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Abstract. We consider a graph labeling problem, i.e., the cyclic band-
width problem, and its formulation in QUBO, the input language for
quantum computers based on quantum annealing. To this end, we first
consider a constraint programming model based on table constraints and
then we derive from this model the QUBO formulation and its penalty
matrix. We also detail an analysis of this QUBO model in terms of num-
ber of qubits and their required inter-qubit connections in order to esti-
mate the suitability of implementing such a solution on quantum anneal-
ers, i.e., the D-Wave Advantage system with a specific graph topology
for qubit couplers.

1 Introduction

The new domain of quantum optimization refers to the use of quantum com-
puters to solve combinatorial optimization problems. It has been gaining in-
creasing attention over the past decade. This interest spans both the gate-model
paradigm, with the development of the Quantum Approximate Optimization
Algorithm (QAOA) [13], and the quantum adiabatic computing paradigm, with
the development of Quantum Annealing (QA) [20, 14]. The Quantum Annealing
(QA) paradigm was proposed more than two decades ago as an alternative to the
gate-based model in quantum computing. It involves modeling a problem using
the Hamiltonian (energy function) of a system, where the ground state corre-
sponds to the solution of the original problem. The computation starts from a
simple initial Hamiltonian with a known ground state, which is easy to prepare.
Through adiabatic evolution, the system gradually transitions to the ground
state of the problem Hamiltonian [28]. From a computational point of view, it
is related to simulated annealing. However, it takes advantage of the quantum
tunneling effect to overcome energy barriers and escape local minima, aiming to
reach the ground state, rather than relying on (simulated) thermal effects. In
the last decade, the development of quantum devices such as D-Wave quantum
annealers [7], as well as more recently the ”quantum-inspired” hardware such
as Fujitsu Digital Annealer [4], makes it possible to experiment QA on a vari-
ety of abstract or real-life problems [38], especially combinatorial optimization
problems [29, 36].
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Many examples of classical NP-complete problems have been defined as Ising
models in the seminal work of Lucas [25], and the formulation of problems in
terms of Ising models is very close to, and indeed equivalent to, a formulation in
Quadratic Unconstrained Binary Optimization (QUBO), a simple but powerful
paradigm for modeling various types of combinatorial problems, see for instance
[16] for a tutorial introduction and [30] for details. Therefore QUBO has become
in the last years the standard input language for all quantum and quantum-
inspired annealing hardware.

We are therefore interested in this paper in modeling in QUBO the Cyclic
Bandwidth Problem, a graph-based combinatorial problem with many appli-
cations, in order to make it possible to use quantum annealing to solve it. The
decision problem corresponding to the Cyclic Bandwidth is known to be NP-
complete [23], and is usefull for important application areas like VLSI designs [5],
data structure representations [33], code design [10], and interconnection net-
works for parallel computer systems [19].

The classicalCyclic Bandwidth problem is an optimization problem where
the input is an undirected graph G = (V,E) with |V | = n vertices. The task is to
find a labeling φ of the vertices V , such that each vertex v is assigned a unique
value φ(v) ∈ [1, n], that minimizes Bc(G,φ) = max(u,v)∈E(G){min{|φ(u) −
φ(v)|, n− |φ(u)− φ(v)|}}, which represents the cyclic bandwidth of G.

On the one hand, modeling this problem in QUBO with Boolean variables
(i.e., with only two possible values, 0 and 1) and quadratic polynomials is not
straightforward and deriving the part of the QUBO matrix that corresponds to
the problem constraint is even more unclear. On the other hand, Constraint Pro-
gramming [34, 1] is a programming paradigm that enables one to declaratively
model problems as Constraint Satisfaction Problems (CSPs) or Constrained Op-
timization Problems (COPs).

