
Local Markovian Consensus for Ranking
Aggregation: A Novel Approach to Weak Ordinal

Dominance

Joanna Kołodziejczyk1,2[0000−0002−8078−919X]

1 National Institute of Telecommunications ul. Szachowa 1, Warsaw, 04-894, Poland
2 Research Team on Intelligent Decision Support Systems, Department of Artificial
Intelligence and Applied Mathematics, Faculty of Computer Science and Information

Technology, West Pomeranian University of Technology in Szczecin, Poland
j.kolodziejczyk@il-pib.pl

Abstract. This paper introduces LMC-WOD (Local Markovian Con-
sensus with Weak Ordinal Dominance), an extension of the LMC method
designed to aggregate rankings that include ties and inconsistent pair-
wise preferences. The approach builds a local Markov chain based on
direct dominance relations and computes a stationary distribution to
represent the collective consensus. Unlike global methods, LMC-WOD
relies on local interactions and supports partial and weak orders. It han-
dles transitivity violations, reflects local consensus, and remains robust
to small perturbations. Two case studies illustrate its behavior under
consistent and conflicting inputs, with and without ties. A comparison
with PageRank shows how each method propagates influence differently
across alternatives. Results confirm that LMC-WOD can capture both
strong and weak ordinal patterns and highlight its potential for applica-
tions where standard ranking assumptions do not hold. Its sensitivity to
highly diverse rankings and the use of a fixed damping factor highlights
areas for further investigation.

Keywords: Consensus Ranking · Weak Ordinal Dominance · Markov
Stationary State · MCDA

1 Introduction

Ranking aggregation is a fundamental task in fields where decisions must be
derived from multiple, often conflicting, preferences, such as expert assessments,
survey data, elections, and peer evaluations [10]. In many practical scenarios,
input rankings may contain ties, partial orders, or inconsistencies that challenge
traditional aggregation methods. These issues arise in diverse domains, including
recommendation systems, group decision-making, and multi-criteria evaluations.

To address these challenges, this paper proposes a local stochastic approach
to ranking aggregation that preserves ordinal structure while accommodating
weak and conflicting assessments.
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1.1 Research Gap and Motivation

Existing aggregation methods are generally categorized into majority-based and
distance-based approaches. Majority-based methods seek consensus through fre-
quent pairwise preferences, such as Kemeny–Young [1, 5, 7]. Distance-based meth-
ods, including VIKOR [12], minimize aggregate deviations between rankings.
Fuzzy aggregation techniques extend this landscape by incorporating uncertainty
[8, 13].

However, these global approaches often overlook local structures within rank-
ings. Majority-based methods assume disagreement resolution via frequency, po-
tentially missing dependency patterns among alternatives. Distance-based meth-
ods treat alternatives as isolated units in metric space, neglecting relational in-
fluence. Strict ranking assumptions artificially separate alternatives that may be
equally preferred. This highlights a need for methods that support local consen-
sus and allow ties to be made naturally.

1.2 Proposed Approach and Contribution

This study introduces a novel extension to the Local Markovian Consensus
(LMC) method, referred to as LMC-WOD, which incorporates weak ordinal
dominance to support rankings with ties. The algorithm evaluates how often an
alternative is locally outranked across rankings, without requiring global major-
ity or distance measures.

Unlike the previous version of LMC [9], the proposed method accounts for re-
lational dependencies while preserving the natural ambiguity in real-world pref-
erence data. This is especially relevant when evaluators assign equal standing to
alternatives, such as performance assessments, competitions, or peer reviews.

Through case studies and comparative analysis with the PageRank algorithm,
the paper demonstrates how incorporating local dominance and stochastic influ-
ence yields more nuanced rankings. These insights underscore the limitations of
conventional aggregation strategies and validate the proposed method’s adapt-
ability in contexts where preference uncertainty and dependency structures are
prominent.

