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Abstract. Training of machine learning models consumes large amounts
of energy. Since the energy consumption becomes a major problem in the
development and implementation of artificial intelligence systems there
exists a need to investigate the ways to reduce use of the resources by
these systems. In this work we study how application of quantum anneal-
ers could lead to reduction of energy cost in training models aiming at
pixel-level segmentation of hyperspectral images. Following the results of
QBM4EO team, we propose a classical machine learning model, partially
trained using quantum annealer, for hyperspectral image segmentation.
We show that the model trained using quantum annealer is better or
at least comparable with models trained using alternative algorithms,
according to the preselected, common metrics. While direct energy use
comparison does not make sense at the current stage of quantum comput-
ing technology development, we prove that quantum annealing should be
considered as a tool for training at least some machine learning models.
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1 Introduction

The rapid growth of artificial intelligence, especially in the field of generative
models [1] and transformer architecture in 2017 [2] has led to a major prolifera-
tion of large deep learning models. However, life-cycle of large machine learning
(ML) models is known to be problematically energy consuming [3]. In order to
mitigate this problem it is important to search for alternative methods of models
training. In this work we use a quantum annealer to train a Restricted Boltz-
mann Machine (RBM). The latter is a generative model that has the ability to
learn a probabilistic distribution over its set of inputs. RBM is a widely used

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_16

https://dx.doi.org/10.1007/978-3-031-97570-7_16
https://dx.doi.org/10.1007/978-3-031-97570-7_16


2 Dawid Mazur, Tomasz Rybotycki, Piotr Gawron

machine learning technique for both unsupervised [4] and supervised tasks [5].
Our motivation for such approach is two-fold. First, such training has already
been shown to work [6], [7]. Secondly, quantum annealers have already been con-
sidered for reducing energy consumption for specific problems [8]. If the RBM
training using quantum annealers proves successful, it would be worth investi-
gating under what circumstances are quantum annealers more energy efficient
than classic RBM training approaches.

Among others, RBMs have been used in computer vision, as a part of the
image processing systems. For instance, the authors of QBM4EO devised a ML
model for multi-label land-use classification [7]. Their model was designed to
process hyperspectral data from the Sentinel-2 images dataset, hence we were
able to ascertain the model capabilities to process similar data. However, instead
of multi-label classification, we looked into a different computer vision task,
namely image segmentation.

Segmentation is a core task in computer vision. Its goal is to partition an im-
age into regions representing different objects or materials. Segmentation makes
it possible to analyze image’s structure accurately, and it has applications in
many fields, such as medicine [9] or satellite image analysis [10]. In this work,
we focus on the segmentation of multispectral images. Such images differ from
ordinary ones in that they capture information in broader electromagnetic wave-
length spectrum , not just in the visible range. Such data allow for a deeper
analysis of the imaged object properties [11].

We investigated how accurately a model similar to the one proposed by [7]
can handle pixel-level multispectral image segmentation task. Since the [7] model
was trained using quantum annealers (QA), the problem is essentially a quan-
tum machine learning (QML) one. QML is an intersection of quantum computing
(QC) and machine learning (ML). It leverages the principles of quantum mechan-
ics to solve complex ML problems. In our case, the problem is RBM training.
Since RBMs were trained far before first QAs became available, another research
question arise. Are quantum training techniques better than their classical coun-
terparts, at least in this limited context? If quantum training techniques are at
least comparable in terms of results quality, one can hope that they could find
wider applications due to their ability to use less energy [8], [12].