We thus propose to convert a CSP model for the cyclic bandwidth problem
into a QUBO formulation with quadratic penalty expressions corresponding to
the problem constraints. The direct formulation of the cyclic bandwidth problem
in COP is straightforward and very close from the mathematical formulation of
the problem. However, solving such derived instances directly is not efficient in
the Constraint Programming paradigm: most of the constraints are in the ob-
jective function, and thus, constraint propagation is rather inefficient. We then
derive a CSP model for determining the satisfiability, and obviously a labelling
with a cyclic distance less than or equal to a given k. This model is based on
table constraints, i.e., constraint in extension studied initially in [2, 3] and more
recently as table constraints, see for example [21], or [37] for a complete overview.
This satisfiability algorithm is completed with two different algorithms for op-
timization: an incremental algorithm for minimization, and another algorithm
based on dichotomy and an intrinsic property of the problem. It is then easier to
derive from those formulations the QUBO model of the cyclic bandwidth model
and the QUBO matrix representing the objective function and the penalty ex-
pressions corresponding to the constraints. We also give some upper bounds on
the number of logical qubits and inter-qubit connections necessary to encode
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some problem instances to discuss which kind of graphs could be treated with
current quantum computing systems such as the D-Wave Advantage [27].

This paper is organized as follows. We introduce constrained optimization
in QUBO in Section 2. Then, in Section 3, we give the problem and its CSP
formulation. From these models, we propose a quadratic model for the cyclic
bandwidth problem in Section 4. We then give the overall QUBO matrix repre-
senting the constraints and objective function of the model in Section 5. A short
conclusion ends the paper.

2 Constrained Optimization in QUBO

Consider n Boolean variables x1, ..., xn, a Quadratic Unconstrained Binary Op-
timization (QUBO) problem consists in minimizing an objective function defined
by a quadratic expression over x1, ..., xn:

∑
i≤j qijxixj

A QUBO problem can therefore be represented by a vector x of n Boolean
decision variables and a square n × n matrix Q with coefficients qij . Then the
minimization problem can be written as:
minimize y = xtQx,where xt is the transpose of x.

Observe that this quadratic formulation also includes a linear part, corre-
sponding to the matrix diagonal, because x2

i = xi for Boolean variables (xi).
As pioneered by [25], simple combinatorial problems are easy to express di-

rectly as Ising or QUBO models, but more complex problems, especially prob-
lems involving constraints such as Constrained Optimization Problems (COP) or
Constraint Satisfaction Problems (CSP), are more difficult to model in QUBO.

As developed in the Constraint Programming paradigm [34], Constraint ex-
pressions can be introduced in QUBO models as penalties in the objective func-
tion to minimize, that is, as quadratic expressions whose value is minimal when
the constraint is satisfied. An easy way to formulate such a penalty for a given
constraint is to create a quadratic expression which has value 0 if the constraint
is satisfied and a positive value if the constraint is not satisfied, representing
somehow the degree of violation of the constraint. However, in the general case,
minimal values of penalty expressions are not bound by zero and can be negative.

Consider for instance the pseudo-Boolean constraint x + y + z = 1. It can
be represented by the penalty expression −x − y − z + 2xy + 2xz + 2yz. This
expression will have minimal value −1 when a single Boolean variable has value
1 and will have a higher value otherwise. Observe that this constraint enforces
that among the three variables x, y and z one and only one will be set to 1. This
quadratic expression corresponding to a pseudo-Boolean constraint can be used,
for instance to model the well-known graph-coloring problem in order to state
that one node shall be colored with a single color (e.g., among three possible
values). Such a constraint is called one-hot encoding in QUBO and widely used
for modeling combinatorial problems.

For modeling the cyclic bandwidth problem, we need to consider a more
complex constraint: the AllDifferent/Permutation constraint. To enforce that n
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integer variables assigned to values in {1, . . . , n} form a permutation, we need to
use a simple property of permutations stating that each value k ∈ {1, . . . , n} is
assigned exactly once. This is known as a two-way one-hot in the QA literature.
In the Constraint Programming community, such a permutation constraint is a
special case of the all-different constraint, which has been the subject of a large
literature and various solving techniques [15, 18].

Consider n integer variables xi ∈ {1, . . . , n}, and n2 Boolean variables xij

encoding each xi in such a way that xij = 1 if xi has value i and value 0 otherwise
(one-hot encoding). The constraint that (x1, . . . , xn) forms a permutation of
{1, . . . , n} can be encoded in QUBO by 2× n pseudo-Boolean constraints:

– n constraints corresponding to each of the n variables xi stating that it can
have only one value k

– n constraints for each of the n values k stating that it can be assigned to
only one variable xi.