2 Related Work

Rank aggregation has been extensively studied, with numerous methods leverag-
ing Markovian frameworks to derive consensus rankings from multiple sources.
A seminal approach by Dwork et al. [6] introduced several transition models to
generate consensus rankings. Subsequent models, such as the Uniform Transition
Model (MC1), Pairwise Preference Model (MC2), Prior-Based Model (MC3),
and Weighted Rank Model (MC4), have refined the definition of transition prob-
abilities to capture different forms of preference relationships.

PageRank-inspired methods have also been employed, treating rankings as
directed graphs and computing stationary distributions to aggregate input pref-
erences. For example, Rank Centrality [11] applies pairwise comparisons within a
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Markov chain framework to infer consensus rankings under noise. Wu et al. [14]
proposed a method based on absorbing Markov chains, where transitions are
influenced by preferences derived from multiple input rankings.

More recent advances have introduced novel approaches to address the limi-
tations of classical methods. FairMC [2] proposes a fairness-aware Markov chain-
based rank aggregation method to ensure equitable representation in the final
consensus across the groups. Graph-based rank aggregation methods [15] intro-
duce the ratio of out- and in-degrees concept to deal with partial rankings. Link
prediction-based aggregation [4] has also emerged as a promising paradigm for
settings with limited or partial ranking information.

3 Preliminaries

This section introduces the notation and concepts related to ranking sequences,
ordinal dominance, Markov chains, and their stationary states.

Let A denote the set of alternatives (e.g., options, strategies, or candidates),
with cardinality |A| = m.

Definition 1. A full ranking r is a vector representing the order of m alterna-
tives:

r = [r(a1), r(a2), ..., r(am)]; where r(x) ∈ {1, . . . , z} ∧ ai ∈ A.

Each r(ai) is an integer indicating the rank of alternative ai, where a rank of 1
denotes the highest preference, and z = max{r(ai)} is the lowest (worst) rank.
The length of the ranking vector is |r| = |A| = m.

Assume an ordinal preference over the alternatives is given for each r(ai). If
r(ai) < r(aj), then the alternative ai is strictly preferred to aj or equivalently,
strictly ordinally dominates aj . If r(ai) ≤ r(aj), then ai is at least as preferred
as aj or weakly ordinally dominates aj .

Definition 2. A set of n rankings over a fixed set of m alternatives A =
{a1, a2, . . . , am} is defined as:

R = {r1, r2, . . . , rn},
where each ri is a full ranking given by the vector:

ri = [ri(a1), ri(a2), . . . , ri(am)],

and ri(aj) denotes the rank assigned to alternative aj in the i-th ranking.

The set R can be equivalently represented as an n×m ranking matrix:

R =

a1 a2 . . . am


r1 r1(a1) r1(a2) . . . r1(am)
r2 r2(a1) r2(a2) . . . r2(am)
... . . . . . . . . . . . .
rn rn(a1) rn(a2) . . . rn(am)

(1)
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Definition 3. A Markov chain is a discrete-time stochastic process {Xt}∞t=0

defined on a finite state space A = {a1, a2, . . . , am}, representing a set of alter-
natives. It satisfies the Markov property:

Pr(Xt+1 = aj | X1 = ai1 , X2 = ai2 , . . . , Xt = ai) = Pr(Xt+1 = aj | Xt = ai),

for all t ≥ 0 and ai, aj ∈ A. The probability of transitioning to the next alterna-
tive depends only on the current one.

The transitions between alternatives are encoded in the transition probability
matrix P = (pij) ∈ Rm×m, where each entry pij is defined as:

pij = Pr(Xt+1 = aj | Xt = ai),

and the matrix satisfies the standard stochastic conditions:
1. pij ≥ 0 for all i, j,
2.

∑m
j=1 pij = 1 for all i.

Each alternative ai is interpreted as a node in the Markov process in ranking
applications. In PageRank, a transition from ai to aj corresponds to a hyper-
link from one web page to another. In contrast, in Local Markovian Consensus
(LMC), the transition reflects a local ordinal dominance between alternatives ai
and aj , derived from a collection of individual rankings.

Thus, the entry pij may represent a probability of preference, influence, or
dominance from alternative ai to alternative aj , depending on the specific con-
struction of the matrix P .

