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Abstract. Reidentification of decision-maker preferences is a crucial as-
pect of Multi-Criteria Decision Analysis (MCDA), as it enables a struc-
tured evaluation of decision-making methodologies. This study presents
a comparative assessment of three stochastic reidentification techniques:
Stochastic Identification of Weights (SITW), Stochastic Fuzzy Normal-
ization (STFN), and Stochastic Identification of Models (SITCOM). Each
method models decision-maker preferences based on different paradigms:
weight-based aggregation, normalization, and reference-object-based eval-
uation. To systematically analyze their effectiveness, we employ three
benchmark preference functions: a monotonic function representing lin-
ear preference structures, a non-monotonic function with a single ex-
tremum reflecting a decision-maker with a specific optimal point, and a
non-monotonic function with multiple extrema modeling complex pref-
erence structures with multiple local optima.
Our findings indicate that SITW is most effective for monotonic pref-
erences, STFN provides superior performance in single-extremum cases,
and SITCOM excels in handling multiple-extrema scenarios. The com-
parative analysis highlights the limitations of weight-based approaches
in complex decision problems, demonstrating that reference-object-based
models are better suited for non-trivial preference structures. The study
contributes to the understanding of how different MCDA reidentifica-
tion techniques perform under varying decision-making conditions, offer-
ing practical insights into the selection of appropriate methods. Future
research should focus on integrating hybrid methodologies to enhance
reidentification accuracy and applying these techniques in real-world
decision-making contexts.

Keywords: Multi-Criteria Decision Analysis, Preference Reidentifica-
tion, Stochastic Optimization, Decision-Maker Modeling, MCDA Meth-
ods

1 Introduction

In an era of rapid technological advancements and increasing globalization,
decision-making processes have become more complex than ever before. The
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challenges associated with modern decision-making stem not only from the vast
amounts of data that need to be processed but also from the presence of multiple,
often conflicting criteria that must be simultaneously considered. The high di-
mensionality of information further exacerbates the difficulty of selecting optimal
solutions, particularly when numerous alternative options exist. In such cases,
traditional decision-making approaches often prove inadequate, necessitating the
use of more sophisticated analytical tools.

To address these challenges, Multi-Criteria Decision Analysis (MCDA) has
emerged as a powerful methodological framework designed to support decision-
makers in structuring, evaluating, and comparing alternative solutions. Unlike
traditional decision-making approaches, MCDA enables the systematic consider-
ation of multiple factors, incorporating both quantitative and qualitative criteria
to enhance the decision-making process. These methods are particularly valu-
able in scenarios characterized by uncertainty, conflicting stakeholder interests,
or the need for trade-offs between different objectives.

Due to their flexibility and robustness, MCDA techniques have been widely
adopted across various domains, including transportation, energy, logistics, and
healthcare. By providing structured decision-making frameworks, these methods
contribute to improved efficiency, increased transparency, and more informed
choices, ultimately enhancing the quality of decisions made in complex envi-
ronments. As a result, MCDA has become an indispensable tool for supporting
analytical decision-making in both academic and practical applications.

Given the diversity of decision-making problems, a wide range of MCDA
methodologies have been developed to accommodate different analytical needs.
As highlighted in [3], MCDA has been extensively applied in the development
of Decision Support Systems (DSS), particularly in the environmental sector.
The study explores the conceptual foundations of MCDA and discusses some of
the most frequently used approaches for solving multi-attribute decision prob-
lems, emphasizing their significance in addressing real-world decision-making
challenges.

A more comprehensive review of MCDA methods was conducted by Wang
et al. in [7], where the authors proposed a systematic classification of preference
modeling techniques. Their analysis identified several fundamental approaches,
including goal-based modeling, weight assignment, reference vectors, preference
relations, utility functions, outranking methods, and implicit preferences. Each
of these approaches has distinct characteristics that influence its applicability
in specific decision-making contexts, making it crucial for decision-makers to
carefully select the most suitable method based on the nature of the problem at
hand.

