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Abstract. This paper investigates the time and energy consumption
of LU (with MKL library) and WZ multithreaded matrix factorization
algorithms on Intel and AMD processors, utilizing OneAPI and Clang
compilers. The study evaluates how processor architecture and compiler
optimizations impact time and energy use during matrix factorization.
We describe the experimental setup, including hardware specifications,
software configurations, and methods for collecting time and energy met-
rics. Both algorithms are tested under various conditions to assess their
suitability for energy-efficient high-performance computing.

The results show variations in execution times and energy consumption
based on the processor and compiler used. For LU factorization on Intel
Xeon processors, Intel OneAPI optimizations prove most effective, while
for WZ factorization on AMD EPYC processors, the Clang compiler
demonstrates better performance. Choosing the right compiler options
can reduce time and energy consumption by up to 6.5%.

Keywords: time - energy - WZ factorization - LU factorization - MKL
- compilers options.

1 Introduction

Matrix factorization is a key concept in linear algebra, widely used in solving
systems of linear equations. Among the most popular factorization methods
are LU and WZ factorizations, which differ based on the specific application.
LU factorization is a well-known factorization of a matrix into lower and upper
triangular matrices, whereas WZ factorization offers an alternative approach that
may yield better results on systems capable of parallel operations. A growing area
of interest is the study of both algorithm execution time and energy consumption
[3,14] across different architectures [18]. Additionally, research on the impact of
compilers on execution time and energy consumption [2, 10] is equally significant.

This paper aims to investigate the impact of compiler selection on execution
time and energy consumption in multithreaded matrix factorization algorithms.
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In previous studies by the authors, published in the article [5], the focus was
on how C/C++ compilers (GCC, ICC, OneAPI) affect performance and energy
consumption in multithreaded WZ factorization on three computational plat-
forms: two with Intel Xeon processors and one with an AMD EPYC processor.
These studies revealed that compiler choice, combined with processor manual
frequency scaling, has a significant impact on both performance and energy effi-
ciency. The Intel compiler (OneAPI) achieved the best performance and energy
savings in a multithreaded environment compared to the other compilers on each
of the tested computing platforms.

In this paper, we extend our research to include LU factorization, enabling
a comparison of both factorization methods across different compiler configu-
rations. We implement LU factorization using the highly optimized Intel MKL
library, which offers optimized multithreading, cache utilization, and vectoriza-
tion, among other features. The study focuses on two compilers: Intel OneAPI,
which achieved the best results in previous studies, and the Clang compiler,
chosen for its increasing popularity and focus on code optimization. We consider
various optimization levels available in both compilers, allowing for a compre-
hensive analysis of the impact of optimization on execution time and energy con-
sumption in the context of multithreaded matrix factorization implementations
using OpenMP. The experiments were conducted on two hardware platforms —
one equipped with an Intel processor and the other with an AMD processor.
Optimizing matrix factorization algorithms is crucial for improving the perfor-
mance of numerous scientific applications and reducing their energy footprint.
In particular, the efficient use of compiler optimizations can significantly accel-
erate computations in applications such as structural analysis, fluid dynamics
modeling, and recommender systems.

The remainder of the paper is organized as follows. Section 2 provides a
detailed description of the LU factorization algorithm implemented using LA-
PACK from the Intel MKL library, as well as the WZ factorization algorithm
utilizing OpenMP-based parallelization with vectorization optimizations. Sec-
tion 3 outlines the research methodology and presents an experimental analysis
of the impact of various C/C++ compiler options on the performance and energy
consumption of multithreaded matrix factorization (LU and WZ) on multicore
architectures. Finally, Section 4 summarizes the findings and conclusions of the
study.

2 LU and WZ factorization

Matrix factorization reduces a matrix to a product of two (or more) simpler
matrices. This technique is often used as an auxiliary operation for solving linear
systems, making subsequent systems easier to handle.

