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Abstract. The problem of data classification realized by the convolu-
tional networks, although successfully implemented using classical meth-
ods, is also important in the area of quantum networks and is subject to
continuous development and research. In this work, we present an exam-
ple of classification for a set of higher dimensionality than the currently
used solutions based on the MNIST or FASHION databases. Addition-
ally, we show that working on raw data not transformed by, for example,
PCA reduction or other advanced classical pre-processing techniques,
very high classification quality can be achieved also without using any
hybrid techniques. In the discussed solution, classification is performed
by checking whether the obtained final state, or more precisely the prob-
ability distribution of the basis states superposition, is consistent with
the appropriate state representing the given label. This comparison can
be carried out using basic techniques such as Kullback–Leibler diver-
gence or SWAP-Test, especially if we want the classification process to
be realized solely in the quantum computation model without using any
post-processing with classical techniques.

Keywords: quantum machine learning · variational quantum algorithm
· quantum convolutional neural network · numerical experiment

1 Introduction

It can be observed that in a past few years, the great development took place
in the fields of Artificial Intelligence (AI) and quantum computing. Today, AI is
extremely popular and wanted. There are great hopes and expectations regard-
ing AI’s possibilities and universality, which probably will become more realistic
over time. Anyway, there are some use cases in which AI’s methods are very effi-
cient, e.g. pattern recognition, natural language processing. On the other hand,
we can observe a development of quantum computers which can realize some
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computations much faster than their classical counterparts. It is very tempting
to join two mentioned solutions and propose quantum AI.

The history of artificial neural networks begins in 1943 with a neuron’s model
constructed by McCulloch and Pitts [12]. With time, solutions based on men-
tioned model are becoming more complex – there are more neurons and links
between them, including feedback, and groups of specialized neurons. Nowadays,
one of the most popular type of artificial networks are the Convolutional Neu-
ral Networks (CNNs) [7]. It is a method from a group termed as deep learning
because of many layers of neurons. CNNs are useful in image processing and
computer vision. In this work, we show the efficiency of Quantum CNNs (QC-
NNs) [3], [8] in recognition of letters, more precisely, signs of Polish alphabet
which originates from the Latin alphabet with some modifications, e.g. ą, ę, ó, ś,
ż. In general, QCNNs are an innovative approach to data processing, combining
the capabilities of quantum computers with advanced techniques used in classi-
cal neural networks [2]. Such computational architectures offer the potential to
significantly improve analytical processes in areas such as visual data analysis,
optimization, or modelling physical phenomena.

It should also be noted that the development of quantum convolutional net-
works [3], [11] and the upcoming availability of Noisy Intermediate-Scale Quan-
tum (NISQ) is important in the context of realization of physical quantum ma-
chines. In the article, we also pay attention to the fact that the designed QCNN
has an architecture based on gates operating on neighbouring qubits [9]. The
obtained simulation results (for more classes than currently discussed in the lit-
erature [8], [17]) allow for effective classification of data based on such a network.
As it seems, it is also worth emphasizing that the proposed solution allows us to
point out the following contributions: the method proposed in the paper does not
involve pre-processing of data, e.g. by PCA [6] to limit the data dimensionality.
Particular observations are encoded directly using the amplitude technique by
the use of superposition principle which requires only the logarithmic amount
of the quantum information units when we encode classical data, and still al-
lows obtaining high classification accuracy. Additionally, post-processing of data
does not require the use of a hybrid approach, where, for example, an additional
classical network is used to analyze the obtained quantum state. The solution
presented here is the last step of the classification process because the probabil-
ity distribution comparison procedure can be implemented using the SWAP-Test
which can be also realized as a quantum circuit. We also use the whole register
to encode output label of the single input image as a suitable probability distri-
bution, instead of the using a single qubit to encode the final label of the input
image. The architecture of quantum convolution network can be based on the
typical quantum gates, like, NOT gate and controlled RX , RY , RZ gates which
can be placed as adjacent gates.

Organization of the presented chapter is as follows: in Sec. 1.1, we present
notations, symbols, abbreviations, and definitions which are used in the chapter.
In Sec. 2, we outline the structure and some technical aspects of data set which is
used in presented research. We also discuss a problem of encoding classical data
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of individual images as quantum data. Sec. 3 presents quantum convolutional
neural network expressed in terms of quantum circuits. Sec. 4 is devoted to an
analysis of performed numerical experiment and a discussion about achieved
accuracy. Conclusions are contained in Sec. 5. Acknowledgments and References
are the last parts of the chapter.

