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Abstract. Entanglement is a fundamental feature of quantum mechan-
ics, playing a crucial role in quantum information processing. However,
classifying entangled states, particularly in the mixed-state regime, re-
mains a challenging problem, especially as system dimensions increase.
In this work, we focus on bipartite quantum states and present a data-
driven approach to entanglement classification using transformer-based
neural networks. Our dataset consists of a diverse set of bipartite states,
including pure separable states, Werner entangled states, general entan-
gled states, and maximally entangled states. We pretrain the transformer
in an unsupervised fashion by masking elements of vectorized Hermi-
tian matrix representations of quantum states, allowing the model to
learn structural properties of quantum density matrices. This approach
enables the model to generalize entanglement characteristics across dif-
ferent classes of states. Once trained, our method achieves near-perfect
classification accuracy, effectively distinguishing between separable and
entangled states. Compared to previous Machine Learning, our method
successfully adapts transformers for quantum state analysis, demonstrat-
ing their ability to systematically identify entanglement in bipartite sys-
tems. These results highlight the potential of modern machine learn-
ing techniques in automating entanglement detection and classification,
bridging the gap between quantum information theory and artificial in-
telligence.

Keywords: Quantum entanglement · State classification · Transform-
ers · Large language models

1 Introduction

The entanglement phenomenon is at the heart of quantum information, en-
abling its key applications such as quantum computing, secure communication,
and enhanced metrology. Unlike classical correlations, entanglement represents
a uniquely quantum feature where the state of a system cannot be described
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independently of its subsystems. This fundamental property underlies protocols
like quantum teleportation, superdense coding, and quantum key distribution,
as well as quantum computational speedups [25,17]. However, not all quantum
states exhibit entanglement, and distinguishing entangled states from separable
ones is a crucial yet challenging problem in quantum information science. The
ability to efficiently classify quantum states has direct implications for the prac-
tical implementation of quantum technologies, motivating the development of
reliable entanglement detection and classification methods.

Bipartite quantum states, which describe systems naturally partitioned into
two subsystems, are fundamental in quantum information science and serve as
a basis for studying quantum correlations and computational advantages. These
states reside in a tensor product space L(Cd1⊗Cd2), where entanglement emerges
as a crucial resource for various quantum information applications [14,6], such as
secure communication, quantum-enhanced computation, and efficient informa-
tion transfer. For pure bipartite states, i.e., vectors in Cd1 ⊗ Cd2 , entanglement
can be clearly identified: a state is separable if and only if it can be expressed as
a tensor product of subsystem states. Any departure from this structure signi-
fies entanglement, which directly influences quantum nonlocality, measurement-
based quantum computing, and the efficiency of entanglement-assisted protocols.

The identification of entanglement for bipartite states is straightforward in
the case of pure states but becomes significantly more challenging when con-
sidering mixed bipartite states. A variety of analytical and numerical methods
have been developed for the characterization and detection of mixed-state en-
tanglement. One of the most celebrated approaches is based on the positivity
of the partial transpose (PPT), introduced by Peres [19] and Horodecki [11].
While the PPT criterion is both necessary and sufficient for separability in low-
dimensional cases (C2 ⊗ C2 and C2 ⊗ C3), in higher dimensions, a state can be
PPT and still entangled. Such states are known as bound entangled states [12]
(see Fig. 1 for sketch). They cannot be distilled into pure entangled states using
local operations and classical communication (LOCC), rendering them entan-
gled yet practically “inaccessible” for certain quantum information protocols [1].
This discovery highlighted the limitations of the PPT criterion and the intricate
nature of entanglement in higher-dimensional systems. To emphasize this differ-
ence, entangled states which are not bound entangled are sometimes called free
entangled states.

To address these limitations, other techniques—particularly entanglement
witnesses—have been introduced [14,10]. An entanglement witness is a Hermi-
tian operator W with the property that Tr(W ρsep) ≥ 0 for all separable states
ρsep, but Tr(W ρent) < 0 for at least one entangled state ρent. Finding and
optimizing entanglement witnesses can often be formulated via semidefinite pro-
gramming techniques, and in many cases, witnesses can be tailored to detect
specific classes of entangled states, including those exhibiting bound entangle-
ment. Additional approaches to mixed-state entanglement include various entan-
glement measures (e.g., negativity, entanglement of formation), which attempts
to quantify the degree of entanglement in a given density operator [24,20].
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Another class of approaches relies on machine learning (ML) to identify en-
tanglement directly from the data. In [8], authors use automated ML for state
classification. Instead of directly measuring entanglement properties, the state
is reconstructed, and entanglement is inferred from the data itself. Recently,
Transformers have also been applied to quantum random number validation [7],
showcasing their ability to handle large input sequences efficiently and perform
multiple statistical tests in parallel. The same self-attention mechanism that cap-
tures subtle global dependencies in random bit streams can likewise model the
intricate correlations of bipartite quantum states, suggesting that Transform-
ers are a promising architecture for entanglement classification under partial or
noisy data.