LU factorization transforms a square nonsingular matrix A into a product of
two matrices: A = LU where L is a lower triangular matrix and U is an upper
triangular matrix. LU factorization without pivoting is possible when matrix A
has a strictly dominant diagonal.
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In this article, we investigate the LAPACK [1] implementation of LU factor-
ization without pivoting from the MKL library, specifically the dgetrfnpi func-
tion [8,12]. These implementations are based on BLAS and optimized through
the use of a multithreaded BLAS.

Fig. 1: The output of the WZ factorization — rows of the matrices W and Z

Next, we present the WZ factorization [9]. A square and nonsingular matrix
A is decomposed into a product of two matrices, W and Z. The matrix W has
a butterfly-like structure with ones on its main diagonal, while the matrix Z has
an hourglass shape. These matrices are complementary in structure, meaning
that one contains non-trivial elements where the other contains zeros or ones,
and vice versa. The forms of these matrices are shown in Fig. 1.

for(k = 0; k < n/2-1; k++) {
p = n-k-1;
akk = al[k][k]; akp = alkl[pl;
apk = alpl[kl; app = alpllpl;
detinv = 1 / (apk*akp - akk*app);

#pragma omp parallel for
for(i = k+1; i < p; i++) {

wli] [k] apk*al[i] [p] - app*alil[k]) * detinv;

wlil [p] akp*al[i] [k] - akk*al[il[pl) #* detinv;
#pragma omp simd

for(j = k+1; j < p; j++)

alill[j]l = alil[jl- wlillkl*alk]I[j]
- wlillpl*alpl[jl;

=
=

1}

Fig. 2: The basic algorithm for the WZ factorization — pseudocode

Understanding the performance and energy efficiency of algorithms requires
analyzing how they utilize computational resources. Table 1 presents this analysis
for the LU and WZ algorithms, focusing on their memory access patterns, cache
utilization, and the impact of vectorization and parallelism on floating-point
operation performance [4].
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Table 1: Comparison of LU and WZ algorithms

Characteristic

[LU (with MKL)

[WZ

vectorization

Full vectorization achieved
through SIMD optimiza-
tions in MKL.

Semi-automated vectoriza-
tion wusing #pragma omp
simd; -03 flag enables au-
tomatic loop vectorization,
but manual guidance im-
proves control which we do
not have in our case so
there is no certainty of full
vectorization.

parallelism

OpenMP; fully utilizes all
available cores.

OpenMP; fully utilizes all
available cores.

flloating-point operations

%ng’ +0(n?)

%ng + O(n?)

memory access

The LU factorization pri-
marily involves sequential
access to matrix elements,
which is generally efficient
for memory systems.

The WZ factorization ex-
hibits scattered memory
access patterns, particu-
larly when accessing ele-
ments of the W and Z ma-

trices, which can lead to
performance degradation.

cache utilization Matrix blocking and data
prefetching ensure high
data locality, reducing

cache misses.

Scattered memory access
for elements w;k, wik2, aij,
ak;, and aga; causes poor
data locality, leading to
frequent cache misses.

3 Numerical experiments

3.1 Methodology

Our experimental setup consists of two computing platforms: one with Intel Xeon
processors and the other with AMD EPYC processors. Detailed specifications
of these platforms, including clock speed, number of cores, cache size, and TDP
(Thermal Design Power) for Intel Xeon Platinum and AMD EPYC processors,
are provided in Table 2. These details are essential because they directly impact
the performance and energy efficiency of the factorization algorithms. The AMD
EPYC 9654 offers significantly more cores (192 vs. 64) and a higher maximum
clock speed (3.7 GHz vs. 2.6 GHz) which can provide benefits for highly parallel
workloads. However, the Intel processor has larger L1d and L3 caches (48 KB and
48 MB vs. 32 KB and 32 MB), potentially benefiting workloads that rely heavily
on cache performance. Additionally, the L3 cache on AMD EPYC is modularly
assigned to groups of 8 cores (per CCX), while on Intel Xeon, the L3 cache is
shared among 32 cores, which may influence how memory-intensive workloads
are handled across these architectures. These architectural differences are key
to understanding the trade-offs between performance and energy efficiency in
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the context of our study. A higher TDP signifies the ability to handle larger
workloads but at the cost of increased power consumption. The choice depends
on balancing performance and energy efficiency, as higher TDP processors excel
in demanding tasks but incur greater operating costs.