This paper is organized as follows. We begin with the problem formulation,
where we formally introduce the idea of multi- and hyperspectral images and
image segmentation (section 2). Moreover, we discuss previously proposed so-
lutions to the problem therein. In the next section (3), we overview quantum
machine learning, focusing especially on the building blocks of the model we
propose. Here, we also describe how quantum annealers can be used to train
specific ML models. Then, in section 4, we start with describing the experiment.
We review the dataset we use and introduce our model. We then discuss our
experiments in great detail and conclude this section with results analysis. We
finish this paper with conclusions, insights and directions for future research.
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2 Problem formulation

Image segmentation is an important area of research and application in the
field of computer vision. It is a process of dividing an image into homogeneous
regions [13]. Formally, image segmentation can be defined as follows. If F is the
set of all pixels and P : F → {true, false} is a homogeneity predicate defined on
groups of connected pixels, then segmentation is a partitioning of the set F into
a set of connected subsets or regions (S1, S2, . . . , Sn) such that:

n⋃
i=1

Si = F with Si ∩ Sj = ∅, i ̸= j. (1)

The homogeneity predicate P (Si) = true for all regions Si and P (Si∩Sj) = false,
when Si is adjacent to Sj . Set F is a digital image defined as

FW×H×B = [f(x, y, λ)]W×H×B (2)

where W and H are image dimensions, B is the band dimension and f(x, y) ∈
GL = {0, 1, . . . , L − 1} is a set of discrete levels of the feature value and (x, y)
denotes the spatial coordinate.

In the context of this work, B is of utmost importance, because this dimen-
sion is the one used to determine if an image is multi- or hyperspectral. Typically,
images with 3–15 spectral bands are considered multispectral, whereas hyper-
spectral images can have hundreds of spectral bands [14]. One can clearly see
how that makes analysis of such images more demanding in comparison to the
standard ones.

Since image segmentation task is an old and well established problem there
are variety of techniques to deal with it [13]. In the context of this work, the
most interesting are the ones using machine learning techniques (ML), especially
unsupervised learning methods. Among those cluster analysis techniques are
popular [15]. These methods, however, are also known to have limitations [16].
It’s therefore reasonable to explore different options.

The decision of which algorithm to select can be further guided by the ap-
proach one wishes to implement. Most of the state-of-the-art approaches rely on
deep learning methods, which are costly to train [3]. The image can be analyzed
using either pixel-level or patch approach. The latter usually involves using deep
convolutional neural networks [17]. However, research on hyperspectral imaging
at the pixel-level has grown in recent years, leading to an increasing number of
scientific publications in this field [11], [17], [18]. We therefore decided to pursue
the latter direction.

3 Machine Learning and Quantum Machine Learning

Artificial intelligence is a technology at the intersection of mathematics and
computer science. It includes a wide spectrum of methods and algorithms that
enable machines to learn, resulting in a wide range of applications [19], [20].
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A subset of artificial intelligence that explores machines’ capability to learn
patterns from the data is called machine learning (ML).

The focus of this work is on unsupervised learning. It is a fundamental ap-
proach in machine learning that allows models to learn patterns in data without
explicit labels [21]. The goal of learning in this context is to uncover the un-
derlying structure of the dataset. Classic problems in which unsupervised learn-
ing is applied are clustering, dimensionality reduction and representation learn-
ing. Clustering can be performed using a variety of algorithms [22], including
partitioning methods, density-based and hierarchical methods. Dimensionality
reduction has traditionally been achieved using principal component analysis
(PCA) [20]. Lately, autoencoders have also proven to be highly effective for
this task [23]. Representation learning, also called feature learning, is a pro-
cess during which algorithms extract meaningful patterns from data to create
representations usually in a lower dimension than the original data [20].

In the context of this work, unsupervised learning will be used for all the
tasks we mentioned. The model we propose, detailed in section 4, employs both
dimensionality reduction and clustering. We also use standard clustering algo-
rithms as a baseline for our model quality assessment.

Autoencoders are artificial neural networks used for unsupervised represen-
tation learning. Their architecture consists of two separate networks: encoder
and decoder. Encoder transforms the data into its latent space representation
whereas decoder tries to restore the input data from it. An autoencoder whose
latent space dimension is lower than the input data one is called undercom-
plete [20]. Learning an undercomplete representation forces the autoencoder to
capture the most significant features of the training data, thus it essentially
implements a representation learning.

Latent Bernoulli Autoencoder (LBAE) — is a Variational Autoencoder [10],
that in the context of our work, has a vital property such that that its latent
space is binarized and therefore its output can be used as an input to a Restricted
Boltzmann Machine.