Definition 4. A stationary distribution π = [π1, . . . , πm] is a probability vector
satisfying

πP = π,

m∑
i=1

πi = 1, πi ≥ 0 ∀i.

The stationary distribution π represents the long-term proportion of time the
Markov chain spends in each state. In ranking applications, this vector induces
a global ranking of the alternatives. In the PageRank model, higher values of πi

indicate greater importance of the corresponding alternative ai. In contrast, in
the LMC, smaller values of πi indicate greater importance, as they correspond
to a lower probability of being dominated by other alternatives.

The existence and uniqueness of the stationary distribution π are guaranteed
under the assumption that the Markov chain is ergodic; that is, it is irreducible,
aperiodic, and positive recurrent.

4 Local Markovian Consensus (LMC-WOD) for Weak
Ordinal Dominance

This section presents LMC-WOD, an enhanced version of the Local Markovian
Consensus method [9], extended to handle full rankings with ties under weak
ordinal dominance. The method comprises two key steps: (1) constructing the
transition matrix P, and (2) computing its stationary distribution to obtain the
consensus ranking.
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4.1 Transition Matrix and Aggregation in LMC-WOD

The transition matrix is derived from input rankings by counting how often one
alternative locally dominates another, based on their relative positions. Only
local transitions—between adjacent or tied items—contribute to the matrix. This
design ensures the Markov process captures local ordinal relationships, not global
shifts.

Algorithm 1 Generate Transition Matrix P in LMC-WOD
1: Input: Rankings matrix R of size n×m
2: Output: Transition matrix P
3: Initialize G (transition frequency matrix) as a zero matrix of size m×m
4: for each ranking r in R do
5: Extract the sorted list of unique rank values Z = [z1, z2, . . . , zk] from r
6: for i = 0 to |Z| − 1 do
7: Identify indices index1 where r == Z[i]
8: if i+ 1 < |Z| then
9: Identify indices index2 where r == Z[i+ 1]

10: else
11: index2 ← ∅
12: end if
13: for each i1 in index1 do
14: if index2 ̸= ∅ then
15: for each i2 in index2 do
16: G[i1, i2]← G[i1, i2] + 1
17: end for
18: else
19: G[i1, i1]← G[i1, i1] + 1
20: end if
21: end for
22: end for
23: end for
24: Normalize G row-wise to obtain the transition matrix P
25: return P

The core of Algorithm 1 is to count how often one alternative is locally domi-
nated by another across the input rankings. Only comparisons between consecu-
tive rank levels are recorded, emphasizing that small positional differences carry
more influence than distant ones.

For each ranking:

– Alternatives sharing the same rank (including ties) are grouped.
– Each rank level is compared to the one immediately below.
– Counts are incremented for each pair where a higher-ranked item dominates

one below it.
– Self-loops are added when no lower-ranked alternatives exist, ensuring stochas-

ticity.
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After processing all rankings, the frequency matrix is normalized row-wise to
obtain the transition matrix P, used to compute the stationary distribution.

Example 1: Consider three alternatives: A = {a1, a2, a3}, with two rankings
allowing ties:

R =

a1 a2 a3[ ]
r1 1 1 2
r2 1 2 2

The algorithm updates the dominance frequency matrix G as follows:

1. From r1: a1 dominates a2 and a3: G[1, 2]← 1, G[1, 3]← 1
2. From r2: a1 and a2 dominate a3: G[1, 3]← 2, G[2, 3]← 1
3. Self-loops are added for the lowest-ranked elements to ensure stochasticity:

G[2, 2]← 1, G[3, 3]← 2

The resulting matrices are:

G =

0 1 2
0 1 1
0 0 2

 P =

0 1
3

2
3

0 1
2

1
2

0 0 1

 (indices: a1, a2, a3)

After constructing the transition matrix P, the next step is to compute the
consensus ranking using a stationary distribution, as detailed below.