Table 2: Specification of computing platforms

Processor clock frequency| cores cache TDP
[GHz| (W]
L1li: 32KB
. Lid: 48KB
Intel Xeon Platinum 8358 0.8-2.6 2% 32 L2: 1280KB 270
L3: 48MB
Lli: 32KB
Lid: 32KB
AMD EPYC 9654 0.4-3.7 2 x 96 L2: 1024KB 320
L3: 32MB

We ran each algorithm version five times at the maximum clock speed of the
processors and averaged the results to ensure statistical validity. The Intel Xeon
Platinum configuration used the full hardware performance with 64 threads,
while the AMD EPYC processor was tested with 96 threads. For the considered
problem size, 96 threads was sufficient, as adding more threads did not provide
significant performance benefits. This is likely due to the relatively small problem
size, which does not generate enough computational load to fully utilize the
additional processing power of the AMD EPYC processor.

The dataset for our assessment comprises a randomly generated square ma-
trix containing 32768 x 32768 double-precision values. Consequently, our test
dataset encompasses 1073741824 cells, equivalent to 8GB of data. All algorithms
adhere to a row-wise layout and are coded in C++, with vectorization and par-
allel processing.

Several C++ compilers are available for Intel Xeon and AMD EPYC proces-
sors, playing a key role in maximizing hardware potential. An efficient compiler
abstracts low-level details while generating highly optimized machine code to
enhance performance. However, finding one that consistently meets these expec-
tations is challenging, as compilers may produce varying low-level instruction
sets and differ in their ability to generate the most efficient code.

For our tests, we selected two widely available compilers optimized for our
processors: Clang and Intel OneAPI. For the purposes of this article, the term
‘OneAPT’ will be used as a shorthand referring exclusively to the OneAPI com-
piler, and not to the entire Intel oneAPI toolkit. Both Intel OneAPI [11] and
Clang [15] support modern C++ and OpenMP. However, OneAPI is specifically
optimized for Intel processors, aggressively using features like AVX-512 and ad-
vanced prefetching for maximum performance. Clang prioritizes cross-platform
compatibility, with less aggressive, more general optimizations for vectorization
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(including AVX2/AVX-512) and memory management. Therefore, OneAPI may
offer higher performance on Intel, while Clang provides greater versatility across
different hardware.

In this study, we will explore various compiler options, selecting those sup-
ported by both Clang and Intel OneAPI to facilitate a fair comparison between
the two compilers. Initially, we will compile with the OpenMP-enabled option
along with the -03 flag, which directs the compiler to apply aggressive perfor-
mance optimizations, including loop unrolling, vectorization, and other enhance-
ments designed to improve program execution speed.

The following software was used during the tests along with the following

compiler options:
— operating system: CentOS/Rocky/Almalinux 8.7

— kernel: Linux 4.18.0
— Intel OneAPI DPC++/C++ compiler v. 2022.0.0 with the following com-
piler options:

-qopenmp -03
— Clang v. 18.1.8 with the following compiler options:
-fopenmp -03

In further tests, in addition to enabling OpenMP support and the -03 flag, we
will also evaluate the performance and energy efficiency impact of the following
compiler options shown in Table 3.

Table 3: Compiler flags used for compilation (in addition to enabling OpenMP
and the -03 flag, which is always included)

Case[OneAPI [Clang
I |[none| [none]
IT |-funroll-loops -funroll-loops
IIT |-march=native -march=native

IV |-march=native -funroll-loops|-march=native -funroll-loops

v

-prof-gen=srcpos -fprofile-generate
-prof-use -fprofile-use=program.profdata

Case I describes enabling only OpenMP and the -03 flag, without any addi-
tional options. The -03 flag enables aggressive optimizations, such as eliminating
unnecessary instructions, optimizing loops, and using various other techniques
to improve program performance. However, these optimizations can also increase
compilation times.

