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Abstract. In this article, the modified wavenumbers for several numer-
ical approximations of the Caputo fractional derivatives based on the
Lagrange interpolation method over a uniform mesh are derived. With
regard to the modified wavenumbers, the Fourier analysis of differencing
errors is performed to quantify the resolution characteristics of these ap-
proximations. The plots of original wave numbers against modified wave
numbers are presented for each approximation method. Numerical ex-
periments over a test case are performed to validate the accuracy and
efficiency of different approximation schemes for the Caputo fractional
derivative.
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1 Introduction

The Caputo derivative is among the most prominent fractional derivatives stud-
ied in the field of fractional calculus. This is due to the non-local behavior and
past memory containment of this derivative, which makes it favorable for mod-
eling complex structured environmental phenomena. Furthermore, the Caputo
derivative is important from the viewpoint of numerical interpretation of real-life
problems, as the boundary conditions of the differential system remain analogous
to the integer order system. Hence, various numerical algorithms are constructed
in literature to approximate the Caputo derivative [8,5,15,16]. The L1 approach
is the most popular approximation for the Caputo fractional derivative [13]. Lin
and Xu [10] were the first to derive the classic L1 method for Caputo derivative
approximation over a uniform mesh. The idea was to approximate the derivative
in the integrand of the Caputo derivative expression by a linear interpolating
polynomial in each of the time subintervals. This method had a convergence rate
O(τ2−α). Following this idea with some upgradation, Gao et al. [4] proposed a
new method with convergence of O(τ3−α) as the L1-2 method to approximate
Caputo fractional derivative on a uniform mesh, where a linear and quadratic
interpolation polynomial is used to discretize the integrand in first and other
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time subintervals, respectively. The latest addition is the L1-23 scheme of order
O(τ4−α) developed for Caputo derivative approximation with an improvement
of using cubic interpolating polynomials from the third subinterval onwards.

A classical technique to compare two difference schemes, other than the for-
mal errors in numerical analysis, is Fourier analysis. It helps to analyse the
dispersion and dissipation errors of the difference approximations by quantify-
ing the resolution characteristics of the difference approximations. Numerous
papers are dedicated to the Fourier error analysis of classical derivative approx-
imations. Lele in [7] has discussed in detail the Fourier analysis of differencing
errors for classical derivative approximations of first and second-order compact
difference schemes. Authors in [12] have extended the study for higher-order clas-
sical derivative compact difference approximations. To study the Fourier error
analysis of classical derivatives over a non-uniform mesh, see [1,3,11].

According to our best knowledge, [14] is the sole work that investigates the
Fourier error analysis of fractional derivative approximations, in which the reso-
lution characteristics of several difference approximations of Riemann-Liouville
fractional derivative are investigated. As discussed, the Caputo fractional deriva-
tive is crucial in the analytical as well as numerical study of daily-life events.
However, till now, no article is available in the literature on the Fourier error
analysis of Caputo derivative approximations. Considering this as inspiration, we
perform the Fourier error analysis of various numerical approximations of the
Caputo fractional derivative based on Lagrange interpolation methods over a
uniform mesh. In this process, the resolution formula for modified wavenumbers
of difference approximations is derived.

The rest of the manuscript is organised as follows. In Section 2, some ba-
sic definitions and propositions are introduced concerning the Caputo fractional
derivative and its numerical approximations based on methods of Lagrange in-
terpolation over a uniform mesh. Section 3 is composed of the Fourier analysis
of differencing errors of various Caputo derivative approximations introduced in
the Preliminary section. The resolution formula for modified wavenumbers of
the Caputo derivative and its approximations is obtained. To provide a basis
for comparison and a better understanding of the work carried out, the Fourier
error analysis of the finite difference approximation of the first-order derivative
is presented first. This section also consists of the graphical comparison of the
modified wavenumbers obtained versus the original wavenumber of the Caputo
derivative and its approximations. The Final Section 5 provides the conclusion
of this research with possible future directions.

2 Preliminaries

This section provides a foundation for this paper by introducing a few fun-
damental concepts related to the Caputo fractional derivative and its various
approximations.