Restricted Boltzmann Machines are undirected graphical, energy-based mod-
els that contain a layer of observable variables and a layer of latent variables.
Typically they’re referred to as visible and hidden layer, respectively [20].A key
feature of RBM is that there are no connections between neurons in the same
layer, hence the “restricted” prefix. RBMs are used for tasks such as classifi-
cation [24], feature extraction [25] and multispectral image processing [7]. In
addition, RBMs are commonly used as building blocks in other architectures
such as Deep Belief Networks [20], [25]. RBM training is based on maximizing
the log-likelihood of the training data, and is typically done using gradient-based
techniques. However, parts of the log-likelihood gradient function, such as so-
called negative-phase [5] are hard to compute. Fortunately, their approximate
values can be obtained using the Monte Carlo Markov Chain methods (MCMC)
[20]. One family of such algorithms is the contrastive divergence (CD). While
widely used, CD relies on limited Gibbs sampling steps and can get stuck in
local minima.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_16

https://dx.doi.org/10.1007/978-3-031-97570-7_16
https://dx.doi.org/10.1007/978-3-031-97570-7_16


Hyperspectral image segmentation with quantum annealer-trained RBM 5

Alternatively, the negative-phase can be calculated using samples drawn from
an annealer [5]. The use of annealing can lead to more efficient sampling than
MCMC algorithms. That’s because the latter can struggle to correctly approxi-
mate the negative phase of the gradient [20]. Annealing also explores more global
configurations, improving sampling accuracy and learning dynamics in challeng-
ing scenarios.

Simulated annealing (SA) is an optimization algorithm inspired by annealing
process employed in metallurgy. SA treats the optimization problem as a physical
system, with energy representing the objective function value and temperature
controlling the probability of accepting inferior solutions. The algorithm starts
at a high temperature, where energy-increasing movements are allowed, and then
the temperature slowly decreases to find the global minimum of the objective
function [26].

Quantum annealing (QA) is an extension of the idea of simulated anneal-
ing that uses quantum effects to search the solution space. Unlike SA, which
relies on classical temperature perturbations, QA uses quantum fluctuations to
overcome energy barriers. Optimization problems, solvable by QA, are most of-
ten represented in terms of an Ising model [27]. Although Quantum Annealing,
in principle, follows similar scheme as Adiabatic Quantum Computing [28], the
difference is that system evolution in QA is not necessarily adiabatic [29].

The use of quantum annealing for RBM training represents a novel ap-
proach [5], [30]. It starts with determining the probability distribution of the
hidden RBM layer for a given set of input data. The RBM coefficients are
then transformed into a Quadratic Unconstrained Binary Optimization (QUBO)
problem. The QUBO is defined by a quadratic function, where the linear ele-
ments correspond to the biases, and the quadratic elements correspond to the
weights between the neurons. The generated QUBO is then sampled by an an-
nealer, which finds the variables’ values corresponding to the objective function’s
minimization. In this context, the annealer acts as a probabilistic sampler, pro-
viding samples of the values of hidden and visible RBM units based on energy
minimization. The values of these samples are then used to update the RBM
weights and biases. The algorithm gradually adjusts the model by comparing
the distributions sampled by the annealer with those inferred from the data,
allowing the hidden structures to be correctly represented in the data. Using the
annealer in this context can help more efficient sampling in cases where gradient
methods become insufficient or when the problem has a complex energy space,
making sampling more difficult. At the beginning of the annealing process, the
system exhibits a significantly quantum behavior. As time passes, and the sys-
tem cools down, we arrive at the systems final state, which corresponds to the
low-energy solution of the assigned problem.

Cluster analysis is a category of unsupervised learning algorithms that seek
to divide a given set of objects into homogeneous clusters [15]. In the context of
image segmentation, cluster analysis divides an image into regions with similar
properties.
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The Agglomerative Hierarchical Clustering (AHC) algorithm relies on a bottom-
up approach. It starts the clustering process by treating each data point as an
individual cluster and then iteratively merging the most similar clusters based
on a selected distance metric. The process continues until all data points are
combined into a single cluster or the desired number of clusters is reached.