Case II adds the -funroll-loops flag, which is used to unwind loops in the
source code. This optimization can improve performance by reducing the number
of loop iterations and improving data access patterns.

Case III adds the -march=native flag, which instructs the compiler to gen-
erate code optimized for the specific processor architecture on which the ap-
plication will be executed. This allows the compiler to use processor-specific
instructions and features, potentially leading to performance improvements.
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Case IV adds a combination of the -march=native and -funroll-loops
flags. This dual approach optimizes the code for both the processor architecture
and loop unwinding. The synergy between these options can result in significant
performance improvements, especially for computationally intensive loops.

Case V includes the wuse of profiling-based optimization flags:
-prof-gen/-prof-use for OneAPI and -fprofile-generate/-fprofile-use
for Clang. The first step of this process generates profile data, while the second
step uses this data to optimize code based on real-world execution metrics,
ultimately improving performance in the final program.

We used the RAPL (Running Average Power Limit) interface [13,16] to
measure CPU power and energy consumption, accessing its energy meters via
Machine-Specific Registers (MSR). These 32-bit counters track energy usage
since startup, updating every 1 ms. RAPL has been widely adopted for energy
measurement and modeling, offering a practical alternative to complex power
meters [13]. Prior studies [6,7,17] and our experience confirm its accuracy in
measuring energy consumption for scientific applications.

To analyze performance and energy consumption differences across compiler
configurations, we collect data on memory references, page faults, and branch in-
structions using perf stat. Examining memory access patterns, page faults, and
branch behavior helps identify potential bottlenecks, inefficient memory usage,
and control flow inefficiencies. This analysis provides insights into how compiler
flags and processor configurations influence execution speed and power consump-
tion, guiding optimization efforts.

3.2 The time and energy consumption for LU and WZ factorization
algorithms

Based on Fig. 3 and Fig. 4, it is evident that the LU factorization algorithm
utilizing the MKL library outperforms the WZ factorization algorithm in terms
of both performance and energy efficiency. This is primarily because the WZ
algorithm does not employ block mechanisms. The performance advantage of
LU factorization is particularly pronounced on Intel processors, though still no-
ticeable on AMD EPYC processors, albeit to a slightly lesser extent.

An analysis of LU and WZ factorization results on Intel Xeon and AMD
EPYC processors also reveals significant differences in execution time and energy
consumption between the Clang and OneAPI compilers. This section provides a
detailed interpretation of these differences, highlighting the best cases for each
processor, compiler, and algorithm.

LU factorization on Intel Xeon Platinum. The best performance and en-
ergy efficiency for LU factorization (Fig. 3) on the Intel Xeon processor were
achieved using the OneAPI compiler with compilation I (baseline OpenMP
compilation with -03). This result stands out, as more advanced optimiza-
tions did not yield better performance, except for profiling (V), which pro-
duced similarly favorable results to case I. Clang also performed best in case
I, although its performance degraded less than that of OneAPI when more
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Fig.3: LU — time and energy consumption on Intel Xeon Platinum and AMD
EPYC (labels I-V as in Table 3)

advanced optimizations were applied. This may be attributed to the fact
that LU factorization relies on the Intel MKL (Math Kernel Library), which
is natively optimized for the OneAPI compiler and Intel Xeon architecture.
MKTL effectively utilizes low-level hardware optimizations, resulting in better
resource utilization even with baseline compilation.

LU factorization on AMD EPYC. On AMD EPYC, Clang produced lower
execution times and energy consumption than OneAPI. The lowest en-
ergy consumption was recorded for Clang with option IV (compilation with
-march=native and -funroll-loops), while the best runtime for LU was
achieved with Clang using option III (-march=native). AMD EPYC benefits
more from optimizations tailored to its architecture (-march=native). By
compiling code for the native architecture, Clang takes advantage of AMD-
specific instructions, leading to improved runtime and energy efficiency.