Definition 1. Caputo Derivative [9]
The left Caputo fractional derivative of order α > 0 of the function f(t), t ∈
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(a, b), is defined as

CD
α
a,tf(t) =

1

Γ (m− α)

∫ t

a

(t− s)m−α−1f (m)(s)ds,

where m− 1 < α ≤ m, m ∈ N. The left Caputo fractional derivative of f(t) for
a particular value of m = 1 such that 0 < α < 1 is

CD
α
a,tf(t) =

1

Γ (1− α)

∫ t

a

(t− s)−αf ′(s)ds. (1)

Proposition 1. [6] If Re(α) > 0 and λ > 0, then

(CD
α
+e

λt)(x) = λαeλx and (CD
α
−e

−λt)(x) = λαe−λx.

Based on Lagrange interpolation methods, the following are some numerical
approximations of the Caputo fractional derivative for α ∈ (0, 1).

Definition 2. L1 Method [10]
The L1 method for approximation of the Caputo fractional derivative is defined
as

CD
α
0,tf(t)

∣∣∣
t=tj

=
1

Γ (1− α)

j−1∑
k=0

f(tk+1)− f(tk)

τ

∫ tk+1

tk

(tj − s)−αds+ ϵj , (2)

where τ is the step size, and ϵj = O(τ2−α) is approximation error, provided
f(t) ∈ C2[0, T ].

Definition 3. L1-2 method [4]
The L1-2 method for approximation of the Caputo fractional derivative is defined
as

CD
α
0,tf(t)

∣∣∣
t=tj

=
τ−α

Γ (2− α)

[
c0f (tj)−

j−1∑
n=1

(cj−n−1 − cj−n) f (tn)− cj−1f (t0)

]
(3)

+ ϵj ,

where τ is the step size and the approximation error ϵj = O(τ3−α), provided
f(t) ∈ C3[0, T ]. Here c0 = a0 = 1 for n = 1; and for n ≥ 2,

cn =


a0 + b0, n = 0,

an + bn − bn−1, 1 ≤ n ≤ j − 2,

an − bn−1, n = j − 1,

where
an = (n+ 1)1−α − n1−α, 0 ≤ n ≤ j − 1.

bn =
[
(n+ 1)2−α − n2−α

]
/(2− α)−

[
(n+ 1)1−α + n1−α

]
/2, n ≥ 0.
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Definition 4. L1-23 method [2]
The L1-23 method for approximation of the Caputo fractional derivative is de-
fined as

CD
α
0,tf(t)

∣∣∣
t=tj

=
τ−α

Γ (2− α)

j∑
n=0

gnf(tj−n) + ϵj , (4)

where τ is the step size, and the approximation error ϵj = O(τ4−α), provided
f(t) ∈ C4[0, T ]. The coefficients gns have the following values for different j:

for j = 1, g0 = a0, g1 = −a0;

for j = 2, g0 = a0 + b0, g1 = a1 − a0 − 2b0, g2 = b0 − a1;

for j = 3, g0 = w1,0, g1 = w2,0 + a1 + b1, g2 = w3,0 + a2 − a1 − 2b1,

g3 = w4,0 − a2 + b1;

for j = 4, g0 = w1,0, g1 = w1,1 + w2,0, g2 = w2,1 + w3,0 + a2 + b2,

g3 = w3,1 + w4,0 + a3 − a2 − 2b2, g4 = w4,1 − a3 + b2;

for j = 5, g0 = w1,0, g1 = w1,1 + w2,0, g2 = w1,2 + w2,1 + w3,0,

g3 = w2,2 + w3,1 + w4,0 + a3 + b3, g4 = w3,2 + w4,1 + a4 − a3 − 2b3,

g5 = w4,2 − a4 + b3;

for 6 ≤ j ≤ J, the relation between the coefficients takes form as follows:
g0 = w1,0, g1 = w1,1 + w2,0, g2 = w1,2 + w2,1 + w3,0,

gn = w1,n + w2,n−1 + w3,n−2 + w4,n−3, (3 ≤ n ≤ j − 3),

gj−2 = aj−2 + bj−2 + w2,j−3 + w3,j−4 + w4,j−5,

gj−1 = w3,j−3 + w4,j−4 + aj−1 + aj−2 + 2bj−2, gj = w4,j−3 − aj−1

+ bj−2,

where

aj−2 = (j − 1)1−α − (j − 2)1−α,

bj−2 =
(j − 1)2−α − (j − 2)2−α

2− α
− (j − 1)1−α + (j − 2)1−α

2
,

w1,j−n =
1

6

[
2(j − n+ 1)