Each constraint is a one-hot constraint of the form
∑

xij = 1, with different
index sets, which is equivalent to (

∑
xij − 1)2 = 0 as the xij are Boolean

variables. Consider now the quadratic expression (
∑

xij − 1)2. This expression
will have value zero when the permutation constraint is satisfied and a positive
value otherwise; it can thus be used as a penalty corresponding to the constraint
that should be added to the QUBO objective function in order to have the
constraint satisfied for every minimal solution of the QUBO problem. Therefore
the penalty for the permutation constraint is given by adding together all the
2 × n penalty expressions corresponding to the basic one-hot constraints and
simplifying the quadratic expression gives the following definition [11, 12]:

Pperm =

n∑
i=1

∑
j<j′

xijxij′ +

n∑
j=1

∑
i<i′

xijxi′j −
n∑

i=1

n∑
j=1

xij

3 The cyclic bandwidth problem

3.1 The problem

The Cyclic Bandwidth problem is a graph labeling problem whose complexity
has been established as NP-hard [23]. Let G(V,E) be a finite undirected graph
(called the guest graph) of order n (i.e., with |V | = n), and Cn(V

′, E′) be a cycle
graph (called the host graph) with |V ′| = n. An embedding of G in Cn is an
injection ϕ : V → V ′. The cyclic distance dc between two vertices (u, v) ∈ E
(i.e., two vertices of V linked by an edge of E) is defined by:

dc(u, v) = min{|ϕ(u)− ϕ(v)|, n− |ϕ(u)− ϕ(v)|} (1)

The cyclic bandwidth of an embedding ϕ : V → V ′ is the maximum distance
between two vertices linked by an edge:

Bc(G,ϕ) = max(u,v)∈E{dc(u, v)} (2)
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The Cyclic Bandwidth problem consists in finding an embedding ϕ∗ among
the set E of embeddings from G to Cn such that Bc(G,ϕ∗) is minimum, i.e.,

B∗
C(G) = minϕ∈E{Bc(G,ϕ)} (3)

3.2 Cyclic bandwidth as a Constrained Optimization Problem

Constraint programming (CP) [34] is a paradigm for addressing combinatorial
problems by employing various techniques derived from artificial intelligence,
computer science, and operations research. In CP, users specify ”what” the prob-
lem is rather than ”how” to solve it. This approach allows users to declaratively
state the problem: programming corresponds to modeling, and a program is a
model. A model represents a problem; together with data they represent a prob-
lem instance (or just an instance) which is then solved by a solver. In our case,
the model represents the cyclic bandwidth problem, the model plus a given graph
are an instance of the cyclic bandwidth problem. A solver is one or some algo-
rithms for solving problem instances. A solver is generic, i.e., it is not specialized
for a given problem: a solver is just limited by the constraints and variables it
accepts (most of the time, bounded integers with arithmetic or symbolic con-
straints). Classical constraint solvers in the CP approach are based on constraint
propagation: the solver reduces the search space by repeatedly applying filtering
functions to remove values of domains that cannot participate in any solution;
this phase is interleaved with decision phases that split the search space into
two, leading to a kind of branch and bound for optimization problems.

Consequently, a problem is formulated as either a constraint satisfaction
problem (CSP) or a constrained optimization problem (COP). A CSP is char-
acterized by decision variables, each with a domain of possible values, and con-
straints that define the relationships between these variables. A COP extends a
CSP by including an objective function that needs to be optimized.

Direct model The direct model is very close to the mathematical definition
of the Cyclic Bandwidth problem. It is based on bounded integer variables
(called finite domain decision variables) that are linked by some arithmetic lin-
ear constraints. A vertex v is represented by its number in [1..n]; by abuse of
language, the number of v is also v, an integer in [1..n]. A label lv for a vertex
v ∈ V is thus represented by a finite domain variable ranging from 1 to n:

∀v ∈ [1..n], lv ∈ [1..n] (4)

In our model, a labeling ϕ is thus represented by a sequence l1, . . . , ln that is a
permutation of 1, . . . , n. We denote by Sn the set of permutations of 1, . . . , n.
The next constraint means that two vertices cannot have the same label:

∀v, v′ ∈ [1..n], v < v′ ⇒ lv ̸= lv′ (5)
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In terms of COP, these n ∗ (n + 1)/2 disequalities are equivalent to the global
constraint3 AllDifferent [15, 18]. Moreover, since there are n variables, each one
having n candidate values, we have a permutation. The following constraint is
thus semantically equivalent to the constraints in Formula (5):

Permutation({lv | v ∈ V }) (6)

The cyclic bandwidth of the current labeling l is given by the following constraint:

Bc(G, l) = max
(u,v)∈E

{dc(lu, lv)} (7)

where Bc(G, l) is a finite domain variable ranging from 1 to n− 1. Note that dc
has been defined in Equation 1. As said before, the cyclic bandwidth must be
minimized to obtain l∗1, . . . , l

∗
n, one of the best cyclic labelings

B∗
C(G) = minimize(l1,...,ln∈Sn) BC(G, l) (8)

where B∗
C(G) is a finite domain variable ranging from 1 to n− 1, and Sn is the

set of all the permutations of 1, . . . , n. The direct model M⋆
d is thus:

M⋆
d = (4) ∧ (6) ∧ (7) ∧ (8)

Since all of the constraints, except the permutation constraint, are in the
objective function, this model does not provide enough information to efficiently
reduce the search space.

Model with extensional constraints Now consider that we have a decision
procedure sat(G, k) able to return true if a labeling l such that Bc(G, l) ≤ k
exists, otherwise false. A classic optimization algorithm (see Algorithm 1) for
minimization is the incremental minimization: it consists of starting from a given
lower bound k that can be initialized with ⌈∆(G)/2⌉ [24], where ∆(G) represents
the maximum degree of G. If sat(G, k) is satisfiable, then k is the minimum.
Otherwise, k is incremented, and the algorithm iterates.

Hence, optimization inc(G, ⌈∆(G)
2 ⌉) returns B∗

c (G).
However, it is obvious that if a cyclic labeling l exists with a cost of k, i.e.,

Bc(G, l) = k then there is also one with a cost of k + 1. Conversely, if there
is no labeling with a cost of k, then none exists with a cost of k − 1. Then,
based on the above property and the satisfiability procedure, we present an effi-
cient dichotomic optimization algorithm (see Algorithm 2). The lower and upper
bounds, lb and ub, can be initialized with ⌈∆(G)/2⌉ and ⌈n/2⌉ respectively [24].
Hence, optimization dic(G, lb, ub) returns B∗

c (G).
Now, let’s focus on the sat(G, k) function. We need to define a function

able to decide whether there exists or not a labeling l such that Bc(G, l) ≤ k.

3 A global constraint has two advantages compared to the equivalent ”simple” con-
straints: it is more expressive and the solver has some special more efficient algo-
rithms to solve it.
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Algorithm 1 optimization inc(G, k)

if sat(G, k) then
return k

else
k ← k + 1
optimization inc(G, k)

end if

Algorithm 2 optimization dic(G, lb, ub)

kbest ← ub
while lb < ub do

k ← (ub+ lb) div 2
if sat(G, k) then

ub← k
kbest ← ub

else
lb← k + 1

end if
end while
return k

To this end, we consider finite domain extensional constraints (see, e.g., [3]),
also known as table constraints [21]: a constraint is defined by enumerating the
allowed tuples of constants satisfying it; this table can be seen as a kind of truth
table of the constraint. Then, a tuple of variables satisfies the constraint if it is
an element of this table. Now, let us consider L(k), the set of possible pairs of
labels for pairs of vertices linked by an edge:

L(k) = {(ℓ, ℓ′) | ℓ, ℓ′ ∈ [1..n]2, ℓ ̸= ℓ′ ⇒ min{|ℓ− ℓ′|, n− |ℓ− ℓ′|} ≤ k}

The model is now given by:

– the same finite domain variables as for model Md;
– each label is unique, thus we keep the Permutation Constraint (6);
– distance dc between the two vertices of an edge must be less than or equal

to k, i.e.,

∀(u, v) ∈ E, (lu, lv) in L(k) (9)

Thus, the finite domain extensional constraint satisfiability model is:

ME,k = (4) ∧ (6) ∧ (9) (10)

Note that this model depends on k, the cyclic bandwidth value. When call-
ing sat(G, k), the ME,k model is instanciated with graph G. Then, a classical
propagation-based solver (such as Gecode [35] ou ACE [22]) can determine the
satisfiability of the instance, and a labeling l respecting Bc(G, l) ≤ k).
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4 The cyclic bandwidth problem as a QUBO model

Modeling the cyclic bandwidth problem as a quadratic unconstrained binary
optimization (QUBO) problem is not intuitive. However, passing via the con-
straint formulation, and more especially the extensional constraint model decou-
pling satisfiability from optimization, makes it possible to formulate more easily
a quadratic model equivalent to the ME,k model. Let us first transform in a
binary quadratic form the ME model.

As we only consider Boolean variables, each variable lu (u being a vertex,
and lu being the label of u) of the previous section is replaced by n variables
lu,1, . . . , lu,n with the following semantics: lu = i iff lu,i = 1 and for each j ∈
[1..n], j ̸= m ⇒ lu,j = 0.

We can enforce this semantic for each label lu using the one-hot constraint:

∀u ∈ [1..n],
∑

i∈[1..n]

lu,i = 1 (11)

Then, each label i can be used only once:

∀i ∈ [1..n],
∑

u∈[1..n]

lu,i = 1 (12)

The Constraints (11) and (12) define a permutation of 1, . . . , n, see Section 2.

We finally have to formulate that the distances between the two labels of
vertices of an edge are less than or equal to the given maximal distance k.
Consider the L(k) set of couples are as defined before, and edges (u, v) defined
by couples of vertices numbers. We can formulate the table constraint given by
the couples in L(k) in terms of Boolean variables lu,i and lv,j as follows:

∀(u, v) ∈ E,
∑

(i,j)̸∈L(k)

lu,ilv,j = 0 (13)

Then, the quadratic penalty corresponding to this table constraint can be easily
derived from this set of pseudo-Boolean equations, as follows:

Ptable =
∑

(u,v)∈E

( ∑
(i,j)̸∈L(k)

lu,ilv,j

)
(14)

5 The QUBO matrix

We can now define the QUBO matrix, i.e., the matrix composed of the coeffi-
cients of quadratic monomial terms of the objective function to minimize.

First, we define the QUBO matrix Q = Qtable +Qperm, where:

– Qtable is the matrix of penalties representing the quadratic expression Ptable

and corresponding to the table constraints; here, we have to minimize the
sum appearing in Equation 14 in the QUBO model which is due to each of
the table constraints (as defined in Constraint (9) for the CSP model).
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– Qperm is the matrix of penalties representing the quadratic expression Pperm

given in Section 2 and corresponding to the permutation constraint, i.e., the
set of Constraints in (11) and (12).

The matrix Q (and thus Qtable and Qperm), is a square matrix of size n2,
n2 being the number of Boolean variables in the vector of decision variables
L = (l1,1, . . . , l1,n, . . . , ln,1, . . . , ln,n). Solving the QUBO problem consists in min-
imizing LtQL. In the case of the Cyclic Bandwidth Problem, Q(li,j , li′,j′) can
be seen as the penalty associated to giving the value j to the label li and the
value j′ to the label li′ . The problem is thus satisfied if and only if LtQL = 0.

5.1 Penalties

We now describe how the penalties are computed.

For the Permutation constraint, we have the penalty defined in [11, 12] and
stated at the end of Section 2. Figure 1 shows an example for 3 initial variables
with domains {1, 2, 3}, encoded by 9 Boolean variables. Note that on the matrix
in Figure 1 we can see some diagonals of three 1 appearing, to forbid having twice
the same label. We have also the repeated pattern of one-hot on the diagonal.

Qperm =



l1,1 l1,2 l1,3 l2,1 l2,2 l2,3 l3,1 l3,2 l3,3
l1,1 −1 1 1 1 0 0 1 0 0
l1,2 −1 1 0 1 0 0 1 0
l1,3 −1 0 0 1 0 0 1
l2,1 −1 1 1 1 0 0
l2,2 −1 1 0 1 0
l2,3 −1 0 0 1
l3,1 −1 1 1
l3,2 −1 1
l3,3 −1


Fig. 1. Penalty matrix for a permutation constraint over 3 variables with 3 values.
Note that the diagonals in red mean that two variables cannot have the same value.
Note also that the matrices on the diagonal, in green (for variables l1,− and l2,−) and
blue (for l3,−) means that a variable has one and only one value .

