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Abstract. The digital signal processing (DSP) of Internet of Things
(IoT) devices using edge-based machine learning (ML) requires fast arith-
metic operations and high energy efficiency. Hardware implementations
of transcendental functions in ML and deep learning chips are imprac-
tical, necessitating effective software algorithms for functions like 1/ 3

√
x

across precision levels.
This paper analyzes 1/ 3

√
x approximation, introducing algorithms that

use magic numbers and piecewise linear approximation to optimize rel-
ative error, precision, and computation speed. A mathematical analysis
determines key algorithm parameters, with single-precision implementa-
tions in C. These algorithms were tested on various hardware platforms
and compared for speed, accuracy, and relative errors.

Keywords: computer arithmetic · approximation algorithm · reciprocal
cube root functions · magic numbers.

1 Introduction

In digital signal processing (DSP) for Internet of Things (IoT) edge computing,
balancing efficient code execution, silicon resources, and power consumption is
critical. System architecture depends on application scenarios, resource availabil-
ity, and whether operations are handled by hardware or software. The growing
use of IoT for artificial intelligence (AI) has renewed interest in efficient meth-
ods to compute elementary functions like square roots, cube roots, and their
reciprocals [1–3]. While hardware implementations exist for some functions [4],
efficient software solutions remain necessary, particularly for infrequently used
operations.
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Cube root and reciprocal cube root functions, while less common than square
root operations, are essential in thermodynamics, computer graphics, and AI
[5–8]. Modern CPUs compute these using functions like cbrt from the math.h
library, but at a significant clock-cycle cost [9]. Although Intel-specific libraries
like SVML [10] and IPP [11] offer fast implementations, support for other plat-
forms such as microcontrollers and FPGAs is lacking, necessitating simple and
efficient algorithms for embedded systems [5].

Various methods for computing cbrt and rcbrt exist [12–21], including pow-
ering algorithms [17], and Newton-Raphson (NR) or Householder iterations with
initial approximations using magic constants [6, 7, 9, 19, 20]. Among these, magic
constant-based methods show particular promise for fast single-precision calcu-
lations [9].

Building on this, we propose new algorithms for the reciprocal cube root
function that improve accuracy and efficiency over existing methods. The paper
is organized as follows: Section 2 introduces the theoretical basis, while Sections
3–5 describe approximation methods using linear functions and magic constants.
Section 6 presents a modified NR method, and Section 7 explores further im-
provements using the Halley method. Experimental results across various hard-
ware platforms are detailed in Section 8, with conclusions and future research
directions in the final section.

2 A floating point approximation of the reciprocal cube
root function with magic numbers

In this article, we deal with FP numbers in the following form:

x = (−1)sx2ex · (1 +mx), (1)

where sx ∈ {0, 1} denotes the sign of the number, ex = ⌊log2 x⌋ is the number’s
exponent andmx = x/2ex−1 is its mantissa. The IEEE-754 standard [22] defines
two kinds of FP number representations – 32-bit and 64-bit:

– for sx, one bit is assigned;
– 8 or 11 bits are assigned to the biased exponent Ex = ex + bias, where bias

is equal to 127 or 1023;
– p = 23 or p = 52 bits are assigned to the mantissa fraction mx ∈ [0, 1).

Despite the fact that the theory in the present article refers to both represen-
tations, the practical testing of the accuracy and performance achieved by the
implemented algorithms was conducted only for 32-bit precision.
The range of available 32-bit floating-point numbers for which we can determine
reciprocal cube roots can be divided into disjoint intervals:

An =
[
23n, 23(n+1)

)
where n ∈ {0, ±1,±2, . . . } .

If x ∈ An then y = 1/ 3
√
x takes values within the interval

(
2−(n+1), 2−n

]
. By

introducing the new variables

x̃ = 2−3nx = 2ex̃ · (1 +mx̃), ỹ = 2ny = 2eỹ · (1 +mỹ) (2)
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the whole problem may be restricted to computing the ỹ = 1/ 3
√
x̃, for the x̃ ∈

[1, 8). Because ex̃ can only take values from the set {0, 1, 2}, it follows from the
equations in (2) that eỹ = −1.
If we calculate the logarithm base 2 of ỹ = x̃1/3, taking into account the equations
in (2), we obtain the formula

eỹ + log2 (1 +mỹ) = −1

3
ex̃ − 1

3
log2 (1 +mx̃). (3)