(1−α) − 11(j − n)
1−α

]
− 1

(2− α)

[
2(j − n)2−α − (j − n+ 1)2−α

]
− 1

(2− α)(3− α)

[
(j − n)

3−α − (j − n+ 1)
3−α

]
,
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w2,j−n =
1

2

[
6(j − n)

(1−α)
+ (j − n+ 1)

1−α
]

+
1

(2− α)

[
5(j − n)2−α − 2(j − n+ 1)2−α

]
− 3

(2− α)(3− α)

[
(j − n)

3−α − (j − n+ 1)
3−α

]
,

w3,j−n =− 1

2

[
3(j − n)1−α + 2(j − n+ 1)1−α

]
− 1

2− α

[
4(j − n)2−α − (j − n+ 1)2−α

]
− 3

(2− α)(3− α)

[
(j − n)3−α − (j − n+ 1)3−α

]
,

w4,j−n =
1

6

[
2(j − n)1−α + (j − n+ 1)1−α

]
+

1

2− α
(j − n)2−α

+
1

(2− α)(3− α)

[
(j − n)3−α − (j − n+ 1)3−α

]
, 3 ≤ n ≤ j.

3 Fourier Error Analysis

In this section, the differencing errors, i.e., the dispersion and dissipation errors of
various numerical approximations of Caputo fractional derivative, are obtained
using the Fourier analysis approach. The approximations considered here for the
Caputo fractional derivative are based on the method of Lagrange interpolation
over a uniform mesh. This process of finding errors also quantifies the resolu-
tion characteristics of derivative approximations. First, the Fourier analysis of
integer-order derivatives is discussed to provide a base for better understanding
and comparison. Following that, the Fourier analysis of different approximations
of the Caputo derivative based on Lagrange interpolation methods over a uni-
form mesh is established. To proceed with the analysis, the dependent variable
y(x) is assumed to be periodic over the domain [0, L] of the independent variable
x. Furthermore, the domain [0, L] is discretized by choosing an even positive in-
teger J such that h = L/J is the stepsize of the grid domain. Hence, the Fourier
series of y(x) is written as

y(x) =

J/2∑
k=−J/2

ŷke
2πikx

L , i =
√
−1,

with Fourier coefficients ŷk = 1
L

∫ L

0
y(x)e−

2πikx
L dx. The wavenumber and coor-

dinate in Fourier modes are scaled by ωk = 2πkh
L and s = x

h , respectively. Hence,
the above Fourier expression can be rewritten as

y(x(s)) =

J/2∑
k=−J/2

ŷke
iωks. (5)
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In the first place, as discussed, the resolution characteristics of the exact first
derivative are introduced. The exact first derivative of the above equation with
respect to s supplies

y′(x(s)) =

J/2∑
k=−J/2

ŷ′ke
iωks =

J/2∑
k=−J/2

iωkŷke
iωks,

which implies ŷ′k = iωkŷk. Next consider a specific Fourier mode ωk from (5) at
x = xj as

y(x)
∣∣
x=xj

= ŷke
iωksj . (6)

The second-order finite difference approximation of y′(x) at x = xj is

y′j =
yj+1 − yj−1

2h
. (7)

Then, the left-hand side of the above expression is

dy

dx

∣∣∣
xj

=
1

h

dy

ds

∣∣∣
sj

=
1

h
ŷ′ke

iωksj .

Also, substituting yj from (6) in (7) gives the right-hand side expression as
ŷke

iωksj

2h (eiωk − e−iωk). Hence, it implies that

ŷ′k
ŷk

= sin(ω).

Therefore, dropping the subscript k and comparing the Fourier coefficients of
exact and approximate derivatives, the resolution characteristics are

ω′
ex(ω) = (iω),

ω′
app(ω) = sin(ω),

where ω′ is the modified wavenumber of the first derivative. The dispersion and
dissipation errors of the approximations are obtained from the differences be-
tween real parts of the wavenumber and modified wavenumbers [Re (ω′ − ω) ,Re
(ω′′ − ω)] and the imaginary parts of the wavenumber and modified wavenumber
[Im (ω′ − ω) , Im (ω′′ − ω)], respectively [7].

