∑
n=1

I(fn+1, qn+1) + I(u0, p0, ξ0)

)
+
µ

4
‖ε(uN+1)‖2L2(Ω). (32)

Next, we bound the fourth term,

T4 =
α

λ

N∑
n=1

(
Dn+1
ξ −Dn

ξ , p
n+1
)

=

N∑
n=1

(α
λ

(
Dn+1
ξ , pn+1

)
− α

λ

(
Dn
ξ , p

n
)
− α

λ

(
Dn
ξ , D

n+1
p

))
=
α

λ

(
DN+1
ξ , pN+1

)
− α

λ

(
D1
ξ , p

1
)
− α

λ

N∑
n=1

(
Dn
ξ , D

n+1
p

)
6

1

2λ2δ
‖DN+1

ξ ‖2L2(Ω) +
α2δ

2
‖pN+1‖2L2(Ω) +

α2

2λ
‖D1

ξ‖L2(Ω) +
1

2λ
‖p1‖2L2(Ω)

+

N∑
n=1

(
1

2λ
‖Dn

ξ ‖2L2(Ω) +
α2

2λ
‖Dn+1

p ‖2L2(Ω)

)
.

Noting that

α2‖pn+1‖2L2(Ω) 6‖αp
n+1 − ξn+1‖2L2(Ω) + ‖ξ

n+1‖2L2(Ω)

6‖αpn+1 − ξn+1‖2L2(Ω) + C
(
µ2‖ε(un+1)‖2L2(Ω) + ‖f

n+1‖2L2(Ω)

)
,

Taking δ = min{ 1
2λ ,

1
2C̃µ
}, such that

α2δ

2
‖pN+1‖2L2 6

1

4λ
‖αpN+1 − ξN+1‖2L2(Ω) +

µ

4
‖ε(uN+1)‖2L2(Ω) + C‖fN+1‖2L2(Ω).
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Therefore, we have

T4 =
α

λ

N∑
n=1

(
Dn+1
ξ −Dn

ξ , p
n+1
)

(33)

6C

(
N∑
n=1

I(fn+1, qn+1) + I(u0, p0, ξ0)

)
+
µ

4
‖ε(uN+1)‖2L2(Ω)

+
1

4λ
‖αpN+1 − ξN+1‖2L2(Ω).

For the last term, we have

T5 = L

N∑
n=1

(pn − pn−1, pn+1) 6
N∑
n=1

L2

ε
‖pn − pn−1‖2L2 + ε‖pn+1‖2L2 . (34)

Taking (32), (33), (34) in (29), noting that the term about
∑N
n=1

∥∥Dn
p

∥∥
L2 can

be controlled by Theorem 2, then we have

µ

2
‖ε(uN+1)‖2L2(Ω) +

(
c0
2

+
L

2

)
‖pN+1‖2L2(Ω) +

1

4λ
‖αpN+1 − ξN+1‖2L2(Ω)

+
κ∆t

2

N∑
n=1

‖∇pn+1‖2L26C

(
N∑
n=1

I(fn+1, qn+1)+I(u0, p0, ξ0)

)
+ ε

N∑
n=1

‖pn+1‖2L2(Ω).

Therefore, by discrete Grown’s inequality, we can obtain (27). ut

4 Numerical test

In this section, we adopt Taylor-Hood elements (P2, P1) for the pair (u, ξ) and
Lagrange finite elements for p, which satisfies the discrete inf-sup condition.

Let the computational domain is Ω = [0, 1]2. We choose the body force f
and the volumetric source/sink term q in (1)-(2) so that the exact solution is as
follows,

u(x, y, t) =

 e−t
(
sin (2πy) (−1 + cos(2πx)) +

1

µ+ λ
sin(πx)sin(πy)

)
e−t

(
sin (2πx) (1− cos(2πy)) + 1

µ+ λ
sin(πx)sin(πy)

)
 ,

p(x, y, t) = e−tsin(πx)sin(πy).

We will test the spatial convergence rates of the L2 and energy norms of dis-
placement and pressure at time T = 0.5 in this example. We select the parame-
ters as follows: E = 1, ν = 0.499999999, c0 = 10−7, κ = 10−6, α = 1, In
this case, the Lamé constant λ is 1.6667× 108 .

The results obtained by our parallel scheme are listed in Tables 1. The results
in these tables indicate that the H1 error rate for displacement uh is 2, while
the L2 error rates for ξh and pressure ph are 2, and the H1 error rate for ph is 1.
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Table 1. Numerical results.

h ∆t ‖u− uh‖L2(Ω) rate ‖p− ph‖L2(Ω) rate ‖ξ − ξh‖L2(Ω) rate
1/4 1/8 3.491e-02 3.714e-01 1.405e-01
1/8 1/32 4.085e-03 3.10 1.122e-01 1.73 2.623e-02 2.42
1/16 1/128 4.736e-04 3.11 2.996e-02 1.90 6.027e-03 2.12
1/32 1/512 5.739e-05 3.04 7.681e-03 1.96 1.480e-03 2.03
h ∆t ‖∇ (u− uh) ‖L2(Ω) rate ‖∇ (p− ph) ‖L2(Ω) rate ‖∇ (ξ − ξh) ‖L2(Ω) rate
1/4 1/8 8.721e-01 2.227e+00 3.532e+00
1/8 1/32 2.381e-01 1.87 6.725e-01 1.73 1.585e+00 1.16
1/16 1/128 6.120e-02 1.96 2.099e-01 1.68 7.754e-01 1.03
1/32 1/512 1.542e-02 1.99 7.817e-02 1.43 3.857e-01 1.01

4.1 Barry-Mercer’s problem

A well-known benchmark problem is the Barry–Mercer problem, which considers
a time-dependent fluid injection and production, and for which an analytical
series solution is available. We assume that the domain is Ω = [0, 1]2. We assume
that the initial values of displacement and pressure are u = 0 and p = 0. For
details on the boundary condition settings, refer to Figure 1.

Fig. 1. Rectangle with point x0 at (0.25, 0.25).

The body force term f = 0, and the source/sink term at source location
(x0, y0) = (0.25, 0.25) is Qs = 2βδ (x− x0) δ (y − y0) sin(βt), where δ(·) denotes
the Dirac delta function and β = (λ+ 2µ)κ. The physical parameters are given
as: c0 = 0, α = 1.0, E = 105, v = 0.1, κ = 10−6. We will compare our
numerical solution with the reference solution. The final time for the solution is
T = π/(2β). The time step size is set to ∆t = π/(200β), and the spatial scale
is h = 1

100 . Figure 2 illustrates the pressure and displacement distributions for
both the analytical and numerical solutions.
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Analytical x-displacement solution at T
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Analytical y-displacement solution at T
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Numerical x-displacement solution at T
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Numerical y-displacement solution at T
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Fig. 2. Distribution about analytic solution (first row) and the numerical solution
(second row) at time T. The first column entry is the pressure, the second is the
displacement in the x direction, and the third is the displacement in the y direction.

5 Conclusions

This paper presents a paralle time-splitting algorithm for solving the quasi-
static Biot poroelasticity model. The three-field Biot system is reformulated
as a coupled Stokes-parabolic equation. The algorithm decouples the equation
into the Stokes and parabolic subproblems, enabling parallel computation. Semi-
discrete scheme is proven to be unconditionally stable.
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