Once the transition matrix P is computed, the algorithm iteratively updates
a domination vector π to reflect overall dominance via Markovian convergence.
The process:

1. Initializes π as a probability distribution over alternatives.
2. Applies weighted updates combining π and P
3. Balances the influence of observed local transitions against a uniform dom-

inance distribution, which serves as a universal prior representing complete
indifference or the absence of any ordinal dominance by a damping factor
d ∈ (0, 1).

4. Stops when changes in π fall below a threshold ϵ > 0.

The final ranking is based on the stationary distribution π, where lower values
imply stronger alternatives, less likely to be dominated.

Example 1 cont. Starting with domination vector π = [ 13
1
3

1
3 ] and d = 0.95,

the iteration yields:
π = [0.0167, 0.0418, 0.9415]

According to the LMC-WOD principle, the consensus ranking is c = [1 2 3],
reflecting persistent dominance of a1 and weak standing of a3.
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4.2 LMC-WOD Algorithm

The iteration converges to the domination vector π, combining local structure
from P with a uniform influence via the damping factor (Algorithm 2). This
allows propagation even with ties or disconnected dominance, enabling LMC-
WOD to capture strong and weak ordinal relations in the final ranking.

Algorithm 2 LMC-WOD: Consensus from Weak Ordinal Dominance
1: Input: Damping factor d ∈ (0, 1), tolerance ϵ > 0
2: Output: Consensus ranking c
3: Compute transition matrix P using Algorithm 1
4: Initialize domination vector: π ← [ 1

m
, . . . , 1

m
]

5: repeat
6: πcurrent ← π
7: Update: π ←

(
(1− d) · 1

m
· 1+ d · PT

)
πcurrent

8: until |π − πcurrent| < ϵ
9: Convert π to ranking c

10: return c

Here, 1 (line 8) is an m×m matrix with all entries equal to 1.

4.3 Case Studies Demonstrating LMC-WOD

This subsection presents two case studies demonstrating how LMC-WOD pro-
duces a consensus ranking for both strict and weakly ordered inputs (i.e., with
ties), using five rankings over ten alternatives in each case.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1
2
3
4
5
6
7
8
9

10

P
os

iti
on

 r1 r2 r3 r4 r5

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1
2
3
4
5
6
7
8
9

10

P
os

iti
on

 r1 r2 r3 r4 r5

Fig. 1. Rankings used in both case studies. Left: strict rankings with a large positional
shift. Right: rankings with ties and non-consecutive values.

In Case Study 1, all rankings are strict. One ranking introduces a positional
swap between a2 and a8, shifting them by five places (Fig. 1, left). This local
inconsistency alters the consensus, which deviates from the dominant pattern in
rankings r1, r3, r4, and r5: [1, 3, 2, 6, 9, 10, 4, 8, 7, 5]. This illustrates LMC-WOD’s
sensitivity to local disruptions.
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In Case Study 2, all rankings include ties and exhibit several non-consecutive
rank levels. For instance, in rankings r3, r4, and r5, alternatives a1 and a6 are
consistently tied for first place (rank 1.5), while a3 and a4 share the same mid-
level rank (6.5). Additionally, a10 is tied with a2 at rank 3.5 in r1 and r2, and
similar patterns appear across other rankings. These structures reflect a weak or-
dinal setting with consistent local agreements but reduced positional resolution.
The rankings used in this scenario are visualized in Fig. 1 (right).

From the rankings in Fig. 1, the transition matrices P were derived using
Algorithm 1. Fig. 2 shows these matrices as heatmaps: left for Case Study 1 (no
ties), right for Case Study 2 (with ties).

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a 1
a 2

a 3
a 4

a 5
a 6

a 7
a 8

a 9
a 1

0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.2 0.0 0.8 0.0 0.0 0.0

0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.8 0.0 0.2 0.0 0.0 0.0

0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

LMC-WOD Transition Matrix P - Case Study 1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a 1
a 2

a 3
a 4

a 5
a 6

a 7
a 8

a 9
a 1

0

0.0 0.0 0.0 0.0 0.6 0.0 0.4 0.0 0.0 0.0

0.0 0.0 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.0 0.0 0.0 0.0 0.4 0.2 0.2 0.0

0.4 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.0

0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.6 0.2 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.6 0.0

0.0 0.0 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0

LMC-WOD Transition Matrix P – Case Study 2

Fig. 2. Heatmap representation of the transition matrices P: (Left) Case Study 1 —
without ties, (Right) Case Study 2 — with ties.