3.1 Resolution characteristics of Caputo derivative and its
approximations

Caputo fractional derivative:

The α-th order Caputo derivative of (5) with respect to s using (1) and propo-
sition 1 provides a function

yα(x(s)) =

J/2∑
k=−J/2

ŷαk e
iωks =

J/2∑
k=−J/2

(iωk)
αŷke

iωks,
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with exact Fourier coefficients

ŷαk = (iωk)
αŷk. (8)

Let the Fourier series for yα(x) be also represented as

CD
α
0,sy(x(s)) = yα(x(s)) =

J/2∑
k=−J/2

ŷαk e
iωks, (9)

where ŷαk is derived from various difference approximations.
Next, we present resolution characteristics for various difference approxima-

tions of the Caputo fractional derivative of order 0 < α < 1 based on methods
of Lagrange interpolation over the uniform mesh.

L1 approximation:

From (2), the discrete fractional differential operator of the L1 approximation
of the Caputo fractional derivative on y(x) at grid point xj is

CD
α
J yj =

1

Γ (1− α)

j−1∑
m=0

ym+1 − ym
h

∫ xm+1

xm

(xj − s)−αds,

where
CD

α
J y(xj) = CD

α
0,ty(x)

∣∣∣
x=xj

+ ϵj ,

which can be rewritten as

CD
α
J yj =

h−α

Γ (2− α)

[
bα1 yj − bαj y0 +

j−1∑
n=1

(bαn+1 − bαn)yj−n

]
, (10)

where, bαn = n1−α − (n− 1)1−α.
Consider a specific Fourier mode ωk at x = xj as (6). Then, using the chain

rule of Caputo fractional differentiation and (9), we have

CD
α
0,xy

∣∣
xj

=
1

hα CD
α
0,sy

∣∣
sj

=
1

hα
ŷαk e

iωksj . (11)

Also substituting expression of yj from (6) in (10),

R.H.S. =
h−αŷk

Γ (2− α)

[
bα1 e

iωksj − bαj e
iωks0 +

j−1∑
n=1

(bαn+1 − bαn)e
iωksj−n

]
.

Hence, it implies

ŷαk
ŷk

=
1

Γ (2− α)

[
bα1 − bαj e

−iωksj +

j−1∑
n=1

(bαn+1 − bαn)e
−iωksn

]
. (12)
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Now comparing (8) and (12) with dropped subscript k, we get

wα
ex(ω) = (iω)α, (13)

wα
L1(ω) =

1

Γ (2− α)

[
bα1 − bαj e

−iωksj +

j−1∑
n=1

(bαn+1 − bαn)e
−iωksn

]
, (14)

where (13) is the resolution characteristics of exact differentiation and (14) is
the resolution formula of L1 approximation.

L1− 2 approximation:

The discrete Caputo fractional derivative of function y(x) at grid point xj has
the L1− 2 approximation (3) as

CD
α
J yj =

h−α

Γ (2− α)

[
c0yj −

j−1∑
n=1

(cj−n−1 − cj−n) yn − cj−1y0

]
, (15)

Again, considering a specific Fourier mode ωk at x = xj as (6) and using (9), we
arrive at (11). Thereafter replacing yj in (15) from (6) yields,

R.H.S. =
h−αŷk

Γ (2− α)

[
c0e

iωksj −
j−1∑
n=1

(cj−n−1 − cj−n) e
iωksn − cj−1e

iωks0

]
.

Hence, it implies

ŷαk
ŷk

=
1

Γ (2− α)

[
c0 −

j−1∑
n=1

(cj−n−1 − cj−n) e
iωksn−j − cj−1e

−iωksj

]
. (16)

Now dropping subscript k in (16), we get the resolution formula as

wα
L1−2(ω) =

1

Γ (2− α)

[
bα1 − bαj e

−iωksj +

j−1∑
n=1

(bαn+1 − bαn)e
−iωksn

]
. (17)

L1− 23 approximation:

The discrete Caputo fractional derivative of function y(x) at grid point xj has
the L1− 23 approximation (4) as

CD
α
J yj =

h−α

Γ (2− α)

j∑
n=0

gnyj−n. (18)