1.1 Notations, symbols, and abbreviations

Before we start a presentation of our solution’s proposal for classification of hand-
written letters and digits and an introduction of necessary definitions for QCNNs,
we summarize in Table 1 notations, symbols, abbreviations and acronyms used
in the chapter.

Table 1. Some symbols, notations, sets and functions used in the paper

Notation Description

NQ, NI , NL, NQL

number of qubits, total number of images, number of labels
(all integers), and NQL represents the number of qubits used
to encode labels

X, Xj
set of classical data (letters and digits) and single image of
j-th char

Y , Ŷ , Yj , Ŷj
true labels set, the predicted labels set and the j-th label for
true and predicted sets

L, Lj set of labels and the j-th label of a particular sign

QCk(θ
k), QP (θl)

respectively, k-th quantum convolutional layer and polling
layer with individual parameters

F Fidelity value between two quantum states
R

(i)
z rotation gate Z applied to the i-th qubit

CR
(i,j)
x

controlled rotation gate X applied to the (i+1)-th qubit (where
the i-th qubit is a controlling one)

R, C, N sets of real, complex, and integer numbers,
∂E(Cd) set of pure states on Cd i.e. complex space for d qubits
1 . . . n means the sequence of 1, 2, 3, . . . , n

2 PolLettDS – Polish handwritten data set

The MNIST database [10] is an example of handwritten digits which is broadly
utilized in evaluating efficiency of many different techniques termed as Machine
Learning (ML). This database is very popular, mainly, by its size which is 60,000
digits in the training set and 10,000 digits in the test set. This fact makes it a very
useful tool for assessing the effectiveness of newly developed methods. However,
the MNIST database does not contain any letters and its resolution is low, i.e.
24× 24 pixels.
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In this work, we present a freshly gained set of handwritten letters PolLettDS
[16] which also includes signs characteristic for the Polish language. Mentioned
set is going to be regularly expanded with new data. At the time of writing
this article, we have 4160 images of digits, lowercase, and uppercase letters. In
relation to the MNIST database, the images are bigger because there are 64×64
pixels in the grayscale.

Table 2 shows the basic information about the data set used in the process of
classification. It should be emphasized that each sign is associated with a label
which clearly defines the sign’s meaning. Each set of handwritten signs contains
80 probes (ten digits, lowercase, and capital letters). Polish alphabet is made of
32 letters but we have also added letters: q, v, x, therefore, in total, we consider
35 letters.

Summarizing, our data set contains 4160 images and 80 labels including ten
digits, lowercase, and uppercase letters. The number qubits NQ needed to encode
data results from the image of each sign. The total number of images NI , the
number of labels NL, and the number of qubits NQ utilized to encode labels are:

NI = 4160, NL = 80, NQ = log2 64 · 64 = 12. (1)

Further comments on the method of representing the image Xj as a state of
quantum register is given in Sec. 2.1.

Definition 1. The whole set PolLettDS is marked as X and a single j-th image
as Xj. Analogously, the set of all labels is Y and each j-th image has a label
Yj ∈ L. The set of labels predicted by the classifier are denoted as Ŷ and its
elements as Ŷj.

Number Resolution Type of Pixel
Number of sets: 52 –

Digits in each set: 10
64× 64 pixels encoded in grayscaleLowercase letters in each set: 35

Uppercase letters in each set: 35
Number of labels in each set: NL = 80 – –

Total: (10 + 35 + 35) · 52 = 4160 chars and digits (NI = 4160)

Table 2. The classification process, described in this work, is performed on 52 sets of
signs (each set contains digits, lower- and uppercase letters)

The half of set’s signs was entered with the use of a digital drawing tablet
and a graphic program in which each sign was entered into a grid cell. This
allowed for an easy process of acquisition and further images processing. The
latter half of signs was handwritten on an A4 sheet of paper and scanned in 300
DPI resolution. Next, the images were scaled to the resolution 64 × 64 pixels
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and converted to the grayscale. In Fig. 1, we can see exemplary images of signs
and also both grids used to enter characters – the digital one and the prepared
paper sheet.

