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Abstract. The increasing frequency and severity of wildfires in the
Western United States demand improved fire response tools. Initial At-
tack Fire Response within the first few hours of ignition is critical in
preventing fires from escalating. WIFIRE Firemap has been instrumen-
tal in supporting early fire suppression efforts through real-time fire be-
havior modeling. However, wildfires often burn for days or weeks, ne-
cessitating longer-term predictive capabilities. To address this challenge,
we extended Firemap to forecast fire spread from the first few hours
to five days. This advancement integrates two long-term fire behavior
models, ELMFIRE and GridFire, enabling real-time, data-driven deci-
sion support. The enhanced Firemap platform improves strategic wildfire
response planning, allowing firefighters and emergency managers to an-
ticipate fire spread on extended timelines. We present how these exten-
sions were used during the Los Angeles firestorms of 2025, demonstrating
their potential to mitigate wildfire risks, protect communities, and im-
prove firefighting strategies, and make recommendations for effective use
of extended attack tools for decision support.
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1 Introduction and Motivation

The western United States, along with many other parts of the world, is facing
a worsening wildfire crisis. Prolonged droughts and extreme weather conditions
mean that even a small spark can lead to massive, fast-moving, or prolonged
fires. The 2025 Los Angeles fires were a harsh recent example, overwhelming
response teams and causing widespread damage. Although early detection tools
for new fire ignitions and science-backed platforms for initial attack response
were essential for fire management, these incidents demonstrated that more is
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needed to reduce risk, improve response times, and protect communities and
ecosystems.

Initial Attack Fire Response refers to the actions taken by firefighters within
the first few hours (3-5 hours) after the start of a fire, i.e., ignition time. The
goal is to suppress or control the fire before it grows and becomes more difficult
to manage. Firemap [9,5], an operational tool developed by WIFIRE [8,7], pro-
vides real-time information on the speed and direction of fire spread, affected
structures, and population. Firemap uses the FARSITE fire model [14,15], which
takes into account various factors such as weather conditions, fuel type, and to-
pography to predict fire behavior. Adoption of Firemap by the fire response
community has enabled better decision making for initial attack. However, as
wildfires grow, response efforts take place over days, weeks, and even months,
with growing risk to communities, ecosystems, and firefighters. A new approach
to extended attack decision support using fire models is needed. To bridge this
gap, we extended the Firemap platform to forecast fire behavior up to five days.

1.1 Actionable Fire Modeling for Extended Operations

Extended attack operations occur when a wildfire is not contained within the ini-
tial response window and requires ongoing management over days or weeks. Fire
modeling for extended attack plays a crucial role in strategic decision-making
by predicting fire behavior beyond the first operational period. Unlike short-
term models which focus on immediate fire spread, long-term fire models such
as ELMFIRE and GridFire integrate dynamic environmental data (e.g., weather
patterns, fuel conditions, and topography) to simulate fire growth over multiple
days. We collaborated with Spatial Informatics Group (SIG) and the Pyregence
Consortium [2] to integrate two long-term fire behavior models into Firemap:
ELMFIRE [11,4] and GridFire [1]. By incorporating real-time data and evolving
fire conditions, extended attack fire modeling enhances situational awareness,
allowing response teams to anticipate challenges and implement proactive mea-
sures to mitigate risk, protect communities, and optimize firefighting efforts.

Contributions. This paper outlines three key contributions:

1. Extentions to Firemap’s Fire Simulator Workflow to support federated exe-
cution of long-duration fire models. This enhancement leverages container-
ized microservices, allowing seamless integration of current and future fire
models. We incorporated ELMFIRE and GridFire to predict fire spread di-
rection and speed on extended timelines, aligning with response planning.

2. Experiments with operational decision support workflows for effective action-
able use of extended attack models. We deployed and tested the use of the
extensions during the January 2025 Los Angeles firestorms, assessing model
accuracy, usability, and effectiveness in real-time conditions. Insights from
this testing informed further improvements in performance and scalability.

3. Lessons learned and recommendations for how fire modeling could be made
applicable within extended attack fire response, after working with the fire
management in experimental settings.
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1.2 Related Work

ELMFIRE (Eulerian Level set Model of FIRE spread) [11,4] is an advanced com-
putational tool designed to simulate wildland fire behavior. ELMFIRE employs
Eulerian level set methods to model the spread of fires across landscapes. It in-
tegrates various fire spread models, including the Rothermel surface fire spread
model [13] and the Cruz crown fire model [10], to provide accurate predictions
of fire behavior under different conditions.