The AHC algorithm requires specifying inter- and intra-cluster distance mea-
sures. The latter are commonly called linkage methods, whereas the first are
usually standard distance measures used in analyzed objects processing. In this
work we used Euclidean and Spectral Angle distances [31]. We also used com-
plete and average linking criteria [15]. In the context of this work, an interesting
property of the AHC algorithm is that it can be used to further cluster the pre-
clustered data. In other words it can be used to continue initial clustering. This
initial clustering could, in particular, use different algorithm.

The k-means algorithm is a clustering algorithm that partition a dataset into
k clusters [22], aiming to minimize the differences within the clusters by assigning
data points to the nearest clusters. A centroid is the center of a cluster, a point
that represents the average value of all points assigned to a given cluster. The
algorithm begins by initializing centroids, which represent the centers of the
clusters. Next, the distance from each data point to each centroid is computed,
and each point is assigned to the cluster with the nearest centroid. Once all
points have been assigned to their respective clusters, the centroids are updated
by computing the arithmetic mean of all points assigned to each cluster. This
update moves the centroid positions. Then assigning points to clusters is repeated
based on the updated centroids. The algorithm works iteratively, and the cycle
of assigning points to clusters and updating centroids repeats until the centroids
stop changing, which means that the algorithm converged.

4 Experiments and results

We used HyperBlood dataset [32] in our the experiments. It consists of fourteen
hyperspectral images showing a mock-up crime scene with bloodstains and other
visually similar substances. The images, collected over three weeks, vary in back-
ground composition and lighting conditions. Each image consists of 120 spectral
bands, and is annotated with class labels indicating the presence of respective
substances.

The dataset documentation [32] describes some of the hyperspectral channels
as “noisy”. We decided that the indicated spectral bands should be removed
from further processing. Additionally, we excluded pixels whose position (x, y)
corresponded to the label “0” (which is the background) in the ground truth
image. Our goal was to improve homogeneity of the training data and thus
quality of the model.

Further data transformations were to perform normalization, shuffle the data,
and divide the data into training, validation, and test sets. Scaling to the interval
⟨0, 1⟩ was chosen as a standard normalization method in machine learning [19]
but was also used for processing hyperspectral images [33]. Data shuffling was

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_16

https://dx.doi.org/10.1007/978-3-031-97570-7_16
https://dx.doi.org/10.1007/978-3-031-97570-7_16


Hyperspectral image segmentation with quantum annealer-trained RBM 7

used to reduce the influence of sequential pixel order. Data partitioning was done
according to the Pareto principle: first, the data were divided into a training set
and a test set in a ratio of 0.8 : 0.2, and then the training set was further split
into a training and validation set, also in a ratio of 0.8 : 0.2 [34].

4.1 Proposed Model

The model we propose consists of two parts. The initial one is encoder of a
LBAE. It processes the input and returns its binarized latent space representa-
tion. Binarization is vital for our model to work, because RBM, which constitutes
the second layer of our model, accepts only binarized inputs. By setting respec-
tive neurons of the RMB visible layer to 1, we update probabilities of neuron
activation in the hidden layer or the RBM. We compute and binarize these prob-
abilities, thus obtaining a label for the inputted hyperspectral pixel. We present
our model in the figure 1. Notice that such pipeline is basically a repurposed
QBM4EO pipeline [7], which was shown to work well for similar problem.

1

1

1
1

1

-1

-1

-1

-1
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RBMEncoder

Pixel
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space
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Binarization
algorithm

Fig. 1: Proposed model pipeline. The pipeline processes spectral pixel data
through the LBAE encoder, which consists of one-dimensional convolutional
layers followed by a tanh activation and binarization. The resulting binary rep-
resentation is forwarded into the visible layer of the RBM. Then we compute
each hidden layer neuron’s activation probability and binarize it. The resulting
binary vector is considered the input pixel’s label.