Despite significant progress, a complete classification of bipartite entangled
mixed states remains an open challenge, particularly as system dimensions grow.
In this work, we take a data-driven approach to this problem by generating a
diverse dataset of pure and mixed states through multiple methods and employ-
ing transformer-based neural networks to analyze their properties and classify
them. We demonstrate that entanglement identification can be performed effec-
tively from the data itself, extending the range of successful classification beyond
previous studies. Furthermore, we validate the application of transformer archi-
tectures in this domain, achieving a breakthrough where prior deep learning
approaches [8] have struggled. By integrating machine learning with established
theoretical criteria, we provide a scalable framework for systematically detecting
and categorizing entanglement, bridging the gap between quantum information
theory and modern Artificial Intelligence techniques.

Ω

SEP NPTBOUND

Fig. 1. Schematic representation of the set of mixed quantum states Ω depicting sepa-
rable states (SEP) ρsep, bound entangled states (BOUND) σbound and negative partial
transpose states (NPT) ξnpt.
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This paper is organized as follows. In Section 2, we explain the methodol-
ogy for constructing our dataset. In Section 3, we detail our proposition of the
Quantum-aware Transformer model and its training scheme. In Section 4, we
present the results of validation experiments and discussion.

The code for this paper is publicly available on GitHub3 under an open license
to facilitate result reproducibility and transparency and the data can be shared
upon a reasonable request.

2 Dataset generation

Quantum states, the basic objects of quantum mechanics, can be broadly classi-
fied as pure or mixed. A pure state is described by a single d-dimensional vector
|ψ⟩ in a complex Euclidean space Cd, and a corresponding density operator
ρ = |ψ⟩⟨ψ|. This operator satisfies ρ2 = ρ and Tr(ρ) = 1. When d = 2, the
corresponding system is called a qubit; for d = 3, it is called a qutrit.

In contrast, a mixed state is represented by a statistical ensemble of pure
states, described by a density operator L(Cd) ∋ ρ =

∑
i pi |ψi⟩⟨ψi|, where pi ∈

[0, 1] and
∑

i pi = 1 [16]. Such states often emerge from partial traces of larger
systems or incomplete information about the quantum system under study. Note
that ρ is a positive semidefinite matrix.

In many quantum information scenarios, one focuses on bipartite states.
These describe a physical system that can be naturally partitioned into two
subsystems, |ψ⟩ ⊗ |ϕ⟩, associated with complex Euclidean spaces Cd1 and Cd2 .
The total state then lives in the tensor product space Cd1 ⊗Cd2 . Bipartite quan-
tum systems are not only a cornerstone for foundational studies of quantum
correlations but also play a central role in key quantum information tasks such
as quantum teleportation, quantum key distribution, and superdense coding.

For pure bipartite states, there exists a straightforward way to distinguish
entangled from separable states: a pure bipartite state |ψ⟩ ∈ Cd1 ⊗ Cd2 is sepa-
rable if and only if it can be written as |ξ⟩ = |ψ⟩ ⊗ |ϕ⟩. Any deviation from this
product structure indicates entanglement.

In this work, we study the following cases of discrimination between separable
and entangled states:

1. two-qubit states, C2 ⊗ C2,
2. qubit-qutrit systems, C2 ⊗ C3,
3. qutrit-qutrit systems, C3 ⊗ C3,
4. ququart-ququart systems, C4 ⊗ C4,

For each of these, we generate a dataset consisting of:

1. pure separable states,
2. general entangled states,
3. Werner entangled states (for all but qubit-qutrit systems),
4. maximally entangled states (for all but qubit-qutrit systems),
3 https://github.com/iitis/LQM
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5. bound entangled states from the family by Horodecki [13] (for qutrit-qutrit
systems).

For this work we assume we have access to the full tomography [3] of each ρ,
hence we encode each state as a vector of 2d1d2 real variables.

The details of the sampling are described in the following subsections. Uni-
form sampling of quantum states (either pure or mixed) was conducted utilizing
the QuantumInformation.jl package [5].

