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Abstract. The paper introduces a novel hierarchical decision tree frame-
work designed to enhance classi�cation quality in dispersed and frag-
mented data. By integrating two levels of modeling, the framework em-
ploys local decision trees to generate prediction vectors, which are then
synthesized through a global decision tree for �nal classi�cation. Five
distinct approaches � Tree, Tree & height, Bagging & stump, Bagging &
height, and Bagging � are proposed and evaluated. Each method varies in
how local models are constructed, focusing on factors such as tree depth,
bagging methods, and tree stumps. Experimental results on data sets
from the UCI Machine Learning Repository demonstrate that the Bag-
ging approach, particularly with an optimized number of bags and trees
height, consistently achieves superior performance across metrics includ-
ing accuracy, F-measure, and balanced accuracy. These �ndings highlight
the framework's robustness and e�ectiveness in managing dispersed data,
o�ering signi�cant potential for applications in high-dimensional, frag-
mented and multi-class classi�cation scenarios.

Keywords: Dispersed Data Classi�cation · Bagging · Decision Tree Op-
timization · Local and Global Models · Ensemble Learning.

1 Introduction

Machine learning is a powerful tool that is applied in various �elds to predict and
classify. A challenge arises when data is sourced from several entities, clients or
individuals with varying attributes. With such data, a classical machine learn-
ing model is not an optimal tool since it requires aggregating and centralizing
the data, which may be expensive in terms of privacy and time sensitivity [15].
From literature, classifying dispersed data can be obtained through Ensemble
learning [2, 14] and Federated learning [4, 8]. Federated learning (FL) is a col-
laborative machine learning approach designed to overcome the challenges of
working with dispersed data while preserving privacy [3, 5]. Ensemble Learning
(EL) involves building local models using separate tables proceeded by generat-
ing a �nal prediction through a fusion method applied to these local models [11,
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13]. An alternative to the approaches mentioned above is the construction of a
dual-level model that aggregates prediction vectors generated by separate local
models. This method inherently preserves data privacy, as only the prediction
vectors are shared and consolidated, rather than the raw data itself. The struc-
ture of the data in this approach is highly �exible, allowing for a wide range
of formats. Notably, a global model is not created, and the algorithm operates
in a non-iterative manner. Instead of re�ning a global model, the focus is on
developing an aggregation model that simply consolidates the predictions from
the local models. Furthermore, the local models can be di�erent in type from
the aggregation model, providing additional �exibility in how the system is de-
signed. This method is implemented in [6, 9, 10] using decision trees embedded
with bagging technique and K-nearest neighbors algorithm. This paper builds
on the approach introduced by [9] to explore the di�erent methods of performing
dual-level hierarchical classi�cation using decision trees. The paper's main con-
tributions are: a hierarchical decision tree framework for classifying dispersed,
high-dimensional, multi-class data, and a comparison of �ve methods � Tree,
Tree & Height, Bagging & Stump, Bagging & Height, and Bagging � di�ering
in bagging use and tree structures.

Section 2 describes the dual-level hierarchy and the �ve methods proposed.
Section 3 presents the datasets, experiments, and results discussion. Section 4
outlines the conclusions and future research plans.

2 Methods

The approach consists of two main steps: the �rst is training local models from
local tables and the second is generating a global model. The global model makes
the �nal decision based on the prediction vectors generated by the local models.
We compare �ve hierarchical (two-stage) decision tree frameworks labeled: tree,
tree & height, bagging & stump, bagging & height and bagging. In all these
approaches, the main di�erence lies in building local models. The global model
is a classical decision tree.

2.1 Local decision trees

In the study, we consider local models that generate prediction vectors from the
abstract level and from the measurement level. 1 gives a brief description of the
local model for each approach.