LBAE is an autoencoder which was introduced in [10] and implemented in [7].
It contains convolutional layers in both encoding and decoding parts. Our ap-
proach relies on the work done in the [7]. However, our approach explores the
possibility of pixel-level analysis in the context of hyperspectral images, so we had
to adjust [7] implementation of the LBAE. This adjustment consisted of chang-
ing the convolution layers from two- to one-dimensional. The rest of the network
and its layers will stay the same as in [7] as this project obtained satisfactory per-
formance. LBAE was trained using standard back-propagation algorithm. Our
LBAE transforms the input pixel data into its binary representation. Due to the
undercomplete architecture of this autoencoder, the dimension of input vector
shrinks accordingly. We show the LBAE convolutional layers parameters in Ta-
ble 1. Each latent space vector has 28 binary elements. After the encoding, the
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Table 1: Parameters of the convolutional layers in the LBAE encoder.
Layer Padding Dilation Kernel Size Stride

Conv1 1 1 3 1
Conv2 1 1 4 2
Conv3 1 1 4 2
Conv4 1 1 3 1

data is processed by an RBM. The number of neurons in the visible layer of our
RBM is determined by input data dimension and LBAE encoder convolutional
layers. In the case of our experiments, that would be 28 neurons.

We trained the RBM with a fixed number of neurons in its visible layer
and a changing number of neurons in its hidden layer hi ∈ {3, 4, . . . , 28} using
CD-1 algorithm. Our approach is to take RBM’s hidden layer neurons acti-
vation probabilities and binarize them. The obtained binary vector is a label
assigned to the input pixel. The binarization threshold was selected as follows:
for each thi ∈ {0.1, 0.2, . . . , 0.9}, we computed the adjusted Rand score (ARS)
between true labels and predicted labels. Then we checked for which threshold
we obtained the highest ARS, and for this threshold, we compute other metrics.
Using the V-measure, we then compare the models. We selected the β ∈ [0, 1]
parameter of the V-measure such that the metric promotes homogeneity — a
metric we deemed more important in the image segmentation task. For each
i-th model, we manually tuned βi ∈ {0, 0.01, . . . , 1}, to find such β that yield
the best V-measure value. The RBM architecture that most frequently obtained
the highest V-measure scores was selected as the best one. Thus concluding the
model architecture design.

Our approach based on binarized values of neuron activation probability in
RBM’s hidden layer leads to a maximum number of unique returned labels equal
to 2N , where N ∈ {3, 4, . . . , 28}. Since there are seven classes in the HyperBlood
dataset after our preprocessing, we see that the RBM will return more labels than
in the dataset. Accordingly, to [4], RBM may be used to build relational trees
and then use these hierarchies to divide the data into groups and subgroups. We
will use the structure clustered by RBM to create a distance matrix, which will
serve as an input to the Agglomerative Hierarchical Clustering (AHC) algorithm.
By specifying the target number of clusters for the AHC, we aim to obtain
clusterization that will be useful in our segmentation task. This final phase of
the segmentation takes place only for the best model; after training algorithms
are compared.

4.2 Classical Model Training and Evaluation

The selection of appropriate evaluation metrics is crucial for an objective anal-
ysis of the quality of the machine learning models. We decided to use the Ho-
mogeneity Score, the Completeness Score, the Rand Score, and the Adjusted
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Rand Score, which are commonly used in evaluating clustering tasks [35], [36].
Additionally, Euclidean distance and Spectral Angle Distance were employed to
evaluate the capability of the autoencoder to reconstruct the data. We trained
the model using three different approaches: the traditional contrastive divergence
(CD-1) algorithm, an approach based on simulated annealing (SA) and quantum
annealing (QA).

At first, we begin with LBAE training. Since, compared to [7], we only
changed convolutional layers from two to one-dimensional, we kept the hyper-
parameters values. We investigated the influence of changing batch size and
learning rate.