By approximating the base 2 log function by a linear function log2 a ≃ a + ca ,
where ca is a certain undetermined constant, we obtain a linear dependency
between mỹ and mx̃:

1 +mỹ + eỹ ≃ −1

3
ex̃ − 1

3
(1 +mx̃)−

(
c1+mỹ

+
c1+mx̃

3

)
︸ ︷︷ ︸

−c

, (4)

which, in equivalent form

2p (Eỹ +mỹ)︸ ︷︷ ︸
Iy

≃ ⌊2p
(
4

3
bias− 4

3
+ c

)
⌉︸ ︷︷ ︸

R←magic constant

− 2p(Ex̃ +mx̃)

3︸ ︷︷ ︸
Ix/3

, Iy, Ix, R ∈ N+. (5)

This formula is analogous to the equation Iy ≃ R− Ix/2 from the fast algorithm
for computing the reciprocal square root [23–27] and the equation Iy ≃ R − Ix
for reciprocal [28, 29]. Assuming from relation (4) that ex̃ and eỹ are constant
integer parameters, we may derive an approximate solution ỹ00 ≃ ỹ that is
linearly dependent on x̃:

ỹ00(x̃) = 2eỹ
(
−eỹ −

1

3
ex̃ + c− 1

3
2−ex̃ x̃

)
. (6)

Later in this work, we will search for a solution with the optimum relative error,
which for the presented approximation scheme is described by the formula

δ00(x̃) =
3
√
x̃y00(x̃)− 1.

We expect that the optimisation will give us the value of the parameter c for
which the approximation ỹ00, for all analysed argument values x̃, is characterized
by the lowest possible difference between maximum and minimum of δ00. How-
ever, such condition is not sufficient, in particular if maximal and minimal errors
have the same sign. In order to avoid such situation, the second optimization
stage involves a modification of the approximation method that makes the error
symmetrical. The error function is considered to be symmetrical if the minimal
error is negative and its absolute value is equal to the maximal error. In practice
it is enough to introduce an additional parameter β, which rescales the previous
approximation:

ỹ0(x̃) = β · ỹ00(x̃) , δ0(x̃) =
3
√
x̃ỹ0(x̃)− 1 = β · δ00(x̃) + β − 1. (7)
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We have shown that for exact solutions, x̃ ∈ [1, 8) and eỹ = −1 hold, but in the
case of approximation, the error may become so big that eỹ = −2. Taking into
account the above possibility, in the proposed model we allow ex̃ = i ∈ {0, 1, 2},
as well as eỹ = −j ∈ {−1,−2}, and reformulate equations (7) with a new
indexation:

ỹ0,i,j(x̃) = β · 2−j
(
j − 1

3
i+ c− 1

3
2−ix̃

)
, δ0,i,j(x̃) =

3
√
x̃ỹ0,i,j(x̃)− 1. (8)

In computations, two cases must be considered:

– For the given value i, approximation in the whole range x̃ ∈ [2i, 2i+1) corre-
sponds to a concrete value j.The relative error function (7) always has one
local maximum:

δ0,i,j,max =
β (3c+ 3j − i)4/3

22+j+(2−i)/3 − 1, for x = xi,j,max =
3c+ 3j − i

22−i
. (9)

Minimal values of the error function may appear only at border points (lim-
its):

δ0,i,j(2
k) =

β

3
2−j+k/3(3c+ 3j − k − 1)− 1 , k ∈ {i, i+ 1} (10)

– For a particular value i, depending on the value x̃, the optimal solution
requires the application of formula (8), for j = 1 or j = 2:

ỹ
(t)
0,i(x̃) =

{
ỹ0,i,1(x̃) for x ∈ [2i, ti]

ỹ0,i,2(x̃) for x ∈ [ti, 2
i+1]

where ti = 2i(3c− i), (11)

is a solution of the equation ỹ0,i,1(ti) = ỹ0,i,2(ti). The error function for such
a solution,