However, selecting the appropriate MCDA method remains a significant chal-
lenge due to the vast number of available techniques and the varying nature of
decision-making scenarios. To address this issue, Wątróbski et al. [8] introduced
a generalized framework for multi-criteria method selection. This framework pro-
vides a structured approach to choosing MCDA techniques based on predefined
criteria, improving the reliability and consistency of the selection process.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97567-7_27

https://dx.doi.org/10.1007/978-3-031-97567-7_27
https://dx.doi.org/10.1007/978-3-031-97567-7_27


Title Suppressed Due to Excessive Length 3

Building upon this work, subsequent research has focused on further sys-
tematizing MCDA methodologies and improving their applicability in practical
decision-making contexts. In [1, 2], a comprehensive taxonomy of MCDA meth-
ods was introduced to aid in the recommendation of the most appropriate tech-
niques based on problem-specific characteristics. This taxonomy provides a more
refined structure for categorizing decision analysis methods, enabling decision-
makers to make informed choices while minimizing the risk of misapplying a
given method.

Despite the existence of various MCDA methods and classification frame-
works, there remains a gap in understanding how different modeling parame-
ters influence decision-making outcomes. In this study, we aim to analyze the
key parameters used in modeling decision-makers’ preferences within the MCDA
framework. Our objective is to examine how these parameters shape the decision-
making process and to evaluate the strengths and limitations of different method-
ological approaches.

Given the multitude of MCDA methods and existing taxonomies, we conduct
a comparative analysis of selected techniques to identify their key characteristics
and assess their practical applicability. This comparison allows us to determine
which methods are best suited for specific decision-making scenarios, providing
valuable insights for both researchers and practitioners. Ultimately, our study
seeks to equip decision-makers with the knowledge required to select the most
appropriate MCDA methods for modeling their preferences, thereby improving
the overall efficiency and effectiveness of decision-making processes across various
application domains.

To provide a structured analysis of the reidentification methods in MCDA,
this paper is organized as follows. Section 2 presents the methodological frame-
work, detailing the selected benchmark preference functions and the reidenti-
fication techniques applied in this study. Section 3 focuses on benchmarking
studies, where the effectiveness of SITW, STFN, and SITCOM is systematically
evaluated using three distinct preference functions—monotonic, non-monotonic
with a single extremum, and non-monotonic with multiple extrema. The results
are analyzed through visualizations and statistical comparisons to highlight the
strengths and limitations of each method. Finally, Section 4 provides concluding
remarks and directions for future research, emphasizing potential advancements
in hybrid reidentification techniques and their application in real-world decision
problems.

2 Methodology

This study focuses on evaluating the effectiveness of different MCDA (Multi-
Criteria Decision Analysis) re-identification methodologies in reconstructing decision-
maker preferences across various decision-making scenarios. To establish a struc-
tured evaluation framework, three types of benchmark functions were selected,
each representing a distinct preference structure. These functions serve as math-
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ematical models that simulate decision-making behavior, allowing for a compar-
ative analysis of different re-identification approaches.

The first category includes monotonic functions, which represent decision-
makers whose preferences increase or decrease consistently with criterion values.
This structure is characteristic of decision-making scenarios where alternatives
are evaluated in a strictly hierarchical manner. The second category consists of
non-monotonic functions with a single extremum, representing decision-makers
who have a clearly defined optimal point rather than following a simple increas-
ing or decreasing trend. Such preferences occur in situations where balance or a
specific target value is prioritized over extreme alternatives. The third category
includes non-monotonic functions with multiple extrema, modeling decision-
makers who assign high preference values to multiple distinct regions rather
than a single optimal point. This preference structure is relevant in cases where
different alternative solutions provide similarly desirable outcomes depending on
contextual factors.

Each benchmark function is used to generate a structured preference rep-
resentation, which serves as a basis for evaluating different re-identification
methodologies. The preference structure derived from these functions provides
an analytical foundation for comparing the ability of various methods to recon-
struct decision-maker preferences effectively.