The following values of batch size bi ∈ {4, 8, 16} and learning rate ηi ∈
{10−2, 10−3, 10−4} were chosen as a standard values [19]. For each combination
of these parameters, LBAE training was conducted, ultimately yielding nine
trained models. Each model’s performance was evaluated on a test dataset using
Euclidean distance and spectral angle distance (SAD). We used LBAE model
that obtained the lowest values of both metrics, that is the model trained with
hyperparameters bi = 4 and ηi = 10−3.

Having trained the LBAE model, we determined a baseline for Restricted
Boltzmann Machines (RBM) clusterization that we aim to surpass. For this
purpose, we used the k-means algorithm to perform clusterization on the test
dataset, on both raw data and its latent space representation. To avoid the
impact of how the k-means centroids are initialized, we conducted the clustering
ten times using different random seeds. Results of the baseline clustering metrics
on the test dataset are included in Table 2.

Table 2: Comparison of clustering evaluation metrics for k-means and LBAE+k-
means. Values represent the mean ± standard deviation.

Metric k-means LBAE+k-means

Homogeneity 0.509± 0.020 0.596± 0.056
Completeness 0.443± 0.027 0.520± 0.046
ARS 0.362± 0.065 0.395± 0.090
Rand Score 0.779± 0.021 0.789± 0.031

We then proceeded with the RBM training using CD-1. Similar to the case
of LBAE, we keep hyperparameters as they were in [7], except for one of them
— a number of neurons in the hidden layer. RBM training experiments were
conducted for the following number of neurons in hidden layer hi ∈ {3, 4, . . . , 28},
and those experiments were repeated ten times for different weights initialization.
This experiment concluded that the RBM model with 23 neurons in the hidden
layer was the most promising for the segmentation task. Figure 2a shows the
learning curve for that model.
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We noticed that our model is returning more unique labels than the target
number of labels on ground-truth images. Following the idea that the RBM
returned structure is hierarchical [4], we could pass this structure to another
algorithm, known as Agglomerative Hierarchical Clustering (AHC), and specify
the target number of clusters.

We want to compare the final segmentation with a reliable baseline. We,
again, used the standard k-means algorithm to obtain it. Figure 3a illustrates
the pixels clustering using k-means, and Figure 3b illustrates the ground truth
image. Table 3 shows metrics comparison for created segmentation images. Then,
we created a segmentation images using our model. The results are presented in
Figure 4a and Figure 4d.

4.3 Quantum Model Training and Evaluation

The next step of the project was to test the implemented training algorithm
using the annealer-based algorithms. First, we used D-Wave’s implementation
of a simulated annealing sampler [37]. The training was repeated ten times for
initialization with different weights, this time only for an RBM model containing
23 neurons in the hidden layer. We decided to save a model after every other
hundred training epochs to execute an insightful analysis of model performance
in the context of clusterization metrics. The best model, according to the V-
measure, was the one after 200 training epochs. The learning curve of the RBM
trained using the simulated annealer is shown in Figure 2b.

Next, we trained the model using quantum annealing. Again, we used the
sampler provided by D-Wave [37]. We also used the automatic embedding of our
problem into the target QPU — D-Wave Advantage 5.4 system. The training
was repeated ten times for initialization with different weights, again only for
an RBM model containing 23 neurons in the hidden layer. We decided to save
a model after every other hundred training epochs. The best model, according
to V-measure, was obtained after 300 training epochs. The learning curve of the
RBM trained using the quantum annealer is shown in Figure 2c.
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(a) CD-1 training.
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(b) Simulated annealing.
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(c) Quantum annealing.

Fig. 2: Learning curve of the RBM with respective algorithms. The blue line
represents the loss value on the training dataset, and the red line represents the
loss value on the validation dataset.
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4.4 Segmentation Results

We present the comparison our experiments results with our baseline segmen-
tation obtained by using k-means algorithm on the Figure 3a and ground truth
image on the Figure 3b. They are followed by the segmentations obtained us-
ing our model trained with contrastive divergence (CD-1) finalized with AHC
using both linkage methods — complete and average, those will be respectively
Figure 4a and Figure 4d. Similarly, we present segmentations for models trained
with simulated annealing (SA) and quantum annealing (QA). For simulated an-
nealing obtained images are Figure 4b and Figure 4e, and for quantum annealing
obtained images are Figure 4c and Figure 4f.