The second phase of LMC-WOD was applied using a damping factor d =
0.95. Fig. 3 shows the convergence of dominance values, capturing how influence
propagates across alternatives.

At each iteration, the dominance vector is updated via the transition matrix
P, gradually refining the ranking. This amplifies strong ordinal signals while
retaining local structure.

Dominance trajectories for all alternatives are plotted for both cases. Fig. 3
(left) shows the case without ties; the right panel illustrates the dynamics with
ties. Differences in convergence reflect the method’s sensitivity to tie patterns
and ranking inconsistencies.

The following sections will present a detailed analysis of how dominance is
strengthened or weakened during iterations.

Case Study 1: Iterative Influence Propagation Without Ties (Fig. 3,
Left) At iteration k = 1, the top-ranked alternative is a1 and the lowest is a6.
By the second iteration, a3 begins to lose dominance due to its link with a1,
which already holds a low dominance value. At this point, a10 remains inactive.
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Dominance Changes (Case Study 1)

a1
a2
a3
a4
a5
a6
a7
a8
a9
a10

2 4 6 8 10
Time Step

Dominance Changes (Case Study 2)

Fig. 3. Evolution of dominance values over iterations for all alternatives. (Left) Case
Study 1 — without ties, (Right) Case Study 2 — with ties.

In iteration three, a2 and a8 are affected through a3. While a2 co-occurs with
a3 in four rankings, a8 appears just once. In the next step, a2 influences a7, and
a8 affects a5. They also impact each other’s neighbors: a2 → a5, a8 → a7. The
decrease in dominance is distributed proportionally across these connections,
with a2 exerting a stronger influence overall.

By iteration five, a10 is pulled by a7, and a5 slows a6’s rise. In the final
step, a6 passes influence to a4, which then affects a9. This step-by-step process
captures key dominance pathways.

The elevation of a8 in the final ranking reflects the algorithm’s sensitiv-
ity to local propagation. Strong connections and initial positions jointly shape
the outcome, distinguishing LMC-WOD from majority voting or distance-based
methods.

The consensus ranking for Case Study 1 is:

cLMC−WOD:Case2 = [1, 3, 2, 6, 8, 10, 4, 7, 9, 5]. (2)

Although a2 remains highly ranked, this may seem counterintuitive given its
low placement in one ranking. LMC-WOD underweights such outliers when a
strong majority supports a high position. This reveals both a limitation—insensitivity
to sharp local deviations, and a strength—robustness to manipulative rankings.

Case Study 2: Influence Propagation with Ties (Fig. 3, Right) At
iteration k = 1, a6 is the least dominated alternative. a1, a2, and a10 show
similar, low dominance levels. A second group: a3, a4, a5, a7, a8, and a9, emerges
with higher dominance scores.

In the next step, a5’s score drops due to its link with weakly dominated a6.
Mutual influence keeps a8 and a9 highly dominated early on. As their neighbors
decline, their scores slowly increase throughout the process.

Due to many interdependencies and shared ranks, convergence is gradual.
The final ranking includes a tie between a2 and a10, reflecting their nearly iden-
tical dominance values.
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cLMC−WOD:Case2 = [5, 2.5, 7, 5, 6, 1, 8, 9, 10, 2.5] (3)

Though a5 often ranks near the top in input data, it drops in the consensus
due to ties and frequent co-occurrence with a1 and a6. These relations diffuse
their dominance, reducing their final rank. This outcome highlights LMC-WOD’s
sensitivity to local structures of dominance relations, where shared rank posi-
tions and ambiguous relative orderings may dilute the impact of a highly placed
alternative in the aggregate result.

Both cases show how LMC-WOD incorporates local dominance into a con-
sistent consensus.