To perform the re-identification process, three different methodologies were
employed, each representing a distinct paradigm of preference modeling. The
first method, Stochastic Identification of Weights (SITW), estimates the rela-
tive importance of each criterion in decision-making by optimizing weight distri-
butions. The second method, Stochastic Fuzzy Normalization (STFN), utilizes
fuzzy logic to approximate preference distributions through triangular mem-
bership functions, allowing for a more flexible modeling approach. The third
method, Stochastic Identification of Models (SITCOM), reconstructs decision-
maker preferences using reference objects, relying on characteristic alternatives
to infer preference relationships.

The evaluation of the re-identification process is conducted by analyzing the
reconstructed preference structures generated by each methodology. The results
are assessed in terms of their ability to replicate the original preference functions,
allowing for a comparative analysis of the strengths and limitations of each
approach. The methodological framework, summarized in Figure 1, illustrates
the key stages of data generation, preference modeling, and re-identification.
This structured approach ensures a comprehensive comparison of MCDA re-
identification methodologies in terms of their adaptability to different decision-
making scenarios.

2.1 Methods

This section presents the re-identification methods used in this study, which
serve as mechanisms for simulating decision-maker or expert preferences. These
methods are designed to reconstruct preference structures using stochastic opti-
mization techniques and are depicted in Figure 2.
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A comparative framework for selecting appropriate MCDA methods 
for preference modeling

Benchmark functions
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(single extremum)
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(multiple extrema)

Re-identification of parameters

Weights

(Stochastic Identification of Weights
(SITW))

Reference objects
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(SITCOM))
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(Stochastic Fuzzy Normalization
(STFN))

Evaluation of sets for the study

Overall data

Training data (80%)

Comparative analysis of results

Fig. 1: Overview of the methodological framework used in this study.

The first method is Stochastic Identification of Weights (SITW), initially pro-
posed in [6]. This approach focuses on the re-identification of criterion weights
for a given MCDA method using stochastic optimization. The fitness function
in this optimization procedure is structured so that the identified weights are
integrated into the selected MCDA method alongside the decision matrix. The re-
sulting ranking is then compared to the reference ranking using a weighted Spear-
man’s rank correlation coefficient. The optimization algorithm aims to maximize
this correlation coefficient, meaning that the more closely the generated ranking
aligns with the reference ranking, the better the identified weights reflect the
decision-maker’s preference structure. As a result, this method provides a set
of optimized weights that can be used to model decision-maker preferences in
multi-criteria decision-making problems.

The second method is Stochastic Fuzzy Normalization (STFN), introduced
in [5]. This method is designed for the re-identification of the cores of triangu-
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Fig. 2: Re-identification methods used in this study.

lar fuzzy numbers (TFNs), which serve as normalization parameters in MCDA
methods. The range of TFNs can either be pre-defined by the decision-maker or
inferred from the boundary values of the decision matrix for each criterion. The
fuzzy numbers are then used for normalizing decision matrix values within the
selected MCDA method. The cores of the TFNs are determined through stochas-
tic optimization, where the fitness function is designed to integrate the identified
cores into the pre-defined fuzzy numbers. These values are subsequently incor-
porated into the MCDA method along with the decision matrix to generate
a ranking, which is then compared to the reference ranking using a weighted
Spearman’s correlation coefficient. The optimization algorithm maximizes this
coefficient, ensuring that the identified fuzzy number cores closely align with the
decision-maker’s original preference structure. The final output of this method
is a set of optimized triangular fuzzy numbers, which enhance the normalization
process in MCDA applications.
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The third method is Stochastic Identification Of Models (SITCOM), as in-
troduced in [4]. This approach focuses on the re-identification of characteristic
object (reference object) preferences within the COMET (Characteristic Object
METhod) framework using stochastic optimization. In this approach, a tem-
porary COMET model is constructed, where characteristic values are initially
provided to define the decision space. However, at this stage, the characteristic
objects do not yet have assigned preferences. These preferences are subsequently
determined through a stochastic optimization process. The fitness function is
designed such that the optimized preferences for characteristic objects are in-
tegrated into the COMET method alongside the decision matrix, generating a
ranking that is compared to the reference ranking using a weighted Spearman’s
correlation coefficient. The objective of the optimization process is to maximize
the correlation coefficient, ensuring that the assigned characteristic object pref-
erences reflect the decision-maker’s underlying preference structure. The final
output of this method is a set of optimized preference values for characteristic
objects,