(a) k-means segmentation. (b) Ground truth.

Fig. 3: Baseline segmentation by k-means and ground truth.

A summary of the computed evaluation metrics such as homogeneity, com-
pleteness, adjusted Rand score (ARS) and Rand score (RS) for each segmenta-
tion obtained is presented collectively in Table 3.

Analyzing obtained metrics on the segmentation images, we notice that al-
most all metrics improve their value for RBM trained with QA, and if they are
not improved, they are close to the best-obtained value. For a model that does
not use AHC, we note the consistent improvement of the metrics while chang-
ing the RBM training algorithm from CD-1 through SA to QA. For the metrics
homogeneity and ARS, the RBM model trained with QA surpassed the baseline
value, which was set by the k-means algorithm. The use of the AHC algorithm in
combination with RBM affects clustering characteristics. First, AHC improves
the completeness metric, especially when using the RBM version trained with
Quantum Annealing. At the same time, adding AHC reduces the clusters’ ho-
mogeneity.
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(a) CD-1 + AHC-C. (b) SA + AHC-C. (c) QA + AHC-C.

(d) CD-1 + AHC-A. (e) SA + AHC-A. (f) QA + AHC-A.

Fig. 4: Comparison of segmentation results. Subfigure captions contain RBM
training and clustering algorithms used to obtain the segmentation.

5 Conclusions

We proposed a hybrid neural network architecture consisting of Latent Bernoulli
Autoencoder encoder connected with Restricted Boltzmann Machines for hy-
perspectral image segmentation. Firstly, the LBAE’s encoder part is used for
dimensionality reduction and spectral data binary representation encoding, nec-
essary for RBM processing. Secondly, we use RBM to perform clustering on the
encoded spectral pixels.

The proposed architecture and experiments confirmed the effectiveness of ap-
plying quantum annealing techniques and RBM models training. One can clearly
see that since we achieved better segmentation results, in terms of observed
metrics, than the baseline segmentation obtained using standard algorithm —
k-means. The results suggest the potential for further research on using quantum
annealing in the image processing field. It’s also vital to analyze cost and power
feasibility of quantum annealers as RBM training tools.

However, other quantum data processing techniques should also be explored
in this field. Particularly interesting are quantum kernel methods, performance
of which is yet to be tested on real gate-based quantum devices.

Acknowledgments

We gratefully acknowledge Poland’s high-performance Infrastructure PLGrid
ACK Cyfronet AGH for providing computer facilities and support within com-
putational grant no. PLG/2024/017155 through and no. PLG/2024/017550.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_16

https://dx.doi.org/10.1007/978-3-031-97570-7_16
https://dx.doi.org/10.1007/978-3-031-97570-7_16


Hyperspectral image segmentation with quantum annealer-trained RBM 13

Table 3: Comparison of clustering evaluation metrics for baseline segmentation
and segmentation produced by our models. RBM+AHC-C and RBM+AHC-A,
denote the RBM with AHC using complete and avarage linkage respectively.
Metric Training k-means RBM RBM+AHC-C RBM+AHC-A

Homogeneity – 0.368 – – –
CD-1 – 0.492 0.232 0.243
SA – 0.510 0.231 0.171
QA – 0.505 0.254 0.260

Completeness – 0.354 – – –
CD-1 – 0.239 0.257 0.416
SA – 0.244 0.266 0.381
QA – 0.282 0.319 0.445

ARS – 0.244 – – –
CD-1 – 0.163 0.129 0.242
SA – 0.180 0.199 0.181
QA – 0.308 0.284 0.246

Rand Score – 0.769 – – –
CD-1 – 0.793 0.690 0.660
SA – 0.799 0.711 0.590
QA – 0.790 0.729 0.656
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