For Constraints (13), i.e., the sums of quadratic monomials encoding the table
constraint, we give penalties to couples not member of the table constraint. Thus,
each sub-matrix Qu,v such that (u, v) ∈ E is defined as shown in Figure 2 on
the left: entries of the matrix are strictly greater than 0 if they correspond to
an element which is not in the table, and equal to 0 otherwise. Sub-matrices
corresponding to couples of variables that are not an edge are empty matrices.
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Qtable =


lv,1 lv,2 lv,3

lu,1 1 t(1, 2) t(1, 3)
lu,2 0 1 t(2, 3)
lu,3 0 0 1

 Qtable =


lv′,1 lv′,2 lv′,3

lu′,1 0 0 0
lu′,2 0 0 0
lu′,3 0 0 0


Fig. 2. Penalty sub-matrices considering variables with 3 candidate labels {1, 2, 3}.
On the left, a penalty sub-matrix with (u, v) ∈ E (and u ̸= v since we consider graphs
without loops): the diagonal in red means that the two vertices cannot have the same
label; for other entries, t(i, j) = 1 if (i, j) ̸∈ L(k), 0 otherwise.
On the right: when (u′, v′) ̸∈ E the corresponding sub-matrix Qu′,v′ is empty.

5.2 Counting qubits and their connections

The QUBO matrix is the input representation for the quantum annealing com-
putation that will be performed on quantum devices such as D-Wave systems
or quantum-inspired dedicated hardware such as Fujitsu Digital Annealer. Each
system has its own limitation in terms of numbers of (physical) qubits, qubit
interconnections, and hardware graph/topology. Thus, it is important to eval-
uate the size of QUBO models in terms of logical qubits and their connections
for the cyclic bandwidth problem. Indeed, since we don’t consider here the
hardware graph, this will enable us to give, in the next section, a lower bound of
the physical qubits required for their evaluation on current quantum hardware.

Consider a graph with n vertices, |E| edges, and a cyclic labeling of value
k. Let us first count the Boolean variables lu,i that we need to represent the
n possible values of the n labels: hence, n2 variables in total. Then, we can
count oc(lu,i), the number of occurrences of lu,i in the penalty matrices, i.e.,
connections with another variable.

For the permutation constraint: For the n n×n-matrices composing the diagonal
we have n2(n − 1)/2 strictly positive values (n matrices on the diagonal, each
one with n(n − 1)/2 values > 0). There are n(n − 1)/2 n × n-matrices in the
upper triangular matrix without the diagonal. For each of these matrices, only
the diagonal is composed of values strictly greater than 0 (n values per matrix).
Thus, we have n2(n − 1)/2 non-zero entries in the upper triangular matrix. In
total, the permutation constraint generates n2(n − 1) penalties, i.e., entries of
the Qperm matrix that are strictly greater than 0.

All the li,j variables are equivalent and penalized the same way. Hence, each
variable li,j is penalized: 2n2(n − 1)/n2 = 2(n − 1) times which is the total
number of penalties divided by the number of lines, and multiplied by 2 since
each entry of the matrix implies 2 variables. For example, for a permutation of
3 variables having a domain of size 3, this gives 4 penalties for each li,j w.r.t.
the permutation constraint.