2.1 Sampling pure separable states

In this case, we need to sample uniformly normalized vectors of the form Cd1 ⊗
Cd2 ∋ |ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩. This is done in the following steps:

1. Sample a non-normalized |x⟩ ∈ Cd1 with each element xi such that Re(xi) ∼
N(0, 1) and Im(xi) ∼ N(0, 1).

2. Normalize |x⟩: |ϕ1⟩ = |x⟩
∥|x⟩∥ .

3. Repeat steps 1 and 2 to obtain |ϕ2⟩.
4. Put |ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩.

This procedure ensures that each |ϕi⟩ is sampled from the Haar measure.

2.2 Sampling Werner entangled states

A Werner state is a mixed state having the form

ρwer = (1− p) |ψ⟩⟨ψ|+ pρ∗, (1)

where ρ∗ is the maximally mixed state, ρ∗ = 1
d2 , and

|ψ⟩ = 1√
d

d−1∑
i=0

|ii⟩ . (2)

It can be shown that the state remain entangled for

p <
d

d+ 1
. (3)

We sample p uniformly in this interval and construct ρwer.

2.3 Sampling general entangled states

We sample general entangled states by uniformly sampling the state of all mixed
quantum states and only accepting the state as entangled when it is NPT. The
steps are:

1. Sample a square Ginibre matrix, G, of dimension d1d2. Elements Gij per-
tain to the complex normal distribution Re(Gij) ∼ N(0, 1) and Im(Gij) ∼
N(0, 1).
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2. Calculate W = GG†.
3. Normalize the trace, ρ = W

TrW .
4. Check the Peres-Horodecki criterion. If ρ is NPT, accept it into the set;

otherwise, repeat the procedure.

Note that this procedure is quite efficient, especially as the dimension increases,
as the relative volume of the separable states diminishes [26,27,28].

2.4 Sampling maximally entangled states

We sample maximally entangled states by sampling unitary matrices, vectorizing
them, and renormalizing them [21]. The procedure is:

1. Sample a square Ginibre matrix G of dimension d as described in Section 2.3.
2. Calculate its QR decomposition G = QR, where Q is a unitary matrix and
R is upper triangular.

3. Multiply i-th column of Q, Qi, by the phase of the corresponding diagonal
element of R, Rii, thus obtaining the i-th column of a unitary matrix U .
This step is necessary to ensure the proper distribution of eigenvalues of
U [15,18].

4. Vectorize the matrix U and normalize by 1√
d
.

2.5 Sampling bound entangled states

This procedure is based on a family of bound entangled states described in [13].
First, let us introduce

σ+ =
1

3
(|01⟩⟨01|+ |12⟩⟨12|+ |20⟩⟨20|)

σ− =
1

3
(|10⟩⟨10|+ |21⟩⟨21|+ |02⟩⟨02|)

|ψ⟩ = 1√
3
(|00⟩+ |11⟩+ |22⟩) .

(4)

We construct a state ρ as follows

ρα =
2

7
|ψ⟩⟨ψ|+ α

7
σ+ +

5− α

7
σ−. (5)

Depending on parameter α this state can be separable (2 ≤ α ≤ 3), bound
entangled (3 < α ≤ 4) or free entangled (4 < α ≤ 5). Hence, we sample α
uniformly in the range (3, 4].

The dataset construction procedure is explicitly designed to avoid introduc-
ing spurious correlations between the structural features of the density matrices
and the generative mechanisms from which they are sampled. Each class of quan-
tum states is synthesized using statistically independent and physically grounded
protocols that are aligned with the operational definitions of separability and en-
tanglement. Pure separable states are sampled from the product of independent
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Haar measures on the unit spheres in Cd1 and Cd2 , ensuring uniform coverage
of the separable manifold. General entangled states are drawn from the space of
density operators via normalized Wishart ensembles (Ginibre matrices) and are
subsequently filtered through the Peres-Horodecki criterion to enforce negative
partial transposition (NPT), thereby guaranteeing entanglement. Additionally,
the dataset incorporates structured families of entangled states with analyti-
cally controlled properties: Werner states, defined by convex combinations of
maximally entangled states and the maximally mixed state, and known to be
entangled for p < d

d+1 ; and bound entangled states from the Horodecki con-
struction, parameterized by α ∈ (3, 4], which guarantees PPT entanglement in
the two-qutrit case. The inclusion of these analytically tractable families serves
to increase the geometric and algebraic diversity of the entangled class, thereby
mitigating the risk that the neural network overfits to artifacts of a single syn-
thesis algorithm rather than learning entanglement-relevant features intrinsic to
the density matrices themselves.