GridFire [1] is a raster-based fire behavior model designed to simulate the
spread of wildland fires across landscapes. The model can be used for individ-
ual fire simulations or Monte Carlo simulations over space and time, providing
valuable insights into fire behavior under different conditions.

FSPro [12] calculates the spatial probability of fire spread, accounting for
weather uncertainties. This tool is used to assess a fire’s growth potential from
an active fire perimeter and to prioritize firefighting resources.

2 Extensions to the Firemap Architecture and Data
Workflows for Extended Attack Fire Modeling

Firemap [9,5] allows users to analyze and predict fire spread through fire behavior
modeling, forecasting, and scenario analysis. Users can visualize and share the
progression of the fire over time for better situational awareness and decision
making. To support real-time fire modeling and visualization, Firemap is built
on a scalable and modular architecture that integrates multiple data sources,
computational fire modeling workflows, and user inputs. Figure 1 depicts parts of
the system architecture for processing environmental data, running fire behavior
simulations, and delivering interactive visualizations to users.

2.1 Input Layer for Data and Fire Modeling Service Access

The input layer serves as the foundation for Firemap’s modeling and visualization
capabilities by integrating multiple data sources and user-defined parameters.

• WIFIRE Commons: WIFIRE Commons [6] supports scientific and op-
erational wildfire applications by organizing and sharing data and models.
It provides access to curated datasets and models used in fire simulation,
prediction, and response. It serves as the source of multiple data sources and
models that Firemap ingests, such as real-time data, historical datasets, and
external APIs, providing inputs for data-driven fire simulations.

• User Input Interface: Firemap’s run configuration window enables users
to define simulation parameters, configure environmental conditions, and fire
model to customize runs.

2.2 Fire Simulator Workflow

Figure 2 illustrates the Fire Simulator Workflow for executing fire models on
the Nautilus (NRP) Kubernetes cluster [3]. When a user initiates a model run
by selecting “Run,” a sequence of backend processes are executed as a part of
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Fig. 1: Firemap’s Architecture and Workflows integrate a suite of open-source fire mod-
eling tools with multimodal input data and user-provided parameters.

the workflow. Specifically shown in Figure 2 is for execution of ELMFIRE is a
workflow in which Firemap sends a request to the Execution Microservice with
user-defined model parameters, which then forwards the request to the ELM-
FIRE REST API running on NRP for fire simulation execution. The ELMFIRE
REST API processes the request, gets input data, runs the fire model, and stores
the generated simulation results (raster files) in NRP Object Storage. The pro-
cessed raster data is copied from NRP Object Storage to the Firemap storage.
Firemap then retrieves the processed simulation results from storage, allowing
users to visualize fire spread predictions.

Containerized Microservices for Extended-Duration Fire Models.
Containerization provides a scalable and flexible approach to integrating fire
models within Firemap. It ensures consistent execution across different environ-
ments by packaging models and their dependencies into isolated containers.

To extend Firemap’s capabilities, we incorporated two long-duration fire
models, ELMFIRE and GridFire, designed for multi-day fire behavior predic-
tions—critical for wildfire response and planning. Containerized microservices
were developed for these models, allowing integration into Firemap. The mi-
croservices expose an REST API, enabling model execution on the Nautilus
Kubernetes cluster.
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Fig. 2: Fire Simulator Workflow for Executing Fire Models on a Kubernetes Cluster

2.3 Output Visualization Layer

The generated fire simulation outputs (raster images) are stored in NRP Object
Storage. Once the simulation is complete, the Firemap Execution Microserver
retrieves the model results from NRP Object Storage and transfers them to a
centralized storage of Firemap. Firemap retrieves the processed fire simulation
results from Storage, displaying the fire spread predictions on its map interface
for visualization.

Fig. 3: Extended-Duration Fire Predictive Model Output at Different Time for a given
Probability

Fig. 4: Extended-Duration Fire Predictive Model Output at 1%, 50% and 100% Burn
Probability

The outputs can be viewed using a manual time slider or using play capability
to visualize fire growth over time as shown in the Figure 3. Users can also adjust
a probability slider as shown in Figure 4 to display fire extents based on the
minimum calculated probability, ranging from 1% to 100%. Probabilistic values
per pixel are color-coded with a color scale displayed on the probability slider.
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3 Using Modeling and Visualizations for Decision
Support for Extended Attack

Extended attack operations require decision support tools that integrate fire
modeling and visualization to anticipate fire growth and support response ef-
forts. Probabilistic models like ELMFIRE and GridFire simulate multiple fire
spread under varying conditions, providing scenario-based insights (see Figures 3,
4). When integrated into platforms like Firemap, these models enable real-time
updates for planning, resource allocation, and risk assessment. Our field deploy-
ments with fire management partners have revealed key lessons and opportunities
for making these tools more effective in operational settings.