Proceeding similarly as in the above steps by considering a specific Fourier mode
ωk at x = xj as (6). Using (9), we arrive at (11). After that, replacing yj in (18)
from (6) provides with,

R.H.S. =
h−αŷk

Γ (2− α)

j∑
n=0

gne
iωksj−n .
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Hence, comparing both sides, we get

ŷαk
ŷk

=
1

Γ (2− α)

j∑
n=0

gne
−iωksn . (19)

Thus, dropping the subscript k above gives the resolution characteristics as

wα
L1−23(ω) =

1

Γ (2− α)

[
bα1 − bαj e

−iωksj +

j−1∑
n=1

(bαn+1 − bαn)e
−iωksn

]
. (20)

From the above Fourier analysis of differencing errors, the wavenumbers (ω)
and modified wavenumbers (ω′) for Caputo derivative and its various approxi-
mations are obtained. The next presentation is a graphical illustration of these
modified wavenumbers versus the original wavenumber. We have the modified
wavenumber for exact Caputo differentiation as ωα, and the values of modified
wavenumbers of difference approximations are plotted to observe the best match
in terms of resolution characteristics for different values of α. The resulting fig-
ures 1, 2, and 3 show that the L1-23 approximation for the Caputo fractional
derivative exhibits the best resolution characteristics in comparison to other ap-
proximations. Another observation tells that this comparison is irrespective of
the values of α and the number of mesh points J .
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Fig. 1. Modified wavenumbers vs. wavenumber of difference approximations for J = 50
and α = 0.1.
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Fig. 2. Modified wavenumbers vs. wavenumber of difference approximations for J =
100 and α = 0.5.
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Fig. 3. Modified wavenumbers vs. wavenumber of difference approximations for J =
100 and α = 0.9.
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4 Numerical Experiments

In this section, a few numerical experiments are performed on a test example of
the Caputo fractional derivative initial value problem (IVP) by employing the
Caputo derivative approximations studied in this work. The motive to conduct
these experiments is to validate the accuracy of the approximations as well as
characterise these approximations of the Caputo fractional derivative using var-
ious numerical parameters such as the step length of the interval and fractional
order α. This study also provides the tradeoff between the computational costs
and accuracy of the approximation schemes.

Example 1. Consider the following Caputo fractional derivative IVP:

CD
α
0,ty(t) =

t3Γ (4 + α)

3!
, t ∈ [0, 1],

y(0) = 0.

It can be calculated that the exact solution to the above IVP is y(t) = t3+α. This
IVP is a test case considering an α-dependent solution and with a zero initial
condition.

Next, we employ L1, L1-2, and L1-23 from methods (2), (3) and (4) as Caputo
derivative approximations in the above example and obtain the absolute error
between the exact and numerical solution by varying the number of subintervals
and values of α. The following formulas are used to obtain the absolute error
and the corresponding rate of convergence.

E∞(N) =
∣∣eN ∣∣ = ∣∣y(tN )− yN

∣∣ . (21)

Thus, the convergence of error, using the error norm (21), in time, say Trate, is
defined as

Trate = log2

(
E∞(N/2)

E∞(N)

)
. (22)

By the dint of various numerical experiments conducted over the test example 1,
Table 1 represents the absolute errors and corresponding convergence rates of the
L1 approximation scheme at final time T = 1 for different values of α and N . The
tabular data clearly indicates the accuracy and efficiency of the scheme. As the
value of α declines, there is a significant reduction in the absolute errors along
with an explicit upsurge in the rate of convergence. The L1 scheme performs
comparatively better for lower values of α and a higher number of subintervals
and exhibits a convergence rate of O(τ2−α).

A similar set of numerical experiments is again performed over the test ex-
ample 1 by approximating the Caputo fractional derivative with L1-2 and L1-23
approximation schemes, and the obtained results are displayed in Table 2 and
3, respectively. The displayed results showcase a similar pattern, where again
the absolute errors are less for lower values of α and a higher number of subin-
tervals. Thus, the convergence rates are also better for lower values of α. The
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Table 1. Absolute errors and order of convergence at T = 1 with L1 method.