3 Benchmarking studies

This section presents a detailed analysis of reference functions used to evaluate
reidentification methods within the framework of Multi-Criteria Decision Analy-
sis (MCDA). To create a reliable comparison of the SITW, STFN, and SITCOM
methods, three different classes of reference functions were selected, reflecting
different decision-making approaches and preference structures. Each of these
functions represents distinct decision-maker models that vary in their decision
rationale, sensitivity to criteria, and level of complexity.

The selected benchmark functions aim to test the adaptability and effective-
ness of reidentification methods in capturing different preference patterns. These
functions are mathematically defined and simulate the decision-making behavior
of experts or decision-makers.

To systematically assess the effectiveness of MCDA reidentification methods,
the following benchmark functions were chosen:

– Monotonic function – Represents a decision-making model where prefer-
ences increase or decrease consistently with the values of the decision criteria.
This function simulates a decision-maker whose choices are straightforwardly
guided by the nature of the criteria (e.g., minimizing cost or maximizing
profit). The function is defined as:

fmonotonic(x, y) = x+ y (1)

– Non-monotonic function with a single extremum – Models a decision-
maker who prefers a specific optimal value rather than simply maximizing
or minimizing the criteria. Such behavior is typical in cases where decision-
makers aim for a balanced trade-off rather than extreme values. For example,
in environmental management, a moderate level of resource utilization might
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be optimal rather than complete depletion or conservation. The function is
given by:

fextremum(x, y) = −((x− 50)2)− ((y − 50)2) + 10 (2)

– Non-monotonic function with multiple extrema – Reflects a more
complex decision-making behavior where multiple local optima exist. This
function represents cases where decision-makers might have multiple pre-
ferred states or decision thresholds, such as in financial portfolio optimiza-
tion, where different combinations of investments could yield similar levels
of satisfaction. The function is defined as:

fextrema(x, y) = − sin
( x

15

)
+ 0.5 sin

(
2y

15

)
(3)

To ensure fair comparisons among different reidentification methods and to
maintain consistency across different decision-making scenarios, the functions
are normalized. Normalization ensures that all preference values are mapped to
a standardized range, typically [0, 1], preventing discrepancies caused by varying
scales of input data.

The normalization function is defined as:

normalize(z) =
z −min(z)

max(z)−min(z)
(4)

where min(z) and max(z) are the minimum and maximum values of z, en-
suring that all outputs are within the range [0, 1]. This transformation allows
reidentification methods to be evaluated consistently without being affected by
differences in function magnitude.

3.1 Monotonic

The monotonic benchmark function represents a decision-making scenario in
which preferences are directly proportional to the values of decision criteria. This
means that as the values of criteria increase, the preference value also increases,
and conversely, as they decrease, the preference value also decreases. This be-
havior is commonly observed in real-world decision-making situations, such as
cost minimization or profit maximization, where a straightforward relationship
exists between the criteria and the preference score.

This function creates a smooth and predictable preference surface, as shown
in Figure 3, where higher values of x and y result in higher preference values.

To evaluate the effectiveness of different reidentification methods in recon-
structing decision-maker preferences, the SITW, STFN and SITCOM models
were applied to the monotonic function. Figure 4 presents the reconstructed
preference surfaces for each of the three models. The reconstructed preference
surfaces demonstrate that both SITW-TOPSIS and STFN-TOPSIS closely fol-
low the structure of the original monotonic function. This indicates that these
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Fig. 3: Graphical representation of the monotonic benchmark function.

methods effectively capture the linear preference trend by adjusting criterion
weights and fuzzy normalization, respectively. However, the SITCOM model
shows a slight deviation, particularly in areas where preference values change
gradually. This suggests that the reference object-based approach may struggle
with purely monotonic structures, as it relies on characteristic objects rather
than directly learning preference gradients.
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Fig. 4: Comparison of reconstructed preference surfaces for different reidentifica-
tion methods applied to the monotonic function.