5 Comparative Analysis of PageRank and LMC-WOD

PageRank builds a transition matrix from the hyperlink structure of web pages.
Using a Markov process, it computes a stationary distribution that reflects page
importance. In the random surfer model, transitions follow links, with a damping
factor d controlling the chance of random jumps [3].

For ranking aggregation, PageRank is adapted by linking each higher-ranked
item to all lower-ranked ones (equivalent to the MC2 algorithm described [6]).
PageRank adds a transition whenever an item is outranked by another, produc-
ing a dense matrix that enables global influence propagation.

LMC-WOD, though inspired by PageRank, defines its transition matrix dif-
ferently. Instead of all pairwise links, it counts how often an alternative is directly
dominated by a neighboring (adjacent or tied) alternative in input rankings.
LMC-WOD restricts movement to local structures, emphasizing proximity in
ordinal position.

Table 1 outlines key differences in how both methods construct and interpret
the matrix P.

Table 1. Key Differences Between PageRank and LMC-WOD in the Construction and
Interpretation of the Transition Matrix P

Aspect PageRank LMC-WOD
Definition of P Encodes all pairwise domi-

nance relationships
Reflects only local (adjacent
or tied) dominance

Transition Dynamics Allows transitions between all
alternatives

Permits only local movements
within rankings

Influence Scope Global, enabling long-range
propagation

Local, based on immediate or-
dinal structure

Self-Transitions Retained only for the top-
ranked node

Retained when no successors
are available

Treatment of Ties Not explicitly addressed Explicitly supports and en-
codes ties

Damping Factor Role Introduces global randomness Balances locality and struc-
tural gaps
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5.1 Differences Between PageRank and LMC-WOD in Ranking
Aggregation

This section compares PageRank and LMC-WOD using the two case studies
from Section 4.3: Case 1 (no ties) and Case 2 (with ties), both with a damping
factor d = 0.95.

The comparison focuses on key mathematical properties of the transition
matrix P, summarized in Table 2.

Table 2. Mathematical Properties Used for Comparison

Property Definition
Eigenvalues Scalars λi satisfying Pv = λiv, where v is the eigenvector. Lim-

ited to λ1 and λ2.
Mixing Time Estimated convergence time to stationary state: Tmix = 1

1−λ2
,

where λ2 is the second-largest eigenvalue.
Steady-State Dis-
tribution

A probability vector π such that πP = π, representing the long-
run state of the process.

Periodicity A chain is aperiodic if it does not return to a state in regular
cycles. Aperiodicity ensures convergence to a unique steady state.

Graph Represen-
tation

Directed graph with nodes as alternatives and edges as transition
probabilities from P.

The heatmaps are shown for the PageRank-based matrices in Fig. 4 to illus-
trate the structure of the transition matrix P. The differences from LMC-WOD
highlight the distinct design principles behind each method.
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PageRank Transition matrix P - Case Study 1
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PageRank Transition matrix P - Case Study 2

Fig. 4. Heatmaps of transition matrices P from PageRank: (Left) Case Study 1 — no
ties; (Right) Case Study 2 — with ties.
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Case Study 1: Comparing LMC-WOD and PageRank Without Ties
In LMC-WOD, the transition matrix P includes an absorbing state (Table 3,
Fig. 5): once the process enters a6, it cannot leave. The steady-state distribu-
tion concentrates entirely there. A mixing time of 4.91 steps indicates slower
convergence, as the Markov chain requires more iterations to reach equilibrium.

PageRank, in contrast, avoids absorbing states. Probability is spread across
all alternatives, enabling broader transitions. Its lower mixing time of 1.82 steps
signals faster stabilization from any initial state.

Table 3. Transition Matrix Comparison — Case Study 1

Property LMC-WOD PageRank
Largest Eigenvalue λ1 = 1 λ1 = 1
Second Eigenvalue λ2 = 0.796214 λ2 = 0.451643
Mixing Time 4.91 steps 1.82 steps
Steady State Absorbing state at a6 Spread across states
Periodicity Possible (complex eigenval-

ues)
Possible, less pronounced
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Fig. 5. Graphs from transition matrices for Case Study 1 (no ties): LMC-WOD (left),
PageRank (right).