For the table constraints: For each edge (u, v) ∈ E, we have the following. Sup-
pose i is the label of u, then 2k labels j can correspond to i to respect the given
distance k. Thus, n− 2k labels are penalized to minimize the objective function
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

lv,1 lv,2 lv,3 lv,4 lv,5 lv,6 lv,7 lv,8 lv,9 lv,10 lv,11 lv,12
lu,1 1 0 0 0 1 1 1 1 1 0 0 0
lu,2 1 0 0 0 1 1 1 1 1 0 0
lu,3 1 0 0 0 1 1 1 1 1 0
lu,4 1 0 0 0 1 1 1 1 1
lu,5 1 0 0 0 1 1 1 1
lu,6 1 0 0 0 1 1 1
lu,7 1 0 0 0 1 1
lu,8 1 0 0 0 1
lu,9 1 0 0 0
lu,10 1 0 0
lu,11 1 0
lu,12 1


Fig. 3. Penalty matrix for a table constraint for an edge (u, v) ∈ E with k = 3 and
n = 12. Note that the width of the two diagonal stripes of 0 (in green) is k. The
diagonal of 1 (in red) has a width of n − 2k − 1. Note also that when k is growing of
an increment δ, the width of the two diagonal stripes of 0 (in green) is also growing of
δ. Last, note that the main diagonal of 1 (in blue) means that the same label cannot
be given to two vertices. This diagonal could be set to 0 since this constraint is taken
in account by the permutation matrix.

of Equation (13). These penalties are all in the n × n-submatrix corresponding
to the lu,i and lv,j , and they are distributed as shown in Figure 3.

All the penalty sub-matrices corresponding to edges from G are disjoint (i.e.,
each one fits to one u and one v), Thus, in total, a variable lu,i appears oc(lu,i) =
d(u)(n− 2k) times for the objective function of Equation (14), with d(u) being
the degree of u (i.e., the number of edges connected to u). This number of
occurrences can be made independent from u by bounding it as follows:

oc(lu,i) ≤ ∆(G)(n− 2k)

with ∆(G) the maximum degree of the graph.

For the addition of the penalty matrices for the objective function and the per-
mutation constraint. An easy counting consists in only summing occurrences
of entries strictly greater than zero. This gives the following upper bound of
occurrences of a variable lu,i:

oc(lu,i) ≤ d(u)(n− 2k) + 2(n− 1)

Moreover, since d(u) ≤ ∆(G)

oc(lu,i) ≤ ∆(G)(n− 2k) + 2(n− 1)

However, we can see on the penalty matrix of the permutation that the
diagonals of 1, corresponding to a sub-matrix lu,−×lv,−, is already in the penalty
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matrix of the objective if and only if (u, v) ∈ E. This means that one non-
negative entry is counted in the penalty matrix of the permutation and of the
tables. We hence obtain that:

oc(lu,i) = d(u)(n− 2k) + 2(n− 1)− d(u) = d(u)(n− 1− 2k) + 2(n− 1)

This can be over-estimated for all vertices u by:

oc(lu,i) ≤ ∆(G)(n− 1− 2k) + 2(n− 1)

5.3 Practical usability

We will focus our analysis on the quantum annealing D-Wave Advantage system
[27], which has a specific architecture and graph topology interconnecting the
qubits: there is a total of 5640 qubits, and each qubit has 15 connections linking
with others qubits according to the Pegasus topology [6]. This specification is
useful to be able to evaluate the number of physical qubits needed for represent-
ing an instance, as inter-connections between qubits have to be realized either
by physical connections (”couplers” in quantum device terminology) or by us-
ing extra qubits with a transformation called minor embedding [8, 9]. The graph
topology is indeed a key limit for the size of the instances that can be imple-
mented on quantum annealing devices. For example on the D-Wave Advantage,
the theoretical maximal all-to-all connectivity that can be simulated is limited to
177 ”logical” qubits [27], vs. 5640 ”physical” qubits. Note that the minor embed-
ding algorithm currently implemented on D-Wave systems is based on heuristics
and thus is not guaranteed to perform the theoretical optimal embedding, i.e.,
the one with the minimal number of qubits and inter-qubits connections.

In the previous section, we gave the theoretic ”dimensions” of an instance. We
now illustrate this usability on the 113 Harwell-Boeing classical benchmark [26],
extracted from the Harwell-Boeing sparse matrix collection1. Consider the in-
stance pores 1 which is rather small but also rather dense: it has 103 edges
and n = 30 vertices, and the maximum degree is ∆(G) = 9 (for 6 vertices).
The minimal cyclic bandwidth is in [5..15] as explained in Section 3 when fixing
the bounds of the optimization algorithm. This means that we need 900 log-
ical qubits to represent the lu,i (QUBO variables), and each logical qubit has
at most 247 connections for k = 5 and 49 connections for k = 15. Then, for
k = 15, we need 4 physical qubits for each logical qubit (with a chain of physical
qubits representing the same logical qubit), thus a total of 3600 qubits. Since we
don’t take into account the hardware graph, this is a lower bound that remains
tractable on systems such as the D-Wave Advantage. To ensure feasibility, the
upper bound – considering hardware constraints – must also be tractable.