WZ factorization on Intel Xeon Platinum. For WZ factorization on Intel
Xeon (Fig. 4), OneAPI consistently outperformed Clang in terms of runtime
and energy efficiency across all configurations (I-IV), except for profiling
(V). The greatest advantage of OneAPI over Clang appeared in case IV
(-march=native and -funroll-loops), where OneAPI achieved approxi-
mately 3% better performance and energy savings. The best performance and
lowest energy consumption for WZ factorization on Intel Xeon were observed
in case ITI using the OneAPI compiler, with an advantage of about 3.3% over
case IV. Clang, however, generated the most energy-efficient code in case V
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Fig.4: WZ — time and energy consumption on Intel Xeon Platinum and AMD
EPYC (labels I-V as in Table 3)

(profiling). The WZ algorithm is more sensitive to processor-specific instruc-
tions. On Intel Xeon, OneAPI manages performance more effectively during
intensive matrix processing, while Clang produces more energy-efficient code
when profiling is applied.

WZ factorization on AMD EPYC. W7 factorization is more efficient on
AMD EPYC than on Intel Xeon (Fig. 4, bottom row), which features a
different Y-axis scale for each processor (top and bottom rows in the figure).
The differences between Clang and OneAPI in WZ factorization are less pro-
nounced on AMD EPYC than on Intel Xeon. Clang slightly outperformed
OneAPI in configurations III and IV, but with profiling (V), OneAPI per-
formed better than Clang. This suggests that OneAPI’s optimizations may
be more effective for profiled code on AMD EPYC. For WZ factorization on
AMD EPYC, the best runtime and lowest energy consumption were achieved
using Clang with option III (-march=native). Comparably good energy re-
sults were obtained with the OneAPI compiler in the profiling case (V). WZ
on AMD EPYC benefits from more aggressive loop optimizations and pro-
cessor instruction tuning. Clang proves to be more efficient in both execution
time and energy consumption when appropriate compiler flags are used.

3.3 Cache analysis

Cache misses play a crucial role in increasing runtime, as they often require
fetching data from higher levels of the memory hierarchy or directly from RAM,
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Fig. 5: Power profiling for LU factorization for the OneAPI compiler with the
baseline option enabling OpenMP and the -03 flag. Left on Intel Xeon, right
on AMD EPYC. Power shown is divided into processors’ packages (package-0,
package-1) and their respective memory (dram-0, dram-1)

causing delays that disrupt the processor pipeline and reduce computational effi-
ciency. In addition to prolonging runtime, cache misses significantly affect energy
consumption. While memory operations themselves consume relatively little en-
ergy, the processor’s idle energy consumption during delays, such as waiting for
data retrieval, is substantial (Fig. 5). In the idle state, power consumption ranges
from 100 W to 150 W, with slightly lower values observed for the Intel Xeon
processor compared to AMD EPYC. It accounts for over 40% of the total energy
consumption during active computation. Although WZ factorization exhibits a
lower percentage of L1 cache misses compared to LU, its overall performance is
still heavily impacted due to the significantly higher number of memory refer-
ences and absolute cache misses (Fig. 6).
As shown in Fig. 6, WZ factorization generates approximately:

— 10 x more L1 cache accesses than LU on Intel Xeon,
— 5 x more L1 cache accesses on AMD EPYC.

This increased memory load results in a higher absolute number of L1 cache
misses:

— 8 x more L1 cache misses in WZ than in LU on Intel Xeon,
— 4 x more L1 cache misses in WZ than in LU on AMD EPYC.

This disparity leads to longer runtimes and higher energy consumption for WZ
factorization.