2.2 Global decision tree

The global model generates the �nal decision based on the prediction vectors
generated by the local models. To do this, we use a decision tree to detect
patterns in the set of prediction vectors generated by local models. A valida-
tion set is used for the examination of the prediction vectors produced by local
models. A decision table (sub-table of D) � the validation set � is denoted as
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Table 1. Description of local models for each approach and their output for prediction
vectors

Approach Local Model Prediction Vector

Tree Decision tree Abstract level

Tree and Height Decision tree with adjusted height Abstract level

Bagging and Stump Nodes generated from sampling with replacement Measurement level

Bagging and Height Adjusted height and sampling with replacement Measurement level

Bagging Decision tree and sampling with replacement Measurement level

Dval = (Uval, Aval, d), where Aval =
⋃n

i=1 Ai and Uval ⊆ U . The classi�cation of
the object x ∈ Uval based on the local table Di is done using a set of attributes
Ai. Depending on the approach used to build the local model, either a single
tree or each tree Treeji , j ∈ {1, . . . , k} generated through the bagging method,
classi�es the entity x and casts a vote towards one of the decision classes. These
votes are stored in a prediction vector µi(x) = [µi,1(x), . . . , µi,c(x)], where c is
the number of decision classes. We get n prediction vectors for each object x;
one vector µi(x) for each local table i. For each object in the validation set, the
prediction vectors are concatenated and stored together with the true decision
class as one object in the table Dpred. This table serves a pivotal role in the sec-
ond phase of training global model. Based on the table Dpred the decision tree is
trained. This model learn how to classify the prediction vectors generated by the
local models obtained in the previous stage. The DecisionTreeClassi�er function
from the scikit learn library in Python with the Gini index is used to build the
global decision tree. This global tree will be used for the �nal classi�cation of
new objects.

2.3 Objects classi�cation process

The training data, represented as multiple local tables with varying attributes
and objects, is available initially. The process starts with training trees on these
tables, either with or without bagging, and varying heights depending on the
chosen method. Validation data is then used to generate prediction vectors for
each local decision tree, assigning class probability/vector coe�cient based on
the number of trees supporting each class. These prediction vectors are subse-
quently combined into a uni�ed vector, which forms the input for training a
global decision tree. The global decision tree consolidates the outputs of the
local decision trees to deliver the �nal classi�cation, ensuring an e�cient and
scalable solution for high-dimensional and multi-class problems. In Figure 1,
the structure of the proposed hierarchical decision tree framework is illustrated,
highlighting the sequential steps involved in building the model. In Figure 2, the
process for classifying new objects using the proposed hierarchical decision tree
framework is depicted. The framework operates in two levels.
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Fig. 1. Structure of the proposed hierarchical decision tree framework for dispersed
data classi�cation

Fig. 2. Classi�cation process for new objects using the hierarchical decision tree frame-
work

3 Data sets and experimental results

For the experimental evaluation, three data sets from the UC Irvine Machine
Learning Repository [1] were employed: the Vehicle Silhouettes data set [12],
the Soybean (Large) data set [7], and the Lymphography data set [16]. Initially,
these data sets were available in a non-dispersed form. To simulate dispersion,
each data set was divided into �ve separate versions, resulting in a total of
15 dispersed data sets. The Soybean data set included prede�ned training and
testing sets available directly from the repository, while the Vehicle Silhouettes
and Lymphography data sets were split into training (70%) and testing (30%)
sets through strati�ed random sampling. Each training data set was divided into
a collection of local decision tables. This dispersion process was performed in �ve
variations for each data set, resulting in con�gurations with 3, 5, 7, 9, and 11
local decision tables per training set. The characteristics of the data sets are
given in Table 2.
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Table 2. Data set characteristics

Data set # The training set # The test set # Conditional Attributes type # Decision
attributes classes

Vehicle Silhouettes 592 254 18 Integer 4
Soybean 307 376 35 Categorical 19

Lymphography 104 44 18 Categorical 4

Table 3. Performance Metrics Across Di�erent Datasets and Methods (Highest values
in blue)