3 Quantum-aware Transformer model

We employ a Transformer-based architecture [23] to process quantum state ma-
trices, leveraging its powerful self-attention mechanism to model complex rela-
tional structures within the data. While Transformers were originally developed
for natural language processing, their ability to capture long-range dependencies
and contextual interactions makes them well-suited for structured matrix data
as well.

In our approach, we represent quantum state matrices as sequences of tokens,
where each token encodes the real and imaginary components of a matrix ele-
ment. This tokenized representation allows the Transformer to globally attend
to all parts of the matrix, modeling both local and non-local correlations that
are critical in quantum systems.

We further adopt a masked autoencoding training strategy, enabling the
model to learn robust representations by reconstructing missing matrix elements.
This encourages the network to internalize key quantum properties such as co-
herence and entanglement. As a result, the Transformer not only reconstructs
structured quantum data effectively but also enhances performance in down-
stream tasks, such as entanglement classification.

The Transformer model was chosen for its ability to flexibly capture both
pairwise and more complex interactions within data, without imposing assump-
tions about spatial locality or sequential order. Such assumptions, common in
other architectures, could constrain the modeling of quantum data, where rele-
vant relationships may span arbitrary positions in the data structure.

3.1 Model Description

We employ a masked Transformer architecture, referred to as the MaskedTrans-
former, to reconstruct partially masked 2D quantum data. The input is first
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reshaped from
[
B, 2N2

]
into

[
B,N2, 2

]
, where B stands for the size of data

batch, N is the size of the original square matrix (each entry contains real and
imaginary parts). Tokens in this representation are randomly masked and re-
placed by a mask token, and the partially masked sequence is passed through
a Transformer encoder composed of multi-head self-attention layers and feed-
forward networks.

Each token embedding is further augmented with a trainable positional vector
pi, ensuring that the Transformer retains the relative location of each matrix
element in the spatial grid. Concretely, we added pi ∈ Rd to the embedded token
xi, yielding

x̃i = Embed
(
xi

)
+ pi, (6)

where Embed is the token embedding function. This positional encoding is cru-
cial to provide the necessary positional information for the self-attention mech-
anism.

A simple linear decoder projects the final encoded representations back to real
and imaginary components, reconstructing both the originally masked and un-
masked portions. This masked-reconstruction approach is analogous to masked
autoencoders or BERT [4] like masking methods, thereby encouraging the model
to infer missing entries from the surrounding context.

In our experiments, we tested three configurations corresponding to n = 4
(for C2 ⊗ C2), n = 6 (for C2 ⊗ C3), n = 9 (for C3 ⊗ C3), and n = 16 (for
C4⊗C4). All other Transformer hyperparameters (embedding dimension, number
of attention heads, number of layers, and dropout) were selected during the initial
research phase by trail-and-error method, and remained the same across these
experiments.

We used separate datasets for each experiment for pretraining and classifi-
cation, as presented in Table 1. In every experiment, the dataset was divided
into training, validation, and test subsets. The validation evaluation was per-
formed every epoch, and the test evaluation was performed after the training
was completed.

3.2 Pretraining

In this stage, we train the MaskedTransformer from scratch as an autoencoder.
Specifically, we:

– Use the datasets of 10 mln (for C2 ⊗ C2), 16 mln (C2 ⊗ C3 and C3 ⊗ C3),
and 18 mln (for C4 ⊗ C4), described in detail in Table 1 in the Pretraining
columns.

– Split the dataset it into training (90%), validation (5%), and test (5%) par-
titions.

– Randomly mask a given fraction (15%) of tokens, replacing them with a
learned mask token.

– Pass the masked tokens through the Transformer encoder and reconstruct
them via a linear decoder head.

– Optimize the full reconstruction loss using mean squared error (MSE).
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Group name C2 ⊗ C2 C2 ⊗ C3 C3 ⊗ C3 C4 ⊗ C4

Pretraining
sep 4,000,000 8,000,000 6,000,000 9,000,000
general-ent 2,000,000 8,000,000 2,000,000 3,000,000
werner-ent 2,000,000 2,000,000 3,000,000
max-ent 2,000,000 2,000,000 3,000,000
horodecki-bound 2,000,000
horodecki-ent 2,000,000

Classification
sep 1,000,000 1,000,000 1,000,000 1,000,000
general-ent 300,000 1,000,000 500,000 300,000
werner-ent 300,000 500,000 300,000
max-ent 300,000 500,000 300,000
horodecki-bound 500,000
horodecki-ent 500,000

Table 1. Training data sizes for Pretraining and Classification tasks. Numbers indicate
samples used for each model configuration and data type. Group names correspond to
the type of data (pure separable, general entangled, etc.) described in Section 2.