However, 19 physical qubits are necessary for each logical qubit for k = 5,
therefore requiring 17,100 qubits in total. Even without considering the hard-
ware graph, we can determine that this instance is not tractable on the D-Wave
Advantage or any other current quantum system.

1 see, e.g., https://math.nist.gov/MatrixMarket/collections/hb.html and
https://sparse.tamu.edu/HB
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Although larger, instances such as bcspwr01, and paths, cycles, caterpillars,
and small trees with less than 30 vertices from [31] could be tractable on the
current D-Wave quantum devices because of very low densities.

6 Discussion and Conclusion

The use of quantum computers, and in particular quantum annealing, to solve
concrete problems in the domain of combinatorial optimization currently raises
tremendous interest. Quadratic Unconstrained Binary Optimization (QUBO) is
the input formalism for such quantum devices based on quantum annealing and
is thus the target language of choice for modeling optimization problems to be
solved by quantum annealing. However, modeling an optimization problem in
QUBO can be a tedious task, especially when complex constraints are involved
as such constraints have to be replaced by quadratic penalty expressions to be
integrated in the objective function.

Graph embedding, and more especially graph labeling and the cyclic band-
width problems, are problems that can easily be modeled in the constraint pro-
gramming paradigm, which consists in declaratively modeling problems as CSP
(for satisfaction problems) or COP (for optimization problems), but this for-
mulation is not always efficient. Rephrasing the cyclic bandwidth problem as
a satisfaction problem together with an upper layer for optimization, a CSP
model based on extensive constraints (table constraints) can be defined. This
model is elegant and can be solved more efficiently than the direct model with
standard constraint propagation-based solvers. Moreover, this model is a good
basis for deriving the penalty matrix and define a QUBO model to be solved by
quantum annealing. For practical considerations, we also count the number of
logical qubits and of qubit inter-connections required in this model for a given
graph instance. We can see that the smallest instances of the HB113 benchmarks
seems attainable by the current D-Wave Advantage device. Quantum hardware
is still in early development, and larger instances will be achievable as devices
with more qubits and better qubit interconnections will be available in the com-
ing years, for instance the D-Wave Advantage2 system with 4800 qubits and a
20-way qubit connectivity.

Various graph labeling problems are based on the optimization of a distance
between labels, with as many labels as vertices: for example, the 2D bandwidth
problem (e.g., [32]), the bandwidth problem [17] and the cyclic bandwidth prob-
lem, as in this paper. All these problems can be modeled with table constraints
and permutation/alldifferent constraints, and therefore can also be formulated
in QUBO by applying the technique and methodology presented in this paper.
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19. Hromkovič, J., Müller, V., Sýkora, O., Vrt’o, I.: On embedding interconnection net-
works into rings of processors. In: PARLE’92. Lecture Notes in Computer Science,
vol. 605, pp. 53–62. Springer (1992)

20. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.
Physical Review E 58, 5355–5363 (Nov 1998)

21. Lecoutre, C.: Optimization of simple tabular reduction for table constraints. In:
Principles and Practice of Constraint Programming, 14th International Conference,
CP 2008, Proceedings. LNCS, vol. 5202, pp. 128–143. Springer (2008)

22. Lecoutre, C.: Ace, a generic constraint solver (2023), https://arxiv.org/abs/
2302.05405

23. Lin, Y.: The cyclic bandwidth problem. Systems Science and Mathematical Sci-
ences 7 (01 1994)

24. Lin, Y.: Minimum bandwidth problem for embedding graphs in cycles. Networks
29(3), 135–140 (1997)

25. Lucas, A.: Ising formulations of many NP problems. Frontiers in Physics 2 (2014)
26. Mart́ı, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse

matrix with tabu search. European Journal of Operational Research 135(2), 450–
459 (2001)
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