Fig. 1. At the left, we can see exemplary images from the PolLettDS (the first row
contains lowercase letters, the second – uppercase letters, and the last row shows digits).
The black grids represent the digital grids and, on the right, the paper form is presented

2.1 Quantum representation of data set

A representation of classical data – in this case, grayscale images with resolution
64×64 pixels – is, naturally, possible to express as a state of a quantum register.
We utilize here the superposition phenomenon which is present in a quantum
computations model. For each image Xj the corresponding quantum state |ψj〉 ∈
C2NQ (more formally we encode image Xj as pure state |ψj〉 ∈ ∂E(CNQ) in the
set of all states belong to the space CNQ represents NQ qubits system) may be
denoted with the use of amplitude coding approach [18]:

Xj 7−→ |ψj〉 =
2N−1∑
i=0

αi|i〉, (2)

where the brightness level of particular pixel from single image Xj is described
by probability amplitude αi related to a basis state |i〉 which represents pixel
coordinates. This way of data encoding requires a transformation of pixels values
from the two-dimensional image Xj to a column vector and the normalization
of amplitudes.

Remark 1. It should be emphasized that this procedure do not allow to encode
a completely black image with N qubits. If all pixels are black, so the level of
brightness would be zero for each probability amplitude and the quantum state
would not be normalized. We assume that in such cases one more qubit is needed
and an empty image will be expressed as a basis state with the extra qubit equal
|1〉 and other qubits set up to |0〉.
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Because of the applied method of coding images as quantum states and the
Remark 1, the number og needed qubits for an image sized w × h is: NQ =
log2(w · h) + 1, where w stands for the image’s width and h is the height in
pixels. For the sake of simplicity, we may assume that the product w · h equals
2NQ−1. This shows that one image from the PolLettDS requires only logarithmic
number of qubits to be encoded as probability amplitudes of a quantum state.

The labels from the Y set are consistent to examples shown in Fig. 1, i.e. digits
codes are the same as labels, e.g. the label of digit 5 is 5. However, letters also
have assigned numerical values, e.g. "j" is 22, capital letter "A" is 50. Therefore,
all labels are integers Yj ∈ N. Naturally, one can directly assign a numerical value
to a label in a quantum register |ψYj

〉: |ψYj
〉 = |0110010〉, where binary number

00110010 is decimal 50, i.e. capital letter "A". The following bits describe the
states of seven qubits encoding the label. We expect that the classifier recreates
the final quantum state for each image according to this rule. Such solution
would be susceptible to a noise and bit-flip errors [15], which may be reduced
with quantum correction codes but it would increase the number of needed
qubits. However, another approach can be applied. The label may be encoded
by the use of quantum superposition of all register’s qubits:

|ψLk
〉 = 1√

Nspc

Nspc∑
i=0

αi+spc|i+ spc〉, (3)

where Nspc =
⌊
2NQ/spc

⌋
and spc is a range (offset) between amplitudes, e.g.

if spc = 128 then for "A" encoded in state |ψLk
〉 the following probability am-

plitudes with indexes 50, 178, 306, . . . , 4018 will be active. Now, a change of
probability amplitudes values by, for example, amplitude-damping channel [5],
may still result with a correctly indicated label. On the other hand, the bit-flip
errors may influence the register’s state but the offset allows skipping qubits
particularly susceptible to errors of this type in case of hardware implementa-
tion. Label classification also requires comparing two probability distributions,
i.e. the ideal one encoding a given label with the obtained state after the im-
plementation of the quantum classification circuit, what we discuss in the next
section and in Sec. 4.

Another important assumption is the orthogonality of states encoding labels:

∀k,l∈L 〈ψLk
|ψLl
〉 = 0, (4)

what causes that the quantum states of the labels are uniquely related to the
images Xj . However, in case of lack of clarity, the Fidelity measure computed
for two states or the SWAP-test [1] allows checking the degree of similarity of
the obtained distribution with the label distributions |ψYj

〉.

3 Quantum convolutional circuit for classification

A Quantum Convolutional Neural Network (QCNN), depicted in Fig. 2, applied
to the classification of the data set is a direct counterpart of the classical CNN.
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Fig. 2. The general scheme of utilized QCNN (CL – convolutional layer, PL – polling
layer). For the image Xj (in the picture Polish letter "ś"), we expect that the network
will transform the image into a given probability distribution representing the label
associated with the given image. In this case, classification is based on comparing the
obtained distribution with the target distribution corresponding to a specific letter or
number