The training uses a well-known cosine-annealing learning rate schedule and stan-
dard PyTorch Lightning callbacks for logging and checkpointing. Upon comple-
tion, the final checkpoints were saved for subsequent classification.

To evaluate the pretraining performace we introduce a metric called Her-
mitian distance, that measures the deviation of a matrix from being perfectly
Hermitian by computing the average Frobenius norm of the difference between
the matrix and its conjugate transpose:

h =
1

b

b∑
k=1

√
||Ak −A†

k||F , (7)

where b is the number of matrices in the batch, and Ak denotes the k-th complex
matrix. The notation A†

k refers to its conjugate transpose, and ∥ · ∥F indicates
the Frobenius norm. For a Hermitian matrix, Ak = A†

k, which makes the norm
vanish. When the matrix is split into real and imaginary parts, Ak = Rk +
i Ik, Hermiticity requires Rk to be symmetric

(
Rk = RT

k

)
and Ik to be anti-

symmetric
(
Ik = −ITk

)
. Consequently, the quantity Ak−A†

k captures deviations
from these symmetries, and its Frobenius norm measures how far the matrix is
from being perfectly Hermitian. Averaging over all matrices in the batch yields
the final distance h.

We used this metric to evaluate our pretraining process by assessing how
well the pretrained model preserves the Hermitian structure of the data when
15% of the matrix is reconstructed by a network. A lower Hermitian distance
indicates that the intrinsic mathematical properties are maintained, serving as
a meaningful indicator of the quality of pretraining.
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3.3 Classifier Training

After pretraining, we fine-tune the learned Transformer weights for a downstream
binary classification task. The core steps are:

– Load the pre-trained Transformer weights into a new model that augments
the Transformer encoder with a feed-forward classification head (two-class
output).

– Use the datasets of 1.9 mln (for C2 ⊗ C2 and C4 ⊗ C4), 2 mln (for C2 ⊗ C3),
and 3.5 mln (for C3⊗C3), described in detail in Table 1 in the Classification
subsection. This data is separate from the pretraining data.

– Split the dataset into training (90%), validation (5%), and test (5%) parti-
tions.

– Train the network using cross-entropy loss and the same PyTorch Light-
ning setup, with logging, checkpointing, and cosine-annealing learning rate
schedule.

This two-stage approach leverages the pre-trained Transformer’s learned rep-
resentation of the quantum matrices, enhancing the performance of the down-
stream classification task.

4 Results and discussion

To determine the final results of the pretraining and classification, we used the
separate data subset that was not used during the training phase neither for
training nor for validation and testing. This subset comprises of 100,000 samples
for each of the classes. The final evaluation was carried out for both pretraining
and classification after the entire training process was completed.

Pretraining During the pretraining phase, both the loss function and the Her-
mitian distance improved significantly. Table 2 shows the averaged results of the
Hermitian distance metric for the pretraining phase. The results are consistent
and show that, overall, the pretraining process ended up generating models that
are able to reconstruct the Hermitian structure of the data. Surprisingly, the
Hermitian distances achieved very low values during the early pretraining. We
did not observe any significant improvement in this metric after the first few
epochs, whereas the loss function continued to decrease. This suggests that the
model learned the Hermitian structure of the data very quickly, and the loss
function was optimized to a greater extent.

Classification The classification results are presented in Table 3. It is impor-
tant to emphasize that, while results are presented for each type of state, the
classification was deliberately kept binary–entangled vs. separable–as this is the
relevant distinction for practical applications. The results show that the model
was able to classify the states with very high accuracy. The results are con-
sistent across all dimensions and classes. The only errors appear for the pure
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Group name C2 ⊗ C2 C2 ⊗ C3 C3 ⊗ C3 C4 ⊗ C4

Untrained
sep 6.686 3.718 8.101 13.922
general-ent 6.704 3.716 8.098 13.921
werner-ent 6.645 8.131 13.908
max-ent 6.693 8.102 13.921
horodecki-bound 8.104
horodecki-ent 8.102

Pretrained
sep 0.265 0.364 0.419 0.458
general-ent 0.189 0.187 0.167 0.130
werner-ent 0.183 0.222 0.248
max-ent 0.296 0.449 0.478
horodecki-bound 0.120
horodecki-ent 0.122

Table 2. Averaged Hermitian distances for untrained and fully pretrained models.

separable states where a few of states were misclassified as entangled, and for
max-entanglement states in C4 ⊗C4 group where a few states were misclassified
as separable. This confirms the validity of our approach, as the model effectively
captures the structural properties of quantum states and generalizes well across
different state classes and dimensions, with only minimal misclassification in
specific cases.