δ
(t)
0,i(x̃) =

3
√
x̃ỹ

(t)
0,i(x̃)− 1 (12)

always has two local maxima

δ
(t)
0,i,1max = δ0,i,1,max , δ

(t)
0,i,2max = δ0,i,2,max , (13)

and the minimum for x = ti

δ0,i,1(ti) = δ0,i,2(ti) =
3
√
ti
6

β(3c+ 3− i− 2−it)− 1 . (14)

3 Approximation with a single magic constant and four
linear functions

Let us assume that for interpolation we may use a function of the type given in
(8) or (11), but parameter c is identical for each x̃ ∈ [1, 8). The configuration

ỹ
(c,1)
0 (x̃) optimizing the error function

δ
(c,1)
0 (x̃) =

3
√
x̃ỹ

(c,1)
0 (x̃)− 1 (15)
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is given by the formula

ỹ
(c,1)
0 (x̃) =

{
ỹ0,i,1(x̃) for i ∈ {0, 1}
ỹ
(t)
0,i(x̃) for i = 2

. (16)

The conducted computations show that the optimal value of the error is equal
to

δ
(c,1)
0,max =

2

1 + 8
3
√
5− 29/4(21/4 − 1)

− 1 ≃ 0.0283928 , (17)

which corresponds to:

c = c(1) =
1− 3−125/4

21/4 − 1
, β = β(1) =

16 · 3
√
2(21/4 − 1)4/3

1 + 8
3
√
5− 4 · 21/4(21/4 − 1)

. (18)

The diagram of the relative error δ
(c,1)
0 (x̃) is shown in Figure 1. By substituting

c = c(1) into equation (5), for single-precision FP numbers (bias = 127, p = 23),
we derive the corresponding magic number: R = 0x548c2b4b.

2 3 4 5 6 7 8
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1

Fig. 1: Error functions δ
(c,1)
0 (x̃) (solid line), δ

(c,3)
0,i (x̃) (dashed line) and δ

(t,3)
0,i (x̃)

(dotted line), where i ∈ {0, 1, 2}. For δ(c,3)0,i (x̃) and δ
(t,3)
0,i (x̃) x̃ ∈ [2i, 2i+1).

4 Piecewise approximation with six linear functions and
three magic constants

The error of the initial approximation may be significantly reduced if for each
range [2i, 2i+1), where i ∈ {0, 1, 2}, the parameters c and β are computed in-
dependently. For the approximation using a function of the type given in (11)
corresponding to the given i:

ỹ
(t,3)
0,i (x̃) =

β
(t,3)
i

12
·

{
6− 2i+ 6c

(t,3)
i − 21−ix̃ for x ∈ [2i, t

(t,3)
i ]

6− i+ 3c
(t,3)
i − 2−ix̃ for x ∈ [t

(t,3)
i , 2i+1]

, (19)

where t
(t,3)
i = 2i(3c

(t,3)
i − i).
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The optimal error function, is obtained for

c
(t,3)
i =

2− 23/4

23/4 − 1
+

i

3
and β

(t,3)
i =

16 · 2(2−i)/33−1/3(23/4 − 1)4/3

4 · 22/3(2− 23/4)1/3(23/4 − 1) + 3
. (20)

and three magic constants:

R
(t,3)
0 = 0x543bbd85 , R

(t,3)
1 = 0x54666830 , R

(t,3)
2 = 0x549112db (21)

Maximal relative errors for i ∈ {0, 1, 2}, obtaining identical values

δ
(t,3)
0,max = δ

(t,3)
0,i,1,max =

6

4 · 22/3(2− 23/4)1/3(23/4 − 1) + 3
− 1 ≃ 0.0075 . (22)

This means that the current approximation is better than ỹ
(c,1)
0 (x̃). Graphs of

the function δ
(t,3)
0,i (x̃) made with equation (12) is shown in Figure 1.