For example, a set of quantum gates parameters θ is equivalent to the set of
weights and biases in CNN. Particular quantum gates, mainly rotation gates,
act like a non-linear activation functions. The input state and its processing by
layers of quantum gates relates to the feed-forward neural network’s architecture.
However, we should remember the main difference between quantum and clas-
sical circuits – in a quantum system neither any information can be copied nor
qubits may be directly rejected. The quantum computation includes the whole
register because of the high probability of quantum entanglement’s presence be-
tween qubits. Adding qubits during the computation is not possible. Discarding
qubits can be realized by the quantum measurement which irreversibly changes
the register’s state and destroys the entanglement (completely or partially). This
means that some qubits may be omitted but it is a serious operation influencing
the whole register. Even if some qubits are omitted during the processing, they
will physically remain a part of the quantum system. In our case, we expect that
the QCNN, shown in Fig. 2, returns a quantum state which is a superposition of
basis states. This superposition will be the same or similar to previously assumed
state and its probability distribution. The probability distribution obtained from
a series of measurements can be compared at the post-processing level or at the
quantum circuit level using the so-called SWAP-Test [1], in order to compare a
suitably prepared quantum state with the label representing the QCNN output.

The circuit, more detailed, applied to the classification of signs from the
PolLettDS, is characterized by a structure shown in Fig. 3. In case of our data
set (section 2.1), according to the adopted way of information coding, the input
of the circuit is constructed of twelve qubits what allows loading an image Xj

to the register. Then, the register’s state is transformed by convolutional QC
and polling QP layers. In pursuance of Fig. 3, the first pair of QC and QP
layers affects all utilized qubits, but next pairs of layers include smaller numbers
of qubits. The PolLettDS contains eighty different labels and the last QCNN’s
layer includes seven qubits what enables coding 27 probability amplitudes – fully

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_17

https://dx.doi.org/10.1007/978-3-031-97570-7_17
https://dx.doi.org/10.1007/978-3-031-97570-7_17


8 J. Wiśniewska and M. Sawerwain

covering the number of labels. The number 27 is sufficient to train the QCNN
with images Xj and to ensure the final state with the adequate probability
distribution representing the label Yj .

The realization of the QCNN with n layers is based on unitary operators
QCk, QPk in each k-th layer and parameters describing convolutional θk,c and
polling θk,p subcircuits:

QCNN(θ) = QCn(θn1) ·QPn(θn2) · . . . ·QC2(θ22) ·QP 2(θ21) ·QC1(θ12) ·QP 1(θ11).
(5)

In general, we define the convolutional circuit as:

QCn(θn1) =

( NQ∏
i=0

R(i)
y (θkn1

)R(i)
z (θln1

)

)(NQ−1∏
i=0

CR(i,i+1)
x (θmn1

)

)
, (6)

where k, l,m ∈ {1 . . . NQ}. R(i)z(θkn1
) means that a particular gate is applied

to the i-th qubit. CR(i,i+1)
x (θmn1

) is a controlled rotation gate where i is the
controlling qubit and i+ 1 points out the controlled qubit.

The definition of the polling layer is:

QPn(θn2) =

NQ−1∏
i=0

CR(i,i+1)
z (θkn1

)X(i)CR(i,i+1)
z (θln1

), (7)

with the markings as in the convolutional layers.
After the unitary operation QCNN(θ) the whole quantum state has to be

measured and the obtained probability distribution will indicate the new values
of parameters θ. The construction of subcircuits QC and QP is very important
because they introduce the entanglement into the whole register. However, in
next layers the number of qubits is smaller, so the changes are performed only
for the last qubits which should encode the final probability distribution for the
labels. The subcircuits QC and QP are constructed of typical quantum gates,
i.e. Pauli gates, 1-qubit rotation gates, controlled negation gates and controlled
rotation gates. Moreover, we expect that the gate operations will be used for
adjacent qubits what facilitates a hardware implementation of such designed
circuits.

In Fig. 3, except the whole circuit’s structure, we can see the schemes of sub-
circuits QC and QP . The quantum register’s properties, especially superposition
and unitary operator’s utilization, significantly limits the number of parameters
that we control in the case of the designed convolutional network.

For the analyzed data set X, we utilize NQ qubits in the classifying circuit
and the labels are encoded by NQL qubits, the number of QCNNs parameters
is:

Nθ =

NQ−1∑
k=NQ−NQL+2

(
3c · k + 2p · k

)
, (8)

where (NQL + 2) < (NQ − 1) and 3c stands for the number of parameterized
gates in the convolutional layer and 2p, analogously, for the polling layer. For the
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Fig. 3. General scheme (A) of a QCNN with several layers of convolutional (QC) and
polling (QP) sub-circuits. The first operation Ue(Xj) performs the encoding of classical
image Xj to the quantum state. The number of layer depends on the size of the final
output state. In our case, the input state requires 12 qubits, but the number of labels
(80 labels) is covered by the eight qubits, so only five pairs of QC and QP layers are
used. The last layer acts only on seven qubits. Part (B) shows the convolutional circuit
where after the rotation gates Rx and Ry, the controlled gates CRx are placed. In part
(C), the polling section is depicted – therein, the circuit realizes controlled rotation
CRz and X operation for the subsequent qubits

case considered in the article, we have three gates for the convolutional phase
and two gates for the polling phase for each qubit considered in the k-th layer.
That gives a total number of 225 parameters.

The operation of the network as a classifier can be described in a direct way.
For the initial state |ψj〉 representing an image Xj , the QCNN realizes a unitary
operation:

|ψŶj

j 〉 = QCNN(θj)|ψj〉. (9)

We expect that the state |ψŶj

j 〉 with parameters θj represents the predicted

label Ŷj . The state |ψŶj

j 〉 have to be measured to reveal the final probability
distribution of the basis states that construct this state.

Selection of parameters θ is based on the loss function definition which utilizes
the Fidelity measure between the final state |ψŶj

j 〉 and the state which describes
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the correct label of an image Xj . The loss function is:

L(X,Y ) =
1

NI

NI−1∑
j=0

1−F
(
|ψŶj

j 〉, |Yj〉)
)
, (10)

and the aim is to minimize its value by a proper selection of parameters θ:

min
θ

L(X,Y ). (11)

In the numerical experiment, described in Sec. 4, the minimization is based on
the COBYLA method [14].

3.1 Classification process as quantum circuit

Naturally, the QCNN and the probability distribution obtained at its output is
sufficient to realize the classification task. However, the analysis of probability
distribution is carried out at the classical level, e.g. by the Kullback–Leibler
divergence [4]. On the other hand, the classification process by comparing the
probability distribution can also be done by using the SWAP-Test, using the
measurement of one qubit only. A scheme of this type of approach is presented
in Fig. 4.

By measuring one qubit, after applying the SWAP-Test, we can expect the
state |0〉 with probability 1

2 , which means that the compared states presenting
the labels are not similar to each other, whereas the probability of measuring
the state |1〉 close to one determines a very high consistency of states, i.e. the
probability that the label encoded by the state |ψŶj

j 〉 is similar or identical to
the label |Lk〉.

The presented solution does not dismiss us from repeating the computations
but limits the number of measured qubits to practically one, which in the case
of NISQ machines allows reducing errors related to decoherence and noise, im-
proving the accuracy of the results while maintaining computational efficiency.

4 Experiment result and accuracy evaluation

The numerical experiment was performed using the NVIDIA CUDA-Q [13] pack-
age. The work environment included a computer with AMD Ryzen 9 7950X
processor and NVIDIA RTX 6000 ADA graphics card, and also the WSL envi-
ronment for Windows 11. However, it should be emphasized that the training
process within the NVIDIA CUDA-Q environment, despite the use of a mod-
ern graphics card, still takes a relatively long time, e.g. tuning parameters only
for a single letter using the COBYLA optimizer takes from 200 to 250 seconds
performing 2048 optimizer’s steps.

The learning process, despite the above difficulties, was characterized by a
good convergence, as shown in Fig. 5 for the capital Polish letter "Ż". However,
as it may be seen, the COBYLA optimizer for 225 parameters naturally achieved
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Fig. 5. The process of tuning the values of the θ parameters for an exemplary letter "Ż"
of the Polish alphabet. Illustration (A) shows the image of the letter, (B) is the desired
description of the quantum state where individual pins according to the formula Eq. 3
represent the label for the letter "Ż". (C) depicts the value of the cost function during
the parameters tuning process, and (D) is the obtained distribution of probability
amplitudes which, although noisy, is characterized by a high Fidelity value of≈ 0.92793,
relatively to the distribution (B)
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the assumed value of the objective function without any problems, i.e. the Fi-
delity value reached the value of ≈ 0.93, but the learning process in this case is
characterized by a high variability, and even remaining in a local minimum for
a certain number of steps, which can be seen in the aforementioned figure.

It should be emphasized that Fidelity values above 0.9 already suggest very
high classification quality. Due to the long computation time, but nevertheless
without loss of generality, it is possible to perform a classification quality test
using, for example, arbitrarily selected ten characters: 0, 5, 9, A, ą, Ł, o, ś, X, Ż.
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Fig. 6. The matrix confusion for ten signs: 0, 5, 9, A, ą, Ł, o, ś, X, Ż. High accuracy
was achieved, however, characters similar to each other in handwriting, i.e. 0 and the
lowercase letter o, as can be seen, have reduced quality of classification in relation to
other classes

In each case, we have 80 letters of each type in the data set. Therefore, we
can select the parameters of the QCNN network for a specific digit or letter. In
our case, this means preparing ten sets of values for the parameters θ associated
with the selected characters and training the network so that the loss function
for a specific character is as low as possible. Having a set of parameters θLk

for
the selected label, we are able to classify the image Xj , if the Fidelity between

the quantum state |ψŶj

j 〉 and |ψLk
〉 exceeds the value 0.9.

The classification results are collected in Fig. 6. The obtained results confirm
the high efficiency but also bring out typical problems of classification, e.g. zero
and the lowercase letter "o", which in the case of handwriting are sometimes
written in a very similar way. This will also apply to the uppercase "O". Similarly,
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a reduced classification quality can be encountered for the letters: "Z", "Ź", "Ż".
Where in the case of less careful handwriting, these signs can also pose a problem
for correct classification.

The source code, as well as data for the discussed implementation of the
classification task, can be found in [16]. It should be emphasized that the use of
the NVIDIA CUDA Q package allows for easy creation of appropriate circuits for
the discussed task. This package creates so-called computational kernels, whose
task is to implement a quantum circuit. Fig. 7 shows the beginning of the kernel
implementing the QCNN network. Starting the procedure, in order to obtain a
quantum state that can be further processed, has been very simplified:

rslt_qstate = cudaq.get_state( qae_step_01_qcnn_classification,
theta_parameters )

The obtained object represents a quantum state that can be further processed
using other computational kernels.

@cudaq.kernel
def qae_step_01_qcnn_classification( angles: List[float] ):

register = cudaq.qvector( input_qstate_00 )
aidx = 0
# Begin of Layer 1, Convolutional layer
for idx in range( number_of_qubits-1 ):

ry ( angles[ aidx ], register[ idx ] )
aidx = aidx + 1

for idx in range( number_of_qubits-1 ):
rz ( angles[ aidx ], register[ idx ] )
aidx = aidx + 1

for idx in range( number_of_qubits-1 ):
rx.ctrl( angles[ aidx ], register[idx], register[idx+1] )
aidx = aidx + 1

# Pooling layer
for idx in range( number_of_qubits-1 ):

rz.ctrl(angles[ aidx ], register[idx], register[idx+1])
aidx = aidx + 1
x(register[idx])
rx.ctrl(angles[ aidx ], register[idx], register[idx+1])
aidx = aidx + 1

# End of Layer 1

... the rest of the code ...

Fig. 7. A piece of the Python code utilizing NVIDIA CUDA Q technology, which
implements the first convolutional and polling layers for the circuit realizing the QCNN
from Fig. 3
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5 Summary

The article presents the application of a QCNN to handwriting recognition. The
task of the network was to categorize a set of signs to 80 classes, where individual
images have a resolution of 64 by 64 pixels. High quality of character prediction
was obtained, with the QCNN of a relatively small number of parameters, i.e.
225. This shows the significant advantage of quantum solutions in this area of ap-
plication. Although the learning process, in aspect of the numerical simulation,
still constitutes a significant burden, the prediction process itself can already
be carried out and simulated very efficiently. The adopted method of building a
circuit based on the neighborhood of quantum gates, and using only basic types
of gates, also allows for further experiments on current quantum hardware of the
NISQ type. Naturally, it is possible to improve the quality of recognition by ex-
trapolating the circuit structure. The completed classification task also showed
the usefulness of the PolLettDS set, as a benchmark, despite the relatively small
number of characters. Naturally, it is planned to systematically expand it with
further examples of handwriting. Another important problem is the noise pres-
ence with NISQ hardware but the elastic structure of QCNN should allow us to
overcome this problem, which is the next important goal of our investigation.
The main tool for simulation in this article was NVIDIA CUDA Q package but
other quantum framework can be also used to create application with the Pol-
LettDS. Finally, it should be also emphasized that the data set will be supplied
with new probes of handwritten letters and digits.
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