Group name C2 ⊗ C2 C2 ⊗ C3 C3 ⊗ C3 C4 ⊗ C4

sep 99.995% 99.998% 100% 99.941%
general-ent 100% 100% 100% 100%
werner-ent 100% 100% 100%
max-ent 100% 100% 99.851%
horodecki-bound 100%
horodecki-ent 100%

Table 3. Accuracy of binary classification (entangled vs separated) for each data group.

To further verify our results, we tested whether the deep fine-tuning during
classification training provides an additional learning benefit beyond the pre-
training phase. Specifically, we took a pretrained model and froze all its layers
except for the final classification layer, which was then fine-tuned on labeled data.
This approach aimed to determine whether the pretrained representations alone
were sufficient for entanglement classification or if further adaptation was nec-
essary. The fine-tuned model performed nearly perfectly on C2⊗C2 and C2⊗C3

states but struggled with C3 ⊗ C3 states, achieving around 85% accuracy. A de-
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tailed breakdown revealed that while entangled states were consistently classified
correctly, the model frequently misclassified separable states. This suggests that
while the pretrained model captures general entanglement patterns, adapting
deeper layers during training may be crucial for distinguishing subtle features in
higher-dimensional separable states.

Discussion Our work is closely related to [8], which also explores automated en-
tanglement classification. However, we achieve significantly better results, with
near-perfect accuracy compared to their reported range of 62–88%. While their
approach struggled with deep learning, we successfully adapted transformers
into a highly effective classification method. An important distinction is that
the presence of bound entangled states in our dataset does not degrade perfor-
mance. Additionally, our dataset is substantially larger, containing millions of
states, whereas theirs consisted of only 3,254. Their dataset generation method,
in principle, allows for bound entangled states in any dimension, while our ap-
proach focuses on a specific family of states for the C3 ⊗C3 case. However, their
generation method is much more computationally expensive. Overall, our results
are consistent with theirs, but we extend the approach significantly, demonstrat-
ing the feasibility of deep learning for entanglement classification at a much larger
scale.

Our work serves as an example of the successful integration of machine learn-
ing techniques with quantum information science. Similar approaches–whether
in developing quantum information models [2] or solving quantum computing
problems [22]–represent a promising direction for the field. We expect that this
fusion of computational methods and quantum theory will gain increasing promi-
nence, much like the impact of machine learning in computational chemistry.

Our approach addresses a different but related problem compared to [9].
Their work focuses on generating entanglement witnesses for specific types of
quantum states and specially structured witnesses. While their method is well-
executed, it is inherently limited, as reflected in their choice of states. In contrast,
our approach is applied to a significantly larger dataset, allowing for a broader
and more flexible classification of entanglement. However, their method extends
to multipartite entanglement, an area we have not yet explored.

Non-ML classificarion To assess the difficulty of the problem and to benchmark
the performance of proposed approach against classical, we additionally tested a
non-Machine Learning method: Logistic Regression. It was selected as a simple,
interpretable classifier based on a linear decision boundary in the feature space.
Importantly, Logistic Regression does not capture higher-order correlations or
complex feature interactions, providing a baseline for how much structure in the
quantum state matrices can be detected via linear separation alone.

For the experiment the C3 ⊗ C3 dataset was used. The classifier was trained
on the same training dataset used in the basic deep learning setup. The model
was optimized using cross-entropy loss with L2 regularization. No explicit feature
engineering or non-linear kernelization was applied.
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The results, summarized in Table 4, reveal a significant drop in classification
performance compared to the proposed approach. It can be seen, that while
certain entangled states exhibit simple structures that can be identified linearly,
the general problem of entanglement classification, especially distinguishing pure
separable states and maximally entangled states, remains hard for simple linear
models.

Group name Accuracy (%)

sep 41.93%
general-ent 75.22%
horodecki-bound 100.00%
horodecki-ent 100.00%
werner-ent 100.00%
max-ent 53.98%

Table 4. Logistic Regression classification accuracy across different quantum state
groups. While the model achieved perfect classification on some classes, its perfor-
mance was substantially lower on others. Separable states achieved only around 41.9%
accuracy, and maximally entangled states (max-ent) were classified with 53.9% accu-
racy. General entangled states showed moderate success, with 75.2% accuracy.