To evaluate the accuracy of the reconstructed preference models, we ana-
lyze the absolute differences between the reconstructed surfaces and the original
monotonic function. Figure 5 presents the differences for each method. SITW-
TOPSIS and STFN-TOPSIS show minimal errors, with differences uniformly
distributed across the surface, reinforcing their robustness for monotonic pref-
erences. In contrast, SITCOM exhibits higher deviations, especially in regions
where the function value changes smoothly. This suggests that the reference
object approach struggles with maintaining consistency in strictly monotonic
decision-making environments, making it less suitable for such cases.
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Fig. 5: Visualization of differences between the original monotonic function and
reconstructed models.

The statistical results in Table 1 confirm the observations from Figures 4 and
5. Both SITW-TOPSIS and STFN-TOPSIS achieve a mean difference of zero,
indicating an exact reconstruction of the monotonic preference structure. Addi-
tionally, their standard deviation is significantly lower than that of SITCOM,
reinforcing their stability. SITCOM, however, shows a higher standard deviation
and greater min/max deviations, demonstrating its difficulty in approximat-
ing purely monotonic preferences. This highlights the importance of selecting
reidentification methods based on the nature of the decision problem—where
strictly monotonic preferences favor weight-based or fuzzy normalization ap-
proaches over reference object-based methods.

Table 1: Statistical evaluation of reidentification accuracy for the monotonic
function.

SITW STFN SITCOM

Min -0.059175 -0.059175 -0.226951
Mean 0.000000 0.000000 0.010621
Max 0.059175 0.059175 0.203255
Std 0.024897 0.024897 0.119327

3.2 Nonmonotonic (single extremum)

The nonmonotonic function with a single extremum represents a decision-making
scenario where the preference does not continuously increase or decrease but
instead has a single optimal peak. Unlike the monotonic case, where preference
grows or declines uniformly, this function simulates situations in which a specific
range of values is preferred over extremes. Such decision-making behavior is
common in real-world problems where an optimal balance exists, such as in
healthcare (e.g., maintaining an optimal medication dosage) or logistics (e.g.,
selecting a delivery time that balances cost and efficiency). Figure 9 illustrates
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the shape of the function, with a clear peak at (50,50), showing that preference
decreases symmetrically as values deviate from this optimal region.
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Fig. 6: Graphical representation of the nonmonotonic function with a single ex-
tremum.

The same reidentification methods as in the monotonic case were applied to
reconstruct decision-maker preferences for this scenario. These include SITW-
TOPSIS, STFN-TOPSIS, and SITCOM. The primary goal was to evaluate how
well these methods adapt to a nonmonotonic preference structure with a single
optimal peak, which introduces additional complexity compared to strictly in-
creasing or decreasing preferences. Figure 7 presents the reconstructed preference
surfaces for each model.
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Fig. 7: Comparison of reconstructed preference surfaces for different reidentifica-
tion methods applied to the single-extremum function.

Figure 8 clearly shows that SITW-TOPSIS exhibits the highest deviations,
confirming that weight-based optimization struggles with this type of preference
structure. STFN-TOPSIS produces minimal differences, making it the most re-
liable method for this scenario. SITCOM displays moderate performance, with
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some areas of substantial error where the reference objects fail to capture the
smooth transition of preference values.
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Fig. 8: Visualization of differences between the original single-extremum function
and reconstructed models.

The results in Table 2 further support the conclusions drawn from the figures.
SITW-TOPSIS has the highest error and variation, confirming that it is not suit-
able for single-extremum preferences. STFN-TOPSIS has the lowest deviation,
demonstrating strong stability and accuracy. SITCOM provides intermediate
results, but its performance varies depending on the distribution of reference
objects.

Table 2: Statistical evaluation of reidentification accuracy for the single-
extremum function.

SITW STFN SITCOM

Min -1.000000 -0.000619 0.000000
Mean 0.133333 0.133841 0.215693
Max 0.566203 0.223607 0.389591
Std 0.307615 0.063766 0.096850

3.3 Nonmonotonic (multiple extrema)

The nonmonotonic function with multiple extrema represents a decision-making
scenario where preference values exhibit multiple local optima rather than a sin-
gle peak or a strictly increasing/decreasing pattern. Unlike the previous cases,
this function simulates situations where decision-makers may have multiple pre-
ferred options, rather than a single optimal solution. This type of preference
structure is common in financial portfolio optimization, supply chain manage-
ment, and strategic decision-making, where multiple distinct alternatives may
yield similarly favorable outcomes.
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Figure 9 illustrates the shape of the function, highlighting the existence of
multiple regions of high preference values, which presents a greater challenge for
reidentification methods.
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Fig. 9: Graphical representation of the nonmonotonic function with multiple ex-
trema.

The same reidentification methods as in the previous cases were applied to
reconstruct decision-maker preferences for this scenario, namely SITW-TOPSIS,
STFN-TOPSIS, and SITCOM. The key objective was to assess how well these
methods handle a complex preference structure with multiple local optima, which
is inherently more difficult to approximate compared to monotonic or single-
extremum functions. Figure 10 presents the reconstructed preference surfaces
for each model.
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Fig. 10: Comparison of reconstructed preference surfaces for different reidentifi-
cation methods applied to the multiple-extrema function.

Figure 11 further confirms that SITW-TOPSIS has the highest deviations,
showing substantial errors across the entire domain. STFN-TOPSIS shows lower
but still notable deviations, as it fails to fully replicate all preference peaks.
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SITCOM demonstrates the smallest differences, confirming that it is the most
effective method for this type of preference structure.
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Fig. 11: Visualization of differences between the original multiple-extrema func-
tion and reconstructed models.

The results in Table 3 further support the conclusions from Figures 10 and 11.
SITW-TOPSIS has the highest error margins and standard deviation, confirm-
ing its poor fit for multiple-extrema preferences. STFN-TOPSIS achieves lower
deviations, but its performance is inconsistent across different regions. SITCOM
has the lowest error values and standard deviation, demonstrating its suitability
for reidentification in cases where multiple preference peaks exist.

Table 3: Statistical evaluation of reidentification accuracy for the multiple-
extrema function.

SITW STFN SITCOM

Min -0.736977 -0.486978 -0.267628
Mean -0.001813 0.019604 -0.008462
Max 0.627975 0.615861 0.268190
Std 0.238251 0.212547 0.115615

4 Conclusions

This study examined the effectiveness of SITW-TOPSIS, STFN-TOPSIS, and
SITCOM in reconstructing decision-maker preferences across different decision-
making scenarios modeled by benchmark functions. The results indicate that
SITW-TOPSIS is most suitable for monotonic preferences, providing accurate
and stable approximations when preferences follow a strictly increasing or de-
creasing trend. STFN-TOPSIS demonstrated superior performance in cases with
a single preference peak, effectively capturing the structured nonmonotonic pref-
erence model. SITCOM emerged as the most effective method for complex
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decision-making problems characterized by multiple local optima, where reference-
object-based modeling provided the highest accuracy. These findings highlight
that the choice of reidentification method must be aligned with the structure of
the decision-maker’s preferences to ensure accurate modeling.

Future research should focus on extending the benchmark set to include
asymmetrical and discontinuous preference structures, as well as validating these
methods on real-world decision problems. Further investigations into hybrid ap-
proaches that integrate multiple reidentification techniques may enhance accu-
racy by leveraging the strengths of different methods. Additionally, incorporat-
ing uncertainty-based modeling, such as probabilistic or fuzzy approaches, could
improve robustness in dynamic decision-making environments. The findings pre-
sented in this study contribute to the advancement of Multi-Criteria Decision
Analysis by providing a structured evaluation of preference reidentification tech-
niques, offering practical guidance for decision-makers in selecting appropriate
methods based on the characteristics of their decision problems.
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