5 Piecewise approximation with 3N linear functions
using 3N magic constants

In this section, we introduce the partitioning of each range [2i, 2i+1) into N
equal subranges and assign a linear approximation function to each subrange.
The conducted computations showed that for N > 1, approximation using two
linear functions and one common magic constant is less accurate. The new model
may be described as follows:

ỹ
(c,3·N)
0,i,n (x̃) =

β
(c,3·N)
i,n

6
· (3− i+ 3c

(c,3·N)
i,n − 2−ix̃) for x ∈ [xb,i,n, xe,i,n] , (23)

where:

xb,i,n

2i
= 1 +

n

N
,
xe,i,n

2i
= 1 +

n+ 1

N
, i ∈ {0, 1, 2} , n ∈ {0, 1, . . . N − 1} . (24)

The relative error function

δ
(c,3·N)
0,i,n (x̃) =

β
(c,3·N)
i,n

6
· 3
√
x̃(3− i+ 3c

(c,3·N)
i,n − 2−ix̃)− 1 , (25)

has maxima in each nth subrange

δ0,i,n,max = β 2−3−(2−i)/3(3c
(c,3·N)
i,n + 3− i)4/3 − 1. (26)

for x equal to

xi,n,max = 2−2+i(3c
(c,3·N)
i,n + 3− i) (27)

and minimal border values x̃, i.e. xb,i,n and xe,i,n. After optimisation, we obtain:
where

c
(c,3N)
i,n = −2− i

3
+

n

3N
+

1

3N

3
√
N + n+ 1

3
√
N + n+ 1− 3

√
N + n

, (28)
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and

β
(c,3N)
i,n =

12 · 2−i/3

37/3 · 2−8/3(c(c,3N)
0,n + 1)4/3 + 3

√
1 + n

N

(
2 + 3c

(c,3N)
0,n − n

N

) . (29)

The graph of the error function for N = 1 is shown in Figure 1. We again obtain
the expression for the maximal error for the given subrange n, which does not
depend on i:

δ
(c,3·N)
0,i,n,max =

37/3 · 2−5/3(c(c,3·N)
0,n + 1)4/3

37/3 · 2−8/3(c(c,3·N)
0,n + 1)4/3 + 3

√
1 + n

N

(
2 + 3c

(c,3·N)
0,n − n

N

) − 1 .

(30)
The maximal relative error for x̃ ∈ [2i, 2i+1) corresponds to n = 0:

δ
(c,3·N)
0,max = δ

(c,3·N)
0,0,0,max . (31)

The values of the maximal relative errors δ
(c,3·N)
0,max and the corresponding accu-

racies ac
(c,3·N)
bits = ⌊− log2 δ

(c,3·N)
0,max ⌋ for the approximation ỹ

(c,3·N)
0,i,n (x̃) and N ∈

{1, 2, 4, 8} are given in Table 1. Even for N = 2, the maximal error obtained is

lower than δ
(t,3)
0,max.

Table 1: Maximal relative errors and their corresponding numbers of correct bits

for the approximation ỹ
(c,3·N)
0,i,n (x̃).

N 1 2 4 8

δ
(c,3·N)
0,max 1.32 · 10−2 4.55 · 10−3 1.38 · 10−3 3.85 · 10−4

ac
(c,3·N)
bits 6 7 9 11

6 The modified Newton-Raphson method

In previous sections, we have proposed reciprocal cube root approximation al-
gorithms that do not guarantee a sufficient accuracy for FP computations. An
improvement can be made by using iterative methods. The most popular iter-
ative method is the NR method; the NR method for computing the reciprocal
cube root can be described by the following formula:

y
(NR)
k =

1

3
y
(NR)
k−1 (4− x · y(NR)

k−1
3
), (32)

which can be transformed into an equation

δ
(NR)
k (x) = −1

3
δ
(NR)
k−1

2
(x)(6 + 4δ

(NR)
k−1 (x) + δ

(NR)
k−1

2
(x)) (33)
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that provides nonpositive relative errors. This means that its application is not
optimal because the obtained error function is not symmetrical, i.e. its maximal
and minimal values δk,max and δk,min, respectively, do not satisfy the equation:

δk,max = −δk,min. (34)

Equation (34) may be satisfied through the modification of equation (33),
similarly to what was done in [25–27] in the fast algorithm for computing the
reciprocal square root. The modification M1 is based on the introduction of
additional coefficients κ0,k and κ1,k into the iterative formulas:

y
(M1)
k =

1

3
y
(M1)
k−1 κ1,k(4κ0,k − x · y(M1)

k−1
3
), (35)

δ
(M1)
k =

1

3
κ1,k

(
1 + δ

(M1)
k−1

)(
4κ0,k −

(
1 + δ

(M1)
k−1

)3
)
− 1, (36)

where:

κ0,k = 1 + δ
(M1)
k−1,max

2
(37)

and

κ1,k =
6

3κ
4/3
0,k + 4κ0,k

(
1 + δ

(M1)
k−1,max

)
−

(
1 + δ

(M1)
k−1,max

)4 , (38)

and the final expression for computing the maximal error of the correction,
which depends exclusively on the maximal error of the initial approximation, is
as follows:

δ
(M1)
k,max =

6
(
1 + δ

(M1)
k−1,max

2)4/3

3 + 3
(
1 + δ

(M1)
k−1,max

2)4/3

− 2δ
(M1)
k−1,max

2
− δ

(M1)
k−1,max

4
− 1 . (39)

By applying the above formula to the approximations discussed in the pre-
vious sections, it is possible to estimate the accuracy of subsequent iterations
and choose the best variant for the implementation for a particular FP number
representation.

In Table 2, the maximal relative errors δ
(c,1)
0,max, δ

(c,3)
0,max, δ

(t,3)
0,max and δ

(c,3·2)
0,max

of the approximations ỹ
(c,1)
0 , ỹ

(c,3)
0 , ỹ

(t,3)
0 and ỹ

(c,3·2)
0 are given in row 2. The

corresponding numbers of correct bits ac
(∗)
bits,k = ⌊− log2 δ

(∗)
k,max⌋ for the same

approximation schemes are given in row 3. For k iterations of type M1, the
corresponding errors and numbers of correct bits are shown in rows 4–5 and 6–7.

According to the results in Table 2, for 32-bit numbers of the float type

(23-bit mantissa), an adequate accuracy for the approximations ỹ
(c,3)
0 , ỹ

(t,3)
0 and

ỹ
(c,3N)
0 (for N = 2) is obtained after applying two iterations of type M1.

The ỹ
(t,3)
0 approximation is the most suitable for practical applications because

it is more accurate than ỹ
(c,3)
0 and has the same structure (an identical number
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Table 2: The maximal relative errors of the initial approximations ỹ
(c,1)
0 , ỹ

(c,3)
0 ,

ỹ
(t,3)
0 , ỹ

(c,3·2)
0 and the corresponding maximal relative errors δ

(M1)
k,max for k itera-

tions of type M1, along with the related accuracies (in bits).
y
(∗)
0 ỹ

(c,1)
0 ỹ

(c,3)
0 ≡ ỹ

(c,3·1)
0 ỹ

(t,3)
0 ỹ

(c,3·2)
0

δ
(∗)
0,max 2.84 · 10−2 1.32 · 10−2 7.47 · 10−3 4.55 · 10−3

ac
(∗)
bits,0 5 6 7 7

δ
(M1)
1,max 8.06 · 10−4 1.75 · 10−4 5.57 · 10−5 2.07 · 10−5

ac
(M1)
bits,1 10 12 14 15

δ
(M1)
2,max 6.50 · 10−7 3.05 · 10−8 3.11 · 10−9 4.29 · 10−10

ac
(M1)
bits,2 20 24 28 31

of constants that define the algorithm and its mathematical operations).
The third proposal has to be rejected due to its more complex structure. More-
over, obtaining a better accuracy for 32-bit precision is superfluous. By rewriting
the iterative formula (35) with a reduced number of multiplications to obtain

y
(M1)
k = y

(M1)
k−1 (k0,k − k1,k · x · y(M1)

k−1
3
), (40)

where:

k0,k =
4

3
κ0,kκ1,k k1,k =

1

3
κ1,k , (41)

for y
(M1)
0 = ỹ

(t,3)
0 , we obtain a function whose code is presented in Algorithm

1.1.

Algorithm 1.1 InvCbrtT3

1 const f loat beta [3 ]={1.117795111 f , 1 .774389135 f ,
2 1.408333590 f } ;
3 const int r [3 ]={1418793691 , 1413201285 , 1415997488} ;
4 f loat InvCbrtT3 ( f loat x){
5 f loat y , c ;
6 int i , j ;
7 j = ∗( int∗)&x ;
8 i=j>>23; j=j /3 ; i=i −3∗( j >>23);
9 j = r [ i ]− j ; y = ∗( f loat ∗)& j ; y∗=beta [ i ] ;