3.1 Results and Impact

Long term fire modeling is useful for gauging resource needs across multiple large
fires happening in the state simultaneously. On January 7th, WIFIRE supported
the Palisades and Eaton Fires with initial attack models. By the afternoon of
January 7th and again January 8th, the long term ELMFIRE models were exe-
cuted from FIRIS aircraft perimeters, and Cal OES Fire and Rescue shared the
probabilistic forecast to the Advanced Planning Unit of OES for strategic deci-
sion support. They were provided to have the forecast (Palisades Jan 7 figure)
which shows the highest probability outcomes in red and the lowest probabil-
ity forecast extent in blue running through January 12th. Rates of spread were
faster than forecasted and the lowest probability came to fruition by the early
hours of January 8th.

The first Eaton Fire probabilistic model was run on January 8 (Eaton Jan 8
Figure) and run through January 13th. Effective suppression prevented the fire
from continuing as far northwest as forecasted in the model, however, the rest
of the model extent remained representative to the final fire extent.

Cal OES found that the long-term models provided insight to what could
happen in ways they did not have access to before. WIFIRE is now customizing
the execution of the long-term models to run on near-term 12-24 hour time
frames for localized mid-term response and planning on demand.

3.2 Lessons Learned and Recommendations

Fire modeling is not actionable unless it is integrated into existing decision-
making chains within existing workflows or through the development of new
workflows. Early engagement with fire management partners in the design and
development phase results in better usability and user-centric interfaces that
align with existing fire management decision-making processes. Clear customiz-
able visualization, documentation, training, and real-world validation through
case studies improve user trust and interpretability of of fire models.

When it comes to computational needs for fire model, one size does not
fit all. Extended attack modeling requires longer running probabilistic models
compared to initial attack. The development of readily available and deployable
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microservices for multiple fire models is useful for rapid deployment of detailed
simulations. This approach can also scale to more complex landscapes in which
fire modeling requires more computing resources. In addition, establishing ro-
bust data pipelines that continuously feed live observations and fire updates into
fire models, ensuring that predictions remain updated and responsive to chang-
ing conditions, improves model confidence and the trust of the stakeholders in
actionable nature of model outputs. Effective visual communication strategies,
such as interactive probabilistic fire spread maps, risk zones, critical infrastruc-
ture overlaps, and scenario analysis, are needed to better convey uncertainties
to decision makers. New operational processes are needed for effective inter-
pretability of visualizations throughout the decision chain. Standardizing data
formats and model output visualizations as demonstrated in this paper can im-
prove interpretability of model outputs, ensure ability to use multiple models
when possible, ad facilitate interoperability between decision support platforms,
emergency management systems, ultimately leading to effective collaboration
and fire management decisions.

4 Conclusion

Fire modeling must incorporate multi-source inputs—such as real-time field re-
ports, satellite imagery, and weather data—and align with the decision-making
timelines of fire managers to enable actionable strategies throughout all phases
of a wildfire incident. Different phases of fire response—initial attack (first few
hours), extended attack (hours to days), and prolonged management (weeks or
more)—require models that provide relevant forecasts on appropriate timescales.
Short-term models, such as FARSITE, focus on immediate fire behavior to guide
rapid suppression decisions, while longer-term models like ELMFIRE and Grid-
Fire extend predictions to support ongoing containment strategies. Effective
decision-making relies on models that not only forecast fire spread accurately
but also deliver insights within operationally useful timeframes.

This paper presented computational science extensions to the existing Firemap
tool for extended attack decision support. We have described the design consid-
erations to enable decision workflows for extended attack and provided example
uses both in experimental and operational settings. In future work, we plan to
create enhanced data assimilation techniques for real-time fire behavior updates,
improve model interoperability to support additional fire modeling frameworks,
use AI methods for model explainability and interpretability, and refine uncer-
tainty visualization for better risk communication. We also invite collaborators
to work with us on AI-driven generative techniques and predictive analytics to
optimize firefighting resource allocation and strategic planning.

Acknowledgments. This work was funded with support from the NASA award
80NSSC22K1715 and California Governor’s Office of Emergency Services (Cal OES)
Fire Integrated Real-time Intelligence System (FIRIS) program. The authors would like
to thank the SIG, WIFIRE and Cal OES teams for their collaboration, in particular,
Chief Robert Sccott, Melissa Floca and Teal Richards-Dimitrie.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97567-