Overall, while some structured quantum states can be linearly distinguished,
robust, high-accuracy classification across a diverse set of quantum states re-
quires models with greater capacity.

Limitations While our Quantum-aware Transformer shows near-perfect accuracy
on a large synthetic benchmark, several caveats warrant mention. (i) All exper-
iments presume full state tomography, which is an idealisation. (ii) Training,
validation, and test sets were produced by a synthetic pipeline and were limited
to bipartite systems up to C4⊗C4; hence, generalisation to higher-dimensional or
multipartite states and to independently synthesised data, remains unverified.
(iii) Finally, the present study tackles only binary separable versus entangled
discrimination and, apart from the fixed Horodecki family, does not distinguish
free from bound entanglement or quantify entanglement strength. We regard
these open issues as priorities for the next phase of our research.

Conclusions We have demonstrated that transformer-based neural networks can
effectively classify bipartite quantum states as entangled or separable by learning
directly from quantum state matrices. By leveraging a masked autoencoding
pretraining strategy, our model captures the structural properties of density
matrices, achieving near-perfect classification accuracy across various state types
and dimensions. These results highlight the potential of modern deep learning
architectures for quantum information processing, paving the way for scalable,
data-driven approaches to entanglement detection and beyond.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_15

https://dx.doi.org/10.1007/978-3-031-97570-7_15
https://dx.doi.org/10.1007/978-3-031-97570-7_15


14 Authors Suppressed Due to Excessive Length

Acknowledgments. This project was supported by the National Science Center
(NCN), Poland, under Projects: Sonata Bis 10, No. 2020/38/E/ST3/00269 (L.P.)

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.:
Unextendible product bases and bound entanglement. Physical Review Letters
82(26), 5385–5388 (1999). https://doi.org/10.1103/PhysRevLett.82.5385

2. Cholewa, M., Gawron, P., Głomb, P., Kurzyk, D.: Quantum hidden Markov models
based on transition operation matrices. Quantum Information Processing 16(4),
101 (Mar 2017). https://doi.org/10.1007/s11128-017-1544-8

3. Cramer, M., Plenio, M.B., Flammia, S.T., Somma, R., Gross, D., Bartlett, S.D.,
Landon-Cardinal, O., Poulin, D., Liu, Y.K.: Efficient quantum state tomography.
Nature Communications 1(1), 149 (2010). https://doi.org/10.1038/ncomms1147

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding (2019), https://arxiv.org/abs/
1810.04805

5. Gawron, P., Kurzyk, D., Pawela, Ł.: QuantumInformation.jl—a julia package
for numerical computation in quantum information theory. PLOS ONE 13(12),
e0209358 (dec 2018). https://doi.org/10.1371/journal.pone.0209358

6. Gisin, N., Thew, R.: Quantum communication. Nature Photonics 1, 165–171
(2007). https://doi.org/10.1038/nphoton.2007.22

7. Goel, R., Xiao, Y., Ramezani, R.: Transformer models as an efficient replacement
for statistical test suites to evaluate the quality of random numbers. In: 2024 In-
ternational Symposium on Networks, Computers and Communications (ISNCC).
pp. 1–6 (2024). https://doi.org/10.1109/ISNCC62547.2024.10758985

8. Goes, C.B.D., Canabarro, A., Duzzioni, E.I., Maciel, T.O.: Automated ma-
chine learning can classify bound entangled states with tomograms. Quan-
tum Information Processing 20(3), 99 (Mar 2021). https://doi.org/10.1007/
s11128-021-03037-9

9. Greenwood, A.C., Wu, L.T., Zhu, E.Y., Kirby, B.T., Qian, L.: Machine-learning-
derived entanglement witnesses. Physical Review Applied 19(3), 034058 (2023).
https://doi.org/10.1103/PhysRevApplied.19.034058

10. Gühne, O., Tóth, G.: Entanglement detection. Physics Reports 474(1-6), 1–75
(2009). https://doi.org/10.1016/j.physrep.2009.02.004

11. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary
and sufficient conditions. Physics Letters A 223(1-2), 1–8 (1996). https://doi.org/
10.1016/S0375-9601(96)00706-2

12. Horodecki, P., Horodecki, M., Horodecki, R.: Mixed-state entanglement and distil-
lation: is there a “bound” entanglement in nature? Physical Review Letters 80(24),
5239–5242 (1998). https://doi.org/10.1103/PhysRevLett.80.5239

13. Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be ac-
tivated. Physical Review Letters 82(5), 1056 (1999). https://doi.org/10.1103/
PhysRevLett.82.1056

14. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entangle-
ment. Reviews of Modern Physics 81(2), 865–942 (2009). https://doi.org/10.1103/
RevModPhys.81.865

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_15

https://doi.org/10.1103/PhysRevLett.82.5385
https://doi.org/10.1103/PhysRevLett.82.5385
https://doi.org/10.1007/s11128-017-1544-8
https://doi.org/10.1007/s11128-017-1544-8
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/ncomms1147
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1371/journal.pone.0209358
https://doi.org/10.1371/journal.pone.0209358
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1109/ISNCC62547.2024.10758985
https://doi.org/10.1109/ISNCC62547.2024.10758985
https://doi.org/10.1007/s11128-021-03037-9
https://doi.org/10.1007/s11128-021-03037-9
https://doi.org/10.1007/s11128-021-03037-9
https://doi.org/10.1007/s11128-021-03037-9
https://doi.org/10.1103/PhysRevApplied.19.034058
https://doi.org/10.1103/PhysRevApplied.19.034058
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevLett.80.5239
https://doi.org/10.1103/PhysRevLett.80.5239
https://doi.org/10.1103/PhysRevLett.82.1056
https://doi.org/10.1103/PhysRevLett.82.1056
https://doi.org/10.1103/PhysRevLett.82.1056
https://doi.org/10.1103/PhysRevLett.82.1056
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://dx.doi.org/10.1007/978-3-031-97570-7_15
https://dx.doi.org/10.1007/978-3-031-97570-7_15


QLLM 15

15. Kukulski, R., Nechita, I., Pawela, Ł., Puchała, Z., Życzkowski, K.: Generating
random quantum channels. Journal of Mathematical Physics 62(6) (2021). https:
//doi.org/10.1063/5.0038838

16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, 10th anniversary ed. edn. (2010)

17. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge university press (2010)

18. Ozols, M.: How to generate a random unitary matrix. http://home.lu.lv/sd20008
(2009), accessed: 2025-02-12

19. Peres, A.: Separability criterion for density matrices. Physical Review Letters 77,
1413–1415 (1996). https://doi.org/10.1103/PhysRevLett.77.1413

20. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum
Information & Computation 7(1-2), 1–51 (2007). https://doi.org/10.5555/2011706.
2011707

21. Puchała, Z., Jenčová, A., Sedlák, M., Ziman, M.: Exploring boundaries of quantum
convex structures: Special role of unitary processes. Physical Review A 92, 012304
(2015). https://doi.org/10.1103/PhysRevA.92.012304

22. Śmierzchalski, T., Pawela, Ł., Puchała, Z., Trzciński, T., Gardas, B.: Post-error cor-
rection for quantum annealing processor using reinforcement learning. In: Groen,
D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot,
P.M.A. (eds.) Computational Science – ICCS 2022. pp. 261–268. Springer Interna-
tional Publishing (2022)

23. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 30. Curran Asso-
ciates, Inc. (2017), https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

24. Vidal, G., Werner, R.F.: A computable measure of entanglement. Physical Review
A 65(3), 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314

25. Watrous, J.: The theory of quantum information. Cambridge university press
(2018)

26. Życzkowski, K.: Volume of the set of separable states. ii. Physical Review A 60(5),
3496 (1999). https://doi.org/10.1103/PhysRevA.60.3496

27. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: On the volume of the
set of mixed entangled states. Physical Review A 58(arXiv: quant-ph/9804024),
883 (1998). https://doi.org/10.1103/PhysRevA.58.883

28. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of
separable states. Physical Review A 58(2), 883 (1998). https://doi.org/10.1103/
PhysRevA.58.883

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_15

https://doi.org/10.1063/5.0038838
https://doi.org/10.1063/5.0038838
https://doi.org/10.1063/5.0038838
https://doi.org/10.1063/5.0038838
http://home.lu.lv/sd20008
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.5555/2011706.2011707
https://doi.org/10.5555/2011706.2011707
https://doi.org/10.5555/2011706.2011707
https://doi.org/10.5555/2011706.2011707
https://doi.org/10.1103/PhysRevA.92.012304
https://doi.org/10.1103/PhysRevA.92.012304
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.60.3496
https://doi.org/10.1103/PhysRevA.60.3496
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevA.58.883
https://dx.doi.org/10.1007/978-3-031-97570-7_15
https://dx.doi.org/10.1007/978-3-031-97570-7_15