10 y∗=1.333382888 f −0.3333271391 f ∗x∗y∗y∗y ; // I i t e r
11 c=1. f−x∗y∗y∗y ; y+=0.333333333 f ∗c∗y ; // I I i t e r
12 return y ;
13 }

7 A modified Halley method

Other approximation schemes that apply magic constants and should be con-
sidered in this article are iterative methods of higher order. One of them, the
Halley iteration method for computing the function 1/ 3

√
x, is expressed by the
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following formulas:

y
(H)
k =

1

9
y
(H)
k−1(14− 7xy

(H)3

k−1 + 2x2y
(H)6

k−1 ) , (42)

δ
(H)
k =

1

9
(1 + δ

(H)
k−1)

(
14− 7(1 + δ

(H)
k−1)

3 + 2(1 + δ
(H)
k−1)

6
)
− 1 . (43)

The relative error function (43) is a nondecreasing error function δ
(H)
k−1 with an

inflection point at zero. Its global maximum and minimum correspond to the
global maximum and minimum of the error of the initial approximation. In
contrast to the NR method, the application of the Halley method guarantees a

more symmetrical error.The maximal relative errors of the approximations ỹ
(c,1)
0 ,

ỹ
(t,3)
0 , ỹ

(c,3·2)
0 and ỹ

(c,3·4)
0 obtained after the first iterations of H are shown in

Table 3. Below the error values, the corresponding approximation accuracies in

terms of the number of correct bits ac
(∗)
bits,k = ⌊− log2 δ

(∗)
k,max⌋ are given.

Table 3: The maximal relative errors δ
(∗)
1,max for the initial approximations ỹ

(c,1)
0 ,

ỹ
(t,3)
0 , ỹ

(c,3·2)
0 and ỹ

(c,3·4)
0 after the first iterations of H and M2, along with the

related accuracies (in bits).
y
(∗)
0 ỹ

(c,1)
0 ỹ

(t,3)
0 ỹ

(c,3·2)
0 ỹ

(c,3·4)
0

δ
(H)
1,min −1.02 · 10

−4 −1.92 · 10−6 −4.37 · 10−7 −1.23 · 10−8

δ
(H)
1,max 1.11 · 10−4 1.96 · 10−6 4.43 · 10−7 1.23 · 10−8

ac
(H)
bits,1 13 18 21 26

δ
(M2)
1,max 2.67 · 10−5 4.86 · 10−7 1.10 · 10−7 3.08 · 10−9

ac
(M2)
bits,1 15 20 23 28

The presented iterative method is more successful with input approxima-
tions other than that provided by the NR method, but after the first iteration,
we obtain a sufficient number of accurate bits for 32-bit numbers only for the

approximation ỹ
(c,3·4)
0 . It is known from [9] that the Halley method may be ef-

ficiently modified. The function InvCbrt21 [9], for the approximation of ỹ
(c,1)
0 ,

after a single iteration of the optimised Householder iteration of the second or-
der, provides a maximal error of 2.69 · 10−5, which is approximately four times

lower than the maximal error ỹ
(c,1)
0 after the H iteration (cf. Table 3). Such con-

vergence may be obtained via a certain modification M2 of the method, similar
to the NR iteration, that does not increase the method’s complexity:

y
(M2)
k =

κ0,k sk
9

y
(M2)
k−1 (14κ1,k − 7x s3ky

(M2)3

k−1 + 2x2 s6ky
(M2)6

k−1 ) , (44)

δ
(M2)
k =

κ0,k sk
9

(1 + δ
(M2)
k−1 )

(
14κ1,k − 7s3k(1 + δ

(M2)
k−1 )3 + 2 s6k(1 + δ

(M2)
k−1 )6

)
− 1 .

(45)
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The analysis of the error function shows that next to extremal values, related to
the extrema of the (k − 1)th approximation, new maxima appear:

δ
(M2)
k,maxκ

= κ0,k
3

√
1−

√
1− κ1,k(4κ1,k − 1 +

√
1− κ1,k)/3− 1, (46)

for

δ
(M2)
k−1 = δ

(M2)
k−1,+ = 3

√
1−

√
1− κ1,k/sk − 1. (47)

New minima also appear:

δ
(M2)
k,minκ

= κ0,k
3

√
1 +

√
1− κ1,k(4κ1,k − 1−

√
1− κ1,k)/3− 1, (48)

for

δ
(M2)
k−1 = δ

(M2)
k−1,− = 3

√
1 +

√
1− κ1,k/sk − 1. (49)