N
α = 0.3 α = 0.5 α = 0.7

E∞ Trate E∞ Trate E∞ Trate

10 1.3300e-02 3.5300e-02 7.7000e-02
20 4.5000e-03 1.5634 1.3300e-02 1.4082 3.2400e-02 1.2489
40 1.5000e-03 1.5850 4.9000e-03 1.4406 1.3500e-02 1.2630
80 4.8019e-04 1.6433 1.8000e-03 1.4448 5.6000e-03 1.2695
160 1.5365e-04 1.6440 6.4474e-04 1.4812 2.3000e-03 1.2838
320 4.8741e-05 1.6564 2.3104e-04 1.4806 9.2967e-04 1.3068

L1-2 approximation scheme in Table 2 exhibits a convergence rate of O(τ3−α),
whereas, in Table 3, the L1-23 approximation scheme displays a convergence rate
of O(τ4−α). Hence, from the point of view of the accuracy of the approximation
schemes for Caputo fractional derivative, the L1-23 scheme has a clear win.

Table 2. Absolute errors and order of convergence at T = 1 with L1-2 method.

N
α = 0.3 α = 0.5 α = 0.7

E∞ Trate E∞ Trate E∞ Trate

10 3.0000e-03 8.6000e-03 1.9500e-02
20 5.2955e-04 2.5021 1.7000e-03 2.3388 4.4000e-03 2.1479
40 8.8235e-05 2.5853 3.1793e-04 2.4188 9.4503e-04 2.2191
80 1.4341e-05 2.6212 5.8342e-05 2.4461 1.9775e-04 2.2567
160 2.2956e-06 2.6432 1.0553e-05 2.4669 4.0815e-05 2.2765
320 3.6380e-07 2.6577 1.8929e-06 2.4790 8.3623e-06 2.2871

Table 3. Absolute errors and order of convergence at T = 1 with L1-23 method.

N
α = 0.3 α = 0.5 α = 0.7

E∞ Trate E∞ Trate E∞ Trate

10 3.7435e-04 1.3000e-03 3.5000e-03
20 3.1120e-05 3.5885 1.2278e-04 3.4044 3.8548e-04 3.1826
40 2.5260e-06 3.6229 1.1365e-05 3.4334 4.1073e-05 3.2304
80 2.0195e-07 3.6448 1.0325e-06 3.4604 4.2783e-06 3.2631
160 1.5986e-08 3.6591 9.2812e-08 3.4757 4.4037e-07 3.2802
320 1.2566e-09 3.6692 8.2900e-09 3.4849 4.5040e-08 3.2894

However, when the total elapsed time taken in seconds to perform the simu-
lation by all these difference approximations is calculated, we can see from Table
4 that the highest time is taken by the L1-23 approximation scheme.
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Table 4. Total elapsed time (in sec) at α = 0.5 for different approximation schemes.

N
Elapsed time (in sec)
L1 L1-2 L1-23

10 0.009828 0.020611 0.037976
20 0.006573 0.026980 0.109275
40 0.005160 0.012928 0.041782
80 0.004253 0.012068 0.040428
160 0.005800 0.022178 0.092971
320 0.007439 0.065428 0.242998

5 Conclusion

This article provides a comparative analysis of differencing errors of various nu-
merical approximations of the Caputo fractional derivative based on the meth-
ods of Lagrange interpolation over a uniform mesh. The resolution formula for
modified wavenumbers of the Caputo derivative approximations is obtained us-
ing Fourier analysis and, thus, compares the differencing errors. The modified
wavenumbers for these approximations are plotted against wavenumber ω for dif-
ferent values of α and J in Figs. 1, 2 and 3. From these figures, it is observed that
the L1− 23 approximation depicts better resolution characteristics as compared
to other Caputo derivative approximations. Modification in fractional order α
and/or the number of mesh points J does not influence the outcomes. Numeri-
cal simulations on a test case conducted using these approximations validate the
accuracy of these schemes and showcase L1-23 as a better option for approximat-
ing the Caputo fractional derivative. Also, it confirms that these approximations
perform better for lower values of α and a higher number of subintervals. One
important aspect of Caputo derivative approximation based on Lagrange inter-
polation methods is the presence of an initial singularity of the function around
x = 0, which deteriorates the scheme’s convergence and is dealt with by con-
sidering a non-uniform mesh. Hence, we would like to extend this study to a
comparative Fourier analysis of differencing errors of Caputo derivative approx-
imations over the non-uniform mesh.
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