The frequent cache loads observed in WZ factorization stem from the lack of
blocking, which limits the reuse of data within the cache. As a result, the pro-
cessor must repeatedly load new data into L1 cache, increasing the likelihood of
evicting useful data and causing more misses. In contrast, LU factorization ben-
efits from blocking, which improves data locality, increases cache utilization, and
reduces the need for repeated memory accesses, leading to better performance
and energy efficiency. Fig. 6 illustrates the different impacts of cache structure
on LU and WZ factorization performance on Intel Xeon and AMD EPYC. LU
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Fig.6: Number of L1 data cache calls (blue), number of cache misses (red)
and miss percentage (green). The best-performing compiler for each platform
is shown with Case I and the top (or one of the top) configurations for each
algorithm.

is relatively less affected by architectural differences between the two platforms,
maintaining consistent performance and energy usage across both.

WZ factorization shows a significant improvement on AMD EPYC (approxi-
mately 3 X faster and 3 x lower energy consumption).We can observe that there
are:

— 30% more L1 cache accesses on AMD EPYC compared to Intel Xeon (for
OneAPI ),

— 18% more L1 cache accesses (for OneAPI III),

— 1-2% more cache misses.

Thus, we can see that the greater amount of cache access is not a bad thing, if
only the number of cache misses is kept low.

This difference can largely be attributed to the modular structure of L3 cache
in AMD EPYC, where smaller portions of L3 are assigned to groups of 8 cores
(CCX). Unlike the centralized L3 cache in Intel Xeon, shared by 32 cores, AMD’s
modular design ensures more localized data access, reducing contention for cache
resources and improving the efficiency of WZ factorization. Thanks to blocking,
LU is less dependent on L3 cache, making it less sensitive to differences in cache
architecture. These findings highlight that the L3 cache structure plays a crucial
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role in the performance and energy efficiency of algorithms with high memory
access variability, such as WZ.

Both Intel Xeon and AMD EPYC support AVX-512, but Intel Xeon benefits
more from MKL optimizations, which are specifically tuned for Intel architec-
tures. On AMD EPYC, the CCX modular structure and differences in cache
affect performance.

We also investigated branch instructions in our algorithms. The differences
between various compilation options for the same algorithm on the same plat-
form are negligible — the only exception is LU factorization on AMD EPYC
compiled by Clang (Fig. 7). The figure shows the impact of the compiler opti-
mizations on the number of branches for this configuation. On AMD EPYC, loop
unrolling (-funroll-loops) alone does not significantly reduce the number of
branch instructions, but when combined with -march=native (compilation IV),
there is a visible (about 5% less branches) improvement. This suggests that

architecture-specific optimizations (-march=native) are key to fully leveraging
the capabilities of AMD EPYC.

LU -AMD EPYC - Clang

321955847 736 328534085795

3.0E+11
2.5E+11
2.0E+11
1.5E+11
1.0E+11
5.0E+10
0.0E+00
1 n

Fig. 7: Number of branches

3.5E+11
315723563644 323238002725

I 305 865213021 I
w v

n
Compilations

Branches

Table 4 presents the best results achieved for LU and WZ factorization in
terms of energy consumption. On the Intel Xeon platform, the best performance
in both energy consumption and runtime was achieved for LU with OneAPI in
compilation I, and for WZ with OneAPI in compilation III (-march=native), as
shown in Fig. 3. In both cases, a lower number of L1 cache misses was observed
compared to other compilations, as illustrated in Fig. 6.

4 Conclusions

The time and energy efficiency of LU and WZ factorization algorithms are highly
dependent on the architectural platform and the choice of compiler. In the case
of LU factorization, using Intel Math Kernel Library (MKL) optimizations, the
Intel Xeon architecture showed better performance. In particular, the OneAPI
compiler (Case I) achieved a 10% reduction in execution time and energy con-
sumption compared to the AMD EPYC platform using OneAPI (Case V). In
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Table 4: Best compilers and options cases in terms of energy consumption for
LU and WZ factorization and particular platforms

Energy
Platform Compiler |Case| Time | Energy |Performance|efficiency
s Ul | [Gflops] |[Gfiops/J]

LU Factorization

Intel Xeon Platinum| OneAPI| I | 11.83|6 175.13 | 1 982.07 3.80

AMD EPYC Clang IV | 12.47 | 6 598.84 1 880.37 3.55
WZ Factorization

Intel Xeon Platinum | OneAPI | III |490.63 |262 162.76 47.81 0.09

AMD EPYC Clang | ITI [160.67|83 964.60| 145.99 0.28

addition, tuning compiler options on AMD EPYC resulted in a 3.5% reduction
in execution time (Case I).