Dataset Metric Tree Tree & H Bag & Stump Bag & H3 Bagging

Vehicle

Prec. 0.5946 0.659 0.5838 0.6878 0.6978
Recall 0.5684 0.6552 0.572 0.7072 0.6904
F-m. 0.5748 0.6506 0.5604 0.6912 0.6868
bacc 0.5532 0.6314 0.559 0.6732 0.6694
acc 0.5684 0.6552 0.572 0.7072 0.6904

Soybean

Prec. 0.69 0.69 0.287 0.761 0.7516
Recall 0.6158 0.6158 0.3678 0.7094 0.79
F-m. 0.5668 0.5668 0.2794 0.655 0.7562
bacc 0.6348 0.6348 0.2976 0.6926 0.65
acc 0.6158 0.6158 0.3678 0.7094 0.79

Lymphography

Prec. 0.451 0.6722 0.6962 0.6858 0.7404
Recall 0.5216 0.6434 0.7288 0.6958 0.7374
F-m. 0.4334 0.5912 0.7048 0.677 0.7274
bacc 0.62 0.7092 0.5314 0.5478 0.6956
acc 0.5216 0.6434 0.7288 0.6958 0.7374

Classi�cation performance was assessed on test sets, averaging results over
�ve runs per dataset to address bagging's non-determinism. Multiple metrics
were used for a comprehensive evaluation.

The experiments were carried out according to the following scheme. For
15 dispersed data sets (Vehicle Silhouettes, Lymphography and Soyabean with
version 3, 5, 7, 9, 11 local tables) and approaches: Bagging and Stump; Bagging
and Height 3; Bagging the bagging method was used with a di�erent number
of bags (10, 20, 30, 40, 50, 75, 100, 150, 200, 300, 500, 1000, 1500, 2000). A
wide range of bag numbers were examined due to the goal of conducting broad
comparisons. For the approach Tree and Height trees of di�erent heights were
used (2, 3, 4, 5, 6, 7, 8). The test set was divided in a strati�ed manner into
a validation (50%) and test set (50%). The validation set was used to build a
global decision tree. The model's evaluation was done using a test set.

Due to space limit, we do not present results obtained for all parameters
(however, they will be made available upon request sent to the authors). Table
3 shows the average of the best (in terms of classi�cation accuracy) results
obtained for di�erent data sets. The table also shows in blue the best result
(from considered approaches) for each of the data sets.

Overall, the models incorporating Bagging method proved to be the most ro-
bust and e�ective across all data sets, particularly when the number of bags was
tuned within the range of 500 to 1500, enhancing model stability and accuracy.
Simple tree-based approaches struggled to handle the complexity and diversity
of the data sets, while Bagging-Stump showed moderate success but remained
inconsistent. The results suggest that Bagging is particularly well-suited for dis-
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persed hierarchical decision frameworks, while simpler methods may require fur-
ther enhancements to handle such scenarios e�ectively. Also Bagging with trees
reduced to a height of 3 gives quite good results. However, the use of Stump in
combination with Bagging does not produce better results over other approaches
involving bagging.

The results of all �ve approaches were compared using statistical inference.
Five dependent samples of 15 observations were created, representing the results
for each data set and dispersion version. F-measure and balanced accuracy were
selected as the metrics for comparison, as these measures account for multiple
factors and are particularly suitable for unbalanced data. Since these metrics
are ratio-scaled, statistical tests could be applied to assess the signi�cance of
the observed di�erences. To determine whether the di�erences in F-measure and
balanced accuracy values among the approaches were statistically signi�cant,
the Friedman test was conducted.

Table 4. p-values for the post-hoc Dunn Bonferroni test for F-measure

Tree Tree and Bagging Bagging and Bagging
Height and Stump Height 3

Tree 0.83 1 0.01 0.0002
Tree and Height 0.83 1 1 0.11
Bagging and Stump 1 1 0.06 0.002
Bagging and Height 3 0.01 1 0.06 1
Bagging 0.0002 0.11 0.002 1

Focusing �rst on the F-measure, the Friedman test indicated a statistically
signi�cant di�erence among the �ve approaches, χ2(14, 4) = 26.8, p = 0.00002.
To identify speci�c di�erences, a post-hoc Dunn-Bonferroni test was performed,
with signi�cant results highlighted in blue in Table 4. The test revealed signi�-
cant di�erences in the average F-measure values between the Tree approach and
two other approaches: Bagging and Height 3, as well as Bagging. Additionally, a
signi�cant di�erence was identi�ed between Bagging and Stump, and Bagging.

Table 5. p-values for the post-hoc Dunn Bonferroni test for balanced accuracy

Tree Tree and Bagging Bagging and Bagging
Height and Stump Height 3

Tree 1 1 0.43 0.21
Tree and Height 1 0.09 1 1
Bagging and Stump 1 0.09 0.005 0.002
Bagging and Height 3 0.43 1 0.005 1
Bagging 0.21 1 0.002 1

Next, we analyze the di�erences in average balanced accuracy among the �ve
approaches. Similar to the F-measure analysis, the Friedman test was conducted
on balanced accuracy values, organized into �ve dependent samples of 15 ob-
servations each. The test con�rmed a statistically signi�cant di�erence in the
averages among at least two of the approaches, χ2(14, 4) = 19.6, p = 0.0006. To

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97570-7_1

https://dx.doi.org/10.1007/978-3-031-97570-7_1
https://dx.doi.org/10.1007/978-3-031-97570-7_1


Novel Hierarchical Decision Tree Frameworks 7

pinpoint the speci�c di�erences, a post-hoc Dunn-Bonferroni test was performed,
with the signi�cant results highlighted in blue in Table 5. The test revealed sig-
ni�cant di�erences between the Bagging and Stump approach and two other
approaches: Bagging and Height 3, as well as Bagging.

Based on these analyses, it can be concluded that the Tree approach and
Bagging and Stump approach yielded the lowest F-measure values, while Bag-
ging and Height 3, along with Bagging, achieved the best results. The Tree and
Height approach demonstrated intermediate performance, with di�erences in av-
erage F-measure values that were not statistically signi�cant compared to the
other methods. These �ndings highlight the clear superiority of Bagging-based
approaches for dispersed data in terms of F-measure performance.

The analysis of the �ve approaches � Tree, Tree with Height, Bagging and
Stump, Bagging with Height, and Bagging � provides several key insights into
their e�ectiveness across diverse data sets and con�gurations. Across all data
sets, Bagging and Bagging with Height consistently delivered the best results for
dispersed data. These methods demonstrated robustness in handling dispersed
data sets with high dimensionality and unbalanced class distributions. The per-
formance was particularly strong when the number of bags was appropriately
tuned (500�1500 bags), showcasing their capability to generalize e�ectively.

4 Conclusion

This study introduces a hierarchical decision tree framework dedicated for clas-
sifying dispersed data. By combining local decision trees with a global decision
tree, the framework successfully addresses challenges associated with data dis-
persion, high dimensionality, and multi-class classi�cation.

The results demonstrate that Bagging-based methods, particularly with op-
timal bagging parameters (500�1500 bags) and reduced tree height, consistently
outperformed other approaches in terms of classi�cation accuracy, F-measure,
and balanced accuracy. The approach with bagging and trees with reduced height
method also exhibited robust performance, emphasizing the utility of height-
constrained trees in balancing complexity and accuracy. Simpler methods, such
as a single tree as a local model and bagging with stumps, showed worse compli-
ance of adaptability and accuracy and highlighted the limitations of traditional
decision tree structures in handling dispersed data. One key �nding is the signif-
icant impact of tree height and ensemble size on model performance. Ensemble
learning techniques, when carefully tuned, are well-suited for hierarchical frame-
works operating on dispersed data.

The current framework requires complete attribute values availability for
classi�ed objects. Future work could explore methods for managing incomplete
data when, for some local tables, there are no speci�ed values on the attributes
for the classi�ed object. Also, investigating strategies for dynamically selecting
or weighting local models based on their relevance to speci�c data subsets could
enhance performance.
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