Fig. 5 shows the graph structures from P. LMC-WOD yields sparse con-
nections, reflecting its local design. PageRank connects each higher-ranked item
to all lower-ranked ones, creating a denser graph. Both methods retain mini-
mal probability for connections not explicitly observed in the input rankings,
preserving ergodicity.
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PageRank produces the consensus ranking:

cPageRank:Case1 = [1, 3, 2, 6, 9, 10, 4, 7, 8, 5]. (4)

Both methods agree on 8 out of 10 positions (cf. Eq. 2). The difference lies in
a5 and a9: LMC-WOD ranks a5 higher due to its sensitivity to local preferences
in the input.

Case Study 2: Comparing LMC-WOD and PageRank with Ties Table 4
summarizes results for Case Study 2, where input rankings include ties. As in
Case 1, LMC-WOD keeps transitions local, while PageRank spreads influence
more broadly.

Table 4. Transition Matrix Comparison — Case Study 2

Property LMC-WOD PageRank
Largest Eigenvalue λ1 = 1 λ1 = 1
Second Eigenvalue λ2 = 0.668547 λ2 = 0.634557
Mixing Time 3.02 steps 2.74 steps
Steady State Concentrated in a few states More evenly spread
Periodicity Possible (complex eigenval-

ues)
Transitions more stable
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Fig. 6. Graphs from transition matrices for Case Study 2 (with ties): LMC-WOD (left),
PageRank (right).

Fig. 6 compares graph structures. LMC-WOD remains sparse, reflecting its
local scope. PageRank forms denser links, connecting each higher-ranked item
to all lower-ranked ones.
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PageRank produces the consensus:

cPageRank:Case2 = [3, 4.5, 7, 6, 2, 1, 8, 10, 9, 4.5] (5)

The methods diverge on several items, especially a2, a5, and a10. Both agree
on a6, and align closely on a3 and a7. LMC-WOD boosts a2 and a10 due to strong
local dominance, while PageRank favors a5 through broader link influence.

Generally, for relatively consistent sets of input rankings, both methods pro-
duce similar results. However, in the presence of substantial conflicts or ties
among the rankings, the differences between LMC-WOD and PageRank become
more pronounced, especially in how ranking influence is propagated across al-
ternatives.

6 Conclusions

This paper introduced LMC-WOD (Local Markovian Consensus with Weak Or-
dinal Dominance), an extension of the LMC method for aggregating rankings
with non-strict preferences.

Two case studies illustrated its operation under contrasting conditions: when
rankings were consistent versus diverse, and when aggregation occurred in set-
tings that excluded or permitted ties. This design exposed the model’s behavior
across structured and ambiguous inputs.

A comparative analysis with PageRank, based on transition matrix eigen-
structure and stationary distributions, highlighted key differences in influence
propagation and ranking mechanisms.

The main methodological observations are:

– LMC-WOD can accommodate pairwise comparisons violating strict tran-
sitivity, but the interpretation of its stationary distributions is not always
intuitive in systems with many alternatives and no dominant options.

– The method’s output may be sensitive to diversity in the input set, which
may be challenging in highly heterogeneous contexts.

– In contrast, it shows strong robustness when input rankings are aligned
mainly, so small perturbations do not significantly affect the result.

– Its convergence behavior has not yet been thoroughly tested on large or ran-
domly structured input sets, limiting the generalizability of current results.

– The damping factor d = 0.95, fixed in all experiments, was not evaluated for
sensitivity, leaving its effect on stability and convergence open.

– A practical issue arises when an alternative receives many incoming tran-
sitions, which may disproportionately reduce its rank if those transitions
come from highly ranked items. This effect suggests a need for weighting
mechanisms that account for the influence or credibility of the source.

These limitations point to future directions: large-scale simulations, experi-
ments with controlled inconsistency, real-world data, and adaptive strategies for
parameter tuning could all help refine the method, improve its practical use,
and make its behavior more straightforward to understand. Overall, all findings
support LMC-WOD as a promising tool for weakly ordered data.
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