WZ factorization, characterized by increased sensitivity to memory access
patterns, shows a clear architectural dependency. The modular design of the
AMD EPYC L3 cache effectively mitigates the impact of frequent L1 cache
accesses, in contrast to the shared L3 cache structure on Intel Xeon, which can
introduce performance bottlenecks. As a result, AMD EPYC with Clang (Case
III) yielded a 68% execution time improvement and a 70% reduction in power
consumption compared to Intel Xeon with Clang (Case IV). These observations
are consistent with previous studies that address the critical role of compiler
selection in optimizing performance and energy efficiency for multithreaded WZ
factorization on similar architectures [5].

The optimal compiler configuration depends on the specific algorithm and
processor architecture. Intel Xeon showed maximum benefit from basic OneAPI
optimizations (Case I) for LU factorization, likely due to specialized MKL im-
provements. AMD EPYC, on the other hand, benefited more from aggressive
architecture-specific compiler flags, with Clang (Case IV) providing better time
and energy efficiency. The inherent dependence of WZ factorization on efficient
memory access explains the consistent performance gains observed across archi-
tectures using the -march=native flag (Case III).

These differences are due to fundamental architectural differences and the
different sensitivity of the algorithms to memory access and parallelization.
The highly optimized MKL routines facilitated sufficient performance for LU
factorization on Intel Xeon with basic flags, while AMD EPYC’s distributed
memory architecture required advanced tuning, such as the -march=native flag
and loop unrolling. The reliance of WZ factorization on efficient memory ac-
cess explains the consistent performance improvements in architectures with the
-march=native flag (Case III).

Conversely, suboptimal compiler and flag choices for a given architecture can
degrade performance. For LU factorization on Intel Xeon, using OneAPI with
Case II flags, as opposed to Case I, resulted in a 4% reduction in execution time
and energy efficiency. Similarly, on AMD EPYC, OneAPI (Case V) increased
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execution time by 4% and energy consumption by 2% compared to Clang (Case
Iv).

In the context of WZ factorization, the choice of compiler remained signifi-
cant. On Intel Xeon, Clang (Case IV) suffered a 6.5% loss in both runtime and
energy efficiency compared to OneAPTI (Case I1T). On AMD EPYC, Clang (Case
V) showed a 2% increase in runtime and a 6.5% increase in energy consumption
compared to Clang (Case III).

The optimal configurations across platforms and compilers are summarized in
Table 4. For LU factorization, Intel Xeon with OneAPI (Case I) represented the
optimal configuration, attributed to Intel-specific MKL optimizations. For WZ
factorization, AMD EPYC with Clang (Case III) showed better performance,
due to the lack of specific optimizations in our implementation, which highlights
the importance of the choice of compiler and architecture.

Profile-guided optimization (Case V) offered additional benefits when other
aggressive compiler options yielded diminishing returns. This strategy improved
LU factorization on Intel Xeon with OneAPI, WZ factorization on AMD EPYC
with OneAPI, and WZ factorization on Intel Xeon with Clang (Fig. 3 and Fig. 4).
By analyzing detailed execution data, profile-guided optimization identified and
fixed inefficiencies that standard compiler flags might otherwise miss.

These findings underscore the importance of tailoring compiler optimizations
to a specific hardware architecture and algorithm in order to achieve optimal
performance. Future research efforts could explore more advanced optimization
techniques, extend the scope of numerical algorithms, and evaluate additional
compiler suites. Furthermore, examining the impact of hybrid parallel program-
ming models and distributed computing frameworks would provide a broader
perspective on these observations.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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