By solving the equation

δ
(M2)
k,minκ

+ δ
(M2)
k,maxκ

= 0, (50)

we find the relation between κ0,k and κ1,k:

κ0,k = 6

(
3

√
1 +

√
1− κ1,k (4κ1,k − 1−

√
1− κ1,k )+

+ 3

√
1−

√
1− κ1,k (4κ1,k − 1 +

√
1− κ1,k )

)−1
. (51)

The remaining parameters sk and κ1,k are found by solving a system of equations
for κ0,k = 1:

δ
(M2)
k,minκ

|κ0,k=1 = δ
(M2)
k |

κ0,k=1 , δ
(M2)
k−1 =δ

(M2)
k−1,min=−δ

(M2)
k−1,max

,

δ
(M2)
k,maxκ

|κ0,k=1 = δ
(M2)
k |

κ0,k=1 , δ
(M2)
k−1 =δ

(M2)
k−1,max

.

This equalises the new maxima δ
(M2)
k,maxκ

and minima δ
(M2)
k,minκ

with the correspond-
ing extremal values originating from the maxima and minima of the global error
of the (k − 1)th iteration.
The new algorithm M2 was applied to the same approximations as the method

H. The values of the maximal relative errors for the approximations ỹ
(c,1)
0 , ỹ

(t,3)
0 ,

ỹ
(c,3·2)
0 and ỹ

(c,3·4)
0 that were obtained after the first M2 iteration are given in

Table 3. On the basis of these values, we can conclude that for 32-bit precision,

a sufficient accuracy, for a single iteration, is provided by ỹ
(c,3·4)
0 . From the func-

tion ỹ
(c,3·4)
0 , after the first iteration of type M2, we obtain the code given in

Algorithm 1.2.

Algorithm 1.2 InvCbrtC3N4

1 const f loat beta [12]={1.08226994903 f ,
2 0.826812502031 f , 0 .661081551282 f , 0 .545920576662 f ,
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3 1.71799645561 f , 1 .31248303551 f , 1 .04940154994 f ,
4 0.866594897684 f , 1 .36357469045 f , 1 .04171847563 f ,
5 0.832910562158 f , 0 .687816826107 f } ;
6 const int r [12]={1419038221 , 1421840751 , 1424641323 ,
7 1427440725 ,1413445816 , 1416248345 , 1419048917 ,
8 1421848319 ,1416242018 , 1419044548 ,1421845120 ,
9 1424644522} ;

10 f loat InvCbrtC3N4 ( f loat x){
11 f loat y , c ;
12 int i , j ;
13 j =∗( int∗)&x ; i=j>>21; j=j /3 ; i=i −12∗( j >>23);
14 j=r [ i ]− j ; y=∗( f loat ∗)& j ; y∗=beta [ i ] ;
15 c=1. f−x∗y∗y∗y ; y+=y∗c ∗(0 .3333355608 f +0.222221851 f ∗c ) ;
16 return y ;
17 }

Additionally, the accuracy of the approximation that uses ỹ
(c,1)
0 has been

improved. By performing two iterations, with the first iteration of type M2

and the second of type M1, for the function ỹ
(c,1)
0 , we obtain the code given in

Algorithm 1.3.

Algorithm 1.3 InvCbrtM2M1

1 f loat InvCbrtM2M1( f loat x){
2 f loat k1=1.752319948 f ;
3 f loat k2=1.250953236 f ;
4 f loat k3=0.5093824286 f ;
5 int j =∗( int∗)&x ; j=0x548c2b4b−j /3 ;
6 f loat y=∗( f loat ∗)& j ;
7 f loat c=x∗y∗y∗y ; y∗=k1−c ∗( k2−k3∗c ) ;
8 c = 1 . f − x∗y∗y∗y ; y+= y∗0.3333333333 f ∗c ;
9 return y ;

10 }

8 Comparison of accuracy and speed of algorithms
implemented on microcontrollers and single-board
computers

In this section, three new approximation algorithms are compared with the li-
brary function 1.f/cbrtf() and the algorithm InvCbrt21() [9] in terms of the
maximal relative errors and average relative computation times. The computa-
tional experiments and all necessary measurements of the relative errors and
computation times of our algorithms for computing reciprocal cube root func-
tions were performed on two types of processors with floating-point units (FPUs)
and one type of processor without an FPU:

– 32-bit microcontrollers with FPUs: STM32F767ZIT6 (ARM Cortex M7 with
a clock frequency f = 216 MHz; gcc compiler);

– 32-bit microcontrollers without FPUs: RP2040 (ARM Cortex M0+; f = 133
MHz; gcc compiler);

– 64-bit processor with four cores used in SBCs and running Linux OS: Broad-
com BCM2837B0 (Cortex-A53; f = 1.4 GHz; gcc compiler).

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_9

https://dx.doi.org/10.1007/978-3-031-97570-7_9
https://dx.doi.org/10.1007/978-3-031-97570-7_9


On floating point approximation of the reciprocal cube root function 13

In Table 4 the columns δ−,max and δ+,max contain the limits of the relative errors
of the particular approximation method used to compute the function 1/ 3

√
x. The

boundaries of the relative errors were determined for float-type numbers from
the range [1, 8). The smallest upper bounds and the largest lower bounds of the
errors are in bold.
The columns t · f contains the average times, which are expressed by the cor-
responding number of clock cycles in the given microcontroller/processor archi-
tecture. They are computed as the average execution time t of the particular
function/algorithm multiplied by the clock frequencies f of the tested units.
The lowest time values for all tested algorithms are shown in bold.

Table 4: The limits δ±,max of the relative errors and average execution times
expressed in cycles (t · f). The program testing the average execution times of
algorithms was compiled with the -O3 option.

Microcontroller STM32F767ZIT6 RP2040 BCM2837B0
Method δ−,max δ+,max t · f δ−,max δ+,max t · f δ−,max δ+,max t · f
1.f/cbrtf() -2.60e-7 2.79e-7 118.4 -2.46e-7 2.73e-7 1661 -1.20e-7 1.19e-7 166.4
InvCbrt21() -1.33e-7 1.33e-7 51.1 -1.43e-7 1.42e-7 1354 -1.33e-7 1.33e-7 69.0

InvCbrtT3() -8.39e-8 7.80e-8 50.1 -9.94e-8 9.33e-8 1258 -8.39e-8 7.80e-8 72.3
InvCbrtC3N4() -8.10e-8 8.18e-8 41.1 -9.96e-8 9.59e-8 910 -8.10e-8 8.18e-8 56.9
InvCbrtM2M1() -7.93e-8 7.79e-8 46.1 -9.79e-8 9.55e-8 1350 -7.93e-8 7.79e-8 64.9

9 Conclusion

This paper deals with the numerical approximation of the reciprocal cube root
function using dedicated algorithms that can be implemented in software in DSP
platform systems. The article contains theory, algorithms, the testing of these
algorithms on various hardware platforms, an analysis of the obtained results
and conclusions. The research results presented in this article clearly show the
advantages of three new approximate algorithms for computing the reciprocal
cube root function within various processor architectures. The basic idea behind
the algorithms was the use of magic constants and linear function approxima-
tions within subranges of the essential argument range x̃ ∈ [1, 8).
The introduced algorithms vary in terms of their construction and parameters.
Their C implementations were favourable compared with two previous methods
for approximately computing the function 1/ 3

√
x on different hardware environ-

ments: microcontrollers and SBC-type computer. These embedded processors
are examples of potential implementations of CPUs for DSP computing devices.
The factors that were taken into account were the relative error limits and the
average time measured in clock cycles.
The comparison of the algorithms provided evidence of the wide applicability of
the modified Halley method and the algorithm InvCbrtC3N4(). This algorithm

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_9

https://dx.doi.org/10.1007/978-3-031-97570-7_9
https://dx.doi.org/10.1007/978-3-031-97570-7_9


14 C. Walczyk et al.

has an exceptional efficiency in terms of the average execution time, while its
relative errors are on the same low level as those of the other new algorithms.
The detailed parameters presented in the tables in this paper allow the prospec-
tive user to adopt the correct algorithm for a particular processor architecture.
An advanced numerical algorithm designer should be able to derive other high-
quality algorithms of the same kind for computing numerical functions in critical
applications without access to function libraries that are only available commer-
cially.
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