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Abstract. This note presents a NURBS-based isogeometric analysis
(IgA) combined with an L2-projection characteristic-Galerkin method
to deal with incompressible miscible problems. The advection part is
treated in a semi-Lagrangian framework, where high-order non uniform
rational B-spline (NURBS) functions are used to interpolate the solution.
The resulting semi-discrete equation is solved using an efficient backward
differentiation time-stepping algorithm, where Darcy velocity and pres-
sure are updated within each timestep. The accuracy of the method
is analyzed through a miscible displacement of an incompressible fluid,
where the analytical solution is known, and a real problem with a viscous
fingering in porous media. The numerical results presented in this study
demonstrate the potential of the proposed IgA characteristic-Galerkin
method to allow for large time steps in the computations without deteri-
orating the accuracy of the obtained solution and to accurately maintain
the shape of the solution in the presence of complex patterns in the
solution.

Keywords: Darcy flow · Incompressible miscible displacement · Convection-
Dispersion problems· Characteristic-Galerkin · Isogeometric analysis ·
L2-projection.

1 Introduction

In this note, given a bounded domain Ω ⊂ Rd, d ∈ {1, 2, 3}, with Lipschitz
boundary and a given time interval [0, T ], we propose a novel Isogeometric Mod-
ified Method of Characteristics (IgMMC) for the miscible displacement of an
incompressible fluid by another in a porous medium, described by the following
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2 A. Ouardghi et al.

time-dependent coupled system of partial differential equations

Dc

Dt
−∇ · (D(u))∇c) = g(c), in Ω × [0, T ],

c(x, 0) = c0(x), in Ω,

−K(x)

µ(c)
∇P = u, in Ω × [0, T ],

∇ · u = f, in Ω × [0, T ],

P = PD, on ΓD × [0, T ],

u · n = uN , on ΓN × [0, T ],

(1)

where Dc
Dt = ∂c

∂t+u·∇c denotes the material derivative. Our main interest consists
of solving the problem above for u(x, t), which represents the Darcy velocity,
i.e., the volume of fluid flowing through a unit section per unit time. We are also
interested in finding P (x, t), which represents the Darcy pressure in the fluid
mixture, and c(x, t) the concentration of the fluid which refers to the amount of
species per unit volume of the fluid mixture. The parameter α(c) = K(x)

µ(c) denotes
the quotient of the permeability of the porous rock K(x) divided by the viscosity
of the fluid mixture µ(c), g(c) refers to the source term which can be a nonlinear
function, and the function f is the imposed external total flow rate as sum of
sources and sinks. The dispersion tensor, denoted as D(u(x, t)), encapsulates
the combined effects of molecular diffusion and mechanical dispersion within a
porous medium. Its components are defined as follows:

D11 = dm +
αLu

2 + αT v
2

√
u2 + v2

, D12 = D21 = (αL − αT )
uv√

u2 + v2
,

D22 = dm +
αLv

2 + αTu
2

√
u2 + v2

. (2)

In this context, u(x, t) = (u, v) represents the local Darcy velocity vector, dm
is the molecular diffusion coefficient, and αL and αT are the longitudinal and
transverse dispersivity coefficients, respectively. This formulation reflects the
anisotropic nature of dispersion in porous media, where solute spreading is influ-
enced by both the direction and magnitude of the flow field. This mathematical
model is subject to many tangible applications such as oil recovery, environmen-
tal pollution [8], groundwater contamination, petroleum engineering, acoustics
and biomechanics. Miscible flows are generally a combination of Darcy’s law
with the mass transport of the solvent by the advection phenomena and hy-
drodynamic dispersion phenomena. In the field of oil industry for example, the
main challenge consists of existence of fingering instability due to the viscosity
and the density difference between the oil and the solvent [6]. This is essentially
attributed to the dominance of the advection where Peclect number takes large
values. It is well known that the standard Galerkin formulation where Eulerian
schemes are adopted produces unstable discretizations, unless the time interval
is very refined (CFL stability condition).
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In this paper, the convection part is integrated using the IgMMC where the
concentration at the next level is updated based on the NURBS functions in the
L2-projection framework. The dispersion operator is then discretized using IgA
and the resulting semi-discrete problem is integrated using a second-order BDF2
scheme. The performance of the proposed IgMMC is demonstrated first for a
miscible displacement of an incompressible fluid, described by a time-dependent
coupled system of convection-dispersion equations with analytical solution. The
study is extended then to a real test case consisting of a viscous fingering in
porous media with irregular pores. The numerical results presented in this study
demonstrate the potential of the IgMMC to allow for large time steps in the
computations without deteriorating the accuracy of the obtained solutions which
makes it an attractive choice over the conventional Eulerian-based methods.

2 Formulation of the method

2.1 Calculation of the departure points

The first step is to compute the departure points. To this end, we are given two
knot vectors Ξ1 = (ξ1, ξ2, . . . , ξmb+p+1) and Ξ2 = (η1, η2, . . . , ηlb+q+1), which
consist of an ordered set of non-decreasing parameter values, where mb and lb
denote the number of basis functions of degree p and q in Ξ1 and Ξ2 directions
respectively, and ξi, ηi represent the knots which partition the parametric domain
into Ω̃ = ∪Ne

k=1P̃k. They are then mapped into a set of physical elements Pk as
Ω = ∪Ne

k=1Pk, with Ne denotes the total number of elements. It should be stressed
that in IgA-based techniques, the space of basis functions is inherited from the
space used to parametrize the geometry. Therefore, the elements are represented
in the physical domain Ω by mapping the mesh to the physical space via the
following NURBS geometrical map

S :Ω̃ −→ Ω, (ξ̃, η̃) 7−→ S(ξ, η) =

nDoF∑
m=1

Rp,q
m (ξ, η)Bm, (3)

where Ω̃ refers to the parametric space, see Figure 1 for an illustration. Rp,q
m de-

notes the compact form of the basis function given by Rp,q
m (ξ, η) = Rp

i (ξ)R
q
j(η),

where Rp
i (ξ), R

q
j(η) denote the NURBS basis functions [4], and nDoF = mb× lb

is the total number of control points of the vector B. In addition, we discretize
the time interval into sub-intervals [tn, tn+1] with length ∆t. It should be stressed
that the main drawback of NURBS functions consists of the fact that they are
not interpolatory. In this study, an L2-projection approach is used as remedy to
this problem [1]. Therefore, the parent space is provided with a certain number
of quadrature points which are then mapped to each element P̃k in the paramet-
ric domain Ω̃. We denote them ξ̃k,g = (ξ̃k,g, η̃k,g)

⊤ with corresponding weights
ωk,g for g = 1, . . . , Nk,g where Nk,g is the total number of quadrature points
in the element P̃k. The characteristic curves Ỹ(τ, ξ̃k,g) are then calculated for

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_22

https://dx.doi.org/10.1007/978-3-031-97570-7_22
https://dx.doi.org/10.1007/978-3-031-97570-7_22


4 A. Ouardghi et al.

each quadrature point ξ̃k,g in the parametric space by solving the backward
differential equations

dỸ(τ, ξ̃k,g)

dτ
= v(Ỹ(τ, ξ̃k,g)), ∀ τ ∈ [tn, tn+1], Ỹ(tn+1, ξ̃k,g) = ξ̃k,g, (4)

where Ỹ(τ, ξ̃k,g) denotes the departure point defined at time τ of a particle that
will reach ξ̃k,g = (ξ̃k,g, η̃k,g)

⊤ at time tn+1. Note that the accuracy of a semi-
Lagrangian scheme is related to the accuracy of the scheme used to calculate the
departure points. In this work, the well-established fourth-order Runge-Kutta
scheme is used and the result is mapped to Yn(xk,g).

(ξ̃k,g)

P̃k

ξ

η

Parent space Ω̄

Physical space Ω

ξ

η

Ω

(ξg)

Ỹn(ξ̃k,g)

P̃∗
k

Parametric space Ω̃
x

y

ϕPk

Yn(xk,g)

Pk

S

1

Fig. 1. A schematic diagram illustrating the main quantities needed for the compu-
tation of the departure points. In a first step, each quadrature point ξ̄g = (ξ̄g, η̄g)
is mapped from the parent space to the parametric space according to the mapping
ϕPk . This results in the point ξ̃k,g = (ξ̃k,g, η̃k,g). The corresponding departure point
Ỹn(ξk,g) is then calculated at the host element, see the dark element P̃∗

k , before being
mapped to the physical element Pk. This results in the departure point Yn(xk,g).

2.2 Isogeometric L2-projection BDF2

The discrete spaces in the physical domain, for the concentration, the pressure
and the velocity, are defined as

Wh :=

{
wh : wh ◦ S ∈ N p,q(Ξch

1 , Ξch
2 ), wh|∂Ω = 0

}
,

Ph :=

{
qh : qh ◦ S ∈ N p−1,q−1(Ξqh

1 , Ξqh
2 )

}
,

Vh :=

{
vh : vh ◦ S ∈ (N p,q(Ξvh

1 , Ξvh
2 ))

2

}
,
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where N p,q ≡ N p,q(Ξ1, Ξ2,, p, q) := span
{
Rp,q

m

}nDoF

m=1
, denotes the two dimen-

sional space of NURBS functions of degrees (p, q) and determined by the tensor
product of two knot vectors (Ξ1, Ξ2). Here, each set (Ξvh

1 , Ξvh
2 ) has the same

knots as the set (Ξqh
1 , Ξqh

2 ) with a multiplicity increased by one in order to
satisfy the same continuity property for both the pressure and the velocity [2].
Recall that at a knot of multiplicity m, a NURBS function of degree p is Cp−m

continuous [4]. We are additionally given the set V0
h ⊂ Vh which reads the space

of discrete functions that vanish on the boundary of Ω. Therefore, the discrete
variational form associated to (1) reads: Find an isogeometric Galerkin solution
(ch,uh, Ph) to the exact solution (c,u, P ) such that(

µ(ch)

K(x)
uh,vh

)
= (Ph,∇ · vh) , ∀vh ∈ V0

h,

(∇ · uh, qh) = (f, qh) , ∀vh ∈ Ph(
Dch
Dt

,wh

)
− (D(uh)∇ch,∇wh) = (g(ch), wh) , ∀vh ∈ Wh.

(5)

Applying the second-order BDF2 scheme, we can rewrite equations (5) in a more
compact form as

[A]
{
Cn+1

}
=

{
dRhSn

}
, (6)(

Ac B
BT 0

)(
Un+1

Pn+1

)
=

(
PRhSn

uRhSn

)
, (7)

where [A] =
(

3
2∆t [M] + [S] +Gn+1

)
is nDoF×nDoF-valued matrix and

{
dRhS

}
=(

2
∆t

{
H̃n

}
− 1

2∆t

{
Ĥn−1

})
is nDoF-valued vector, where H̃n and Ĥn−1 are the

L2-projection approximation of integrals with the following entries

Hn
m :=

∫
Ω
cn(Yn

n+1(x))Rp,q
m (x) dΩ, Hn−1

m :=
∫
Ω
cn−1(Yn−1

n+1 (x))Rp,q
m (x) dΩ.

(8)
Using Gauss–Legendre quadrature rule, the first integral in (8) is approximated
as follows

∫
Ω

c
n (

Yn
n+1(x)

)
Rp,q

m (x) dΩ =

Ne∑
k=1

∫
Ω̄

c
n (

Yn
n+1

(
G

p,q
P (ξ̄, η̄)

))
Rp,q

m

(
G

p,q
P (ξ̄, η̄)

) ∣∣J(ξ̄, η̄)∣∣ dΩ̄

≈
Ne∑
k=1

Nk,g∑
g=1

wk,gc
n (

Yn
n+1

(
G

p,q
P (ξ̄g, η̄g)

))
Rp,q

m

(
G

p,q
P (ξ̄g, η̄g)

) ∣∣J(ξ̄g, η̄g)
∣∣

=

Ne∑
k=1

Nk,g∑
g=1

wk,g c̃
n
k,gR

p,q
m

(
G

p,q
P (ξ̄g, η̄g)

) ∣∣J(ξ̄g, η̄g)
∣∣ = H̃

n
m,

(9)

where, c̃nk,g = cn(Yn
n+1(xk,g)) is the solution at the departure point Yn

n+1(xk,g)
for which the values are calculated as

c̃nk,g := cn
(
Yn
n+1(xk,g)

)
≈

Np∑
a=1

cnaRa
p,q

(
Yn
n+1(xk,g)

)
, (10)
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where cna , a = 1, . . . , Np, denote the known solutions at the control points of
element Pk, which corresponds to the mapping of the host element P̃∗

k at time
tn to which the departure point Yn

n+1(xk,g) belongs, and Np is the total number
of control points within the host element Pk which is directly related to the
used NURBS’s degree, see Figure 1 for an illustration. Further note that wk,g

denote the quadrature weights of the Gauss–Legendre quadrature rule used in
our study to evaluate the integrals, and

∣∣Jk(ξ̄g, η̄g)∣∣ is the determinant of Jaco-
bian of the map G from the parent space to the element Pk in physical space.
The mapping GPk

: Ω −→ Pk is given by the composition S ◦ ϕP , where the
function ϕP maps the parent space [−1, 1] × [−1, 1] to the parametric element
P̃ = [ξ̃i, ξ̃i+1]×[η̃j , η̃j+1]. The integral Hn−1

m is approximated in the same manner
as equation (9) where the solution in (10) is evaluated two time steps back along
the characteristics using Yn−1

n+1 (xk,g). The quantities Ac and B are nDoF×nDoF
and nDoF× Pndof matrices whose elements entries are respectively given by

An
ml =

∫
Ω

α(c)−1 (Rp,q
l (x) ·Rp,q

m (x)) dΩ, Bml =

∫
Ω

(∇ ·Rp,q
l (x))Rp−1,q−1

m (x) dΩ.

The quantity Rp−1,q−1
l refers to the NURBS basis functions corresponding to

the pressure P with the total number of degrees of freedom Pndof and Rp,q
l :=

(Rp,q
l ,Rp,q

l ) are the NURBS basis functions corresponding to the velocity u
with the total number of degrees of freedom nDoF. The right-hand side vectors
{PRhSn+1} and {uRhSn+1} are with entries

{PRhSn+1}l = −
∫
ΓD Pn+1

D (x) (Rp,q
l (x) · n(x)) dΓ l = 1, 2. . . . ,nDoF,

{uRhSn+1}m = −
∫
Ω
fn+1(x)Rp−1,q−1

m (x) dΩ m = 1, 2. . . . ,Pndof.
(11)

The computation of integrals (11) are approximated using Gauss-Legendre quadra-
ture rule. Moreover, the matrix Ac consists of the main coupling between the
transport-dispersion equation and Darcy equations. A splitting approach is used
where the transport-dispersion equation is solved at a first stage and the ob-
tained concentration is inserted in (7) to update the Darcy velocity and pres-
sure. It should be noted that this matrix depends on the concentration and hence
should be updated at each timestep.

3 Numerical experiments

In this section, we present numerical simulations to assess the performance of our
method. We begin with a convection-diffusion problem characterized by a mov-
ing front, serving as a benchmark for accuracy and stability. Next, we consider
a coupled convection-dispersion system with Darcy flow, where an analytical
solution allows for direct validation. Finally, we apply our approach to a more
complex scenario, subject to a fingering simulation within an arbitrarily shaped
pore structure demonstrating the method’s capability in realistic porous media.

3.1 Moving fronts problem

In this example we consider the problem of moving fronts in a squared domain
Ω = [0, 1] × [0, 1] governed by the convection-diffusion equations given in (1)
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with a time-dependant velocity field u = (u, v)
⊤ defined by

u(t, x, y) =
−0.1e−α1(t,x) + 0.5e−α2(t,x) + e−α3(t,x)

e−α1(t,x) + e−α2(t,x) + e−α3(t,x)
,

v(t, x, y) =
−0.1e−α1(t,y) + 0.5e−α2(t,y) + e−α3(t,y)

e−α1(t,y) + e−α2(t,y) + e−α3(t,y)
,

where

α1(t, z) =
0.05

ν
(z − 0.5 + 4.95t), α2(t, z) =

0.25

ν
(z − 0.5 + 0.75t), α3(t, z) =

0.50

ν
(z − 0.375),

with z = x or y. It is also easy to verify that the analytical solution of this
problem is given by

c(t, x, y) = u(t, x, y)v(t, x, y).

This problem has been previously solved in [7] using a moving finite element
method and in [5] using a family of finite element alternating-direction meth-
ods combined with a modified method of characteristics. Initially, two separate
fronts travel along the main diagonal of the computational domain at different
speeds and eventually coalesce into one front for longer time. In all simulations
for this benchmark, a uniform mesh consisting of 32×32 grids of squared patches
with patch side length h = 1/32 is considered. Refinements are performed by
the k-refinement method, and the numerical solutions are computed using dif-
ferent NURBS degrees ranging from p = 1 to p = 5. To examine the convergence
behavior of the IgMMC method for this problem, we set the CFL number to
CFL = 5 and we display in Figure 2 the convergence plots of L1-error against
the number of degrees of freedom using p = 1, 2, 3, 4 and 5 for three different
values of the diffusion coefficient ν = 4 × 10−3, ν = 10−3 and ν = 5 × 10−4 at
time t = 0.2. The clear indication from Figure 2 is that the slopes of the conver-
gence plots are consistent with the expected convergence rates of the considered
NURBS degrees for this test example. For instance, using 5× 10−4 the slopes of
the convergence plots for linear, quadratic, cubic, quartic and quintic NURBS
functions are 1.17, 2.31, 3.07, 4.17 and 5.10, respectively. Similar convergence
features have been observed for results not reported here for brevity obtained
on the mesh with 64×64 patches and at time t = 0.4.
In Figure 3 we display 20 equi-distributed contourlines of the solution at time

t = 0.2 using ν = 4× 10−3, ν = 10−3 and ν = 5× 10−4. Those corresponding to
t = 0.4 are displayed in Figure 4. For comparison reason, the exact solution is
also presented along side with these numerical results. The clear indication from
Figure 3 is that the results obtained using linear, quadratic and cubic degrees
are all acceptable for large values of ν = 4× 10−3 and only small distortions are
observed in the results obtained using linear and quadratic solutions (observe
these results in Figure 3). At the moderate diffusion coefficient ν = 10−3, it can
be noticed from Figure 3 that linear solution exhibits some oscillations near the
proximity of large gradients. These oscillations are corrected by elevating the
degree to p = 2, thus the quadratic and cubic solutions are in good agreement
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Fig. 2. Convergence plots in the L1-error for the problem of moving fronts on a mesh
with 32×32 patches at time t = 0.2 with ν = 4 × 10−3 (left), ν = 10−3 (middle) and
ν = 5× 10−4 (right) using different NURBS degrees.

Fig. 3. Contourlines of solutions obtained for the problem of moving fronts on a mesh
with 32×32 patches at time t = 0.2 with ν = 4 × 10−3 (first row), ν = 10−3 (second
row) and ν = 5× 10−4 (third row) using different meshes and NURBS degrees. Here,
p = 1 (first column), p = 2 (second column), p = 3 (third column) and exact solution
(fourth column).

with the exact solution. At the small diffusion coefficient ν = 5 × 10−4 corre-
sponding to a convection-dominated problem, less accuracy is observed in the
zones where the computed fronts merge. Consequently, the accuracy of the nu-
merical results is reduced for such values of the diffusion coefficient using p = 1
and p = 2. However, using p = 3 results in precise and accurate results for this
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Fig. 4. Same as in Figure 3 but at time t = 0.4.

test example. Thus, the cubic NURBS degrees are largely enough to capture
the sharp gradients in the solutions and produce satisfactory results. The same
features can be concluded from the results displayed in Figure 4 which corre-
spond to time t = 0.4. To further highlight effects of the k-refinement on the
numerical solutions for this example, we present in Figure 5 the corresponding
one-dimensional cross-sections at the main diagonal y = x. Again for the smooth
case which corresponds to ν = 4 × 10−3, the selected NURBS degrees produce
acceptable results and very small distortion is manifested at the proximity of
large gradients. This distortion becomes larger when advancing in time (com-
pare the results in Figure 5). However, using ν = 10−3, the numerical dissipation
becomes visible in the linear and quadratic solutions and the shock location is
shifted compared to the exact solution. This feature is also observed when us-
ing ν = 5× 10−4 and oscillations are clearly observed in the quadratic solution
at both times t = 0.2 and t = 0.4. Furthermore, the cubic solution produces
very satisfactory results and converges to the exact solution even when highly
convective situations are considered. It is to be noted that, the IgMMC method
is typically designed to solve this class of convection-dominated problems using
times steps ten to twenty times larger than its Eulerian counterparts.
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Fig. 5. Cross-sections at the main diagonal x = y of solutions obtained for the problem
of moving fronts on a mesh with 32×32 patches at time t = 0.2 (first row) and t = 0.4
(second row) with ν = 4 × 10−3 (first row), ν = 10−3 (second row) and ν = 5 × 10−4

(third row) using different meshes and NURBS degrees.

3.2 Coupled convection-dispersion with Darcy flow

Our prominence in the first example is addressed to test the accuracy of the
IgMMC for a miscible flow given by problem (1) over the the domain Ω =
[0, 1]× [0, 1]. The analytical solution given by

c(x, y, t) = t2[x2(x− 1)2 + y2(y − 1)2],

u(x, y, t) = 2t2
(
x(x− 1)(2x− 1)
y(y − 1)(2y − 1)

)
,

P (x, y, t) = −1

2
c2 − 2c+

17

6300
t4 +

2

15
t2.

The parameters are chosen such that T = 0.6 α(c) = (c + 2)−1. The source
terms f and g are chosen accordingly such as the analytical solutions above are
satisfied. The dispersion tensor here is isotropic with dm = 0.02, αL = αT = 1.
Therefore D(u) = (0.02 + |u|) I2, where I2 is the 2× 2 identity matrix. The do-
main is partitioned into quadrilaterals constructed by the cross-product of two
one-dimensional NURBS functions with element side length h. The refinements
are performed using the k-refinement technique to satisfy high inter-element con-
tinuity. In Figure 6, we report the convergence plots of the relative L2-errors of
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the concentration c, the Darcy velocity u-component and the Darcy pressure P ,
at time t = 0.6. Here, the errors are plotted against the meshsize h. Consistently
with previous observations in [9, 3], the present IgMMC provides a high-order
accuracy of the miscible displacement demonstrated by O(p) for the concentra-
tion and the pressure, and by O(p− β) for the velocity, where β is ranging from
0.02 and 0.37. It is interesting to observe that an accuracy of about 10−4 is ob-
tained using h = 0.03 for a NURBS degree p = 4, however, the NURBS degree
p = 3 does not exceed an accuracy of about 2.10−4 using h = 0.015. This means
that the NURBS mesh used for p = 3 must be refined at least twice in order to
achieve the same accuracy obtained for p = 4. However, h-refinement may not be
the optimal choice as it can lead to dissipation errors in the solution. The reason
is that the traditional h-refinement decreases the inter-element continuity as the
number of continuous derivatives decreases by m if a knot is repeated m times,
see [4] for instance. The highly efficient k-refinement strategy by its turn, pro-
vides smoother functions than the usual Lagrange basis functions, which leads
to accurate solutions. It should also be noted that the accuracy of the method is
on the same wavelength eventhough a slightly large CFL number is used (CFL =
4.4). Indeed, in contrast to explicit Eulerian advection schemes, the maximum
timestep allowed in semi-Lagrangian schemes is not limited to the maximum
fluid speed. consequently, it is possible to stably integrate with Courant number
that far exceed unity without damaging the accuracy of the solution.

Fig. 6. Convergence plots in the relative L2-error for Example 3.2 at time t = 0.6, for
CFL = 4.4 and using different NURBS degrees.

3.3 Arbitrary shaped pore-scale structure

Having addressed the accuracy of the IgMMC using an academic test with an
analytical solution, we consider a more complex structure to demonstrate the
capacity of the method. This test case focuses on simulating the miscible flow
problem (1) to investigate solute transport through a realistic and more complex
pore-scale structure. The setup shown in the left side of Figure 7 is inspired by
the one used in [10].
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Fig. 7. Permeability heterogeneity (first row left), permeability (first row right), the
pressure (second row left) and the velocity (second row right) at time t = 0.6.

The setup allows for in-depth investigation of critical transport phenomena
such as the formation of fingering patterns due to viscosity variations, solute
mixing induced by flow heterogeneity, and solute dispersion across the domain.
In a first simulation, the parameters in the dispersion tensor are fixed in αL =
8× 10−3 and αT = 8× 10−4 and we present the snapshots at different times as
shown in Figure 8. The clear indication from this figure is that the simulation
demonstrates a high-resolution capture of fluid particle movement through com-
plex pore geometries, where the coupling between transport-dispersion and the
Darcy flow equations is handled robustly effectively and the interplay between
advection, dispersion, and porous media resistance is well resolved.
Our next objective is to observe the effect of viscosity. To this end, we consider
two cases with low and high viscosity values where initially, the flow is dom-
inated by transversal viscosity, leading to limited cross-channel mixing. Later,
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Fig. 8. Snapshot of the miscible displacement process at times t = 0.15, t = 0.30 (first
row), and at times t = 0.45, and t = 0.60 (second row).

the longitudinal viscosity becomes dominant, redirecting the flow and enhanc-
ing longitudinal dispersion. By comparing the low and high viscosity cases, the
simulations clearly reveal the impact of viscosity on flow channelization. In the
higher viscosity scenario, the flow becomes smoother and more damped, reduc-
ing the sharpness of mixing fronts and delaying breakthrough (observe the right
column of Figure 9). On the other hand, by comparing the two rows of the same
figure, it it clear that increased transverse viscosity components lead to broader
dispersion across flow streamlines, enhancing transverse mixing, whereas high
longitudinal viscosity suppresses sharp advective fronts, promoting more diffu-
sive transport. It is worth to say that despite the complexity introduced by the
full viscosity tensor, the presented IgMMC remains stable and accurate, effec-
tively capturing the coupled transport-flow interaction and resolving anisotropic
diffusion mechanisms across the pore domain.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_22

https://dx.doi.org/10.1007/978-3-031-97570-7_22
https://dx.doi.org/10.1007/978-3-031-97570-7_22


14 A. Ouardghi et al.

αL = 5× 10−4, αT = 5× 10−5 αL = 5× 10−3, αT = 5× 10−4

αL = 5× 10−5, αT = 5× 10−4 αL = 5× 10−4, αT = 5× 10−3

Fig. 9. Effects of viscosity on the miscible displacement process in the porous medium.

Conclusions

In this letter we have presented a IgMMC for solving a class of incompressible
miscible displacements, which consist of coupled convection-dispersion equations
and Darcy flow. These problems generate a variety of challenging and pose severe
constraints to the creation of the computational grids, since their geometry may
give rise to distorted and badly shaped grid elements. This challenge is dealt
with the virtue of IgA as it is recognized as one of the best approach to exactly
represent a geometrical object. Another main challenge within these problems
is the convection-dominance, especially if the dispersion-tensor depends on the
velocity flow. The grid orientation effects are minimized using the charachteristic-
Galerkin scheme, where the NURBS functions together with an L2-projection
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approach are used to update the solution during the advection stage. The dis-
persion term is discretized using IgA, and the resulting semi-discrete problem is
solved using a BDF2 scheme. The possibility to use relatively large time steps
while keeping the stability all over the method, in response to capturing the
multi-scale behaviors, was the main reason behind the BDF2 technique in this
paper. By the virtue of the combined techniques, our objective was to minimize
the complexity resulting from the multiphysical nature of the whole system.
The computed results support our expectations for a stable and highly accurate
method for incompressible miscible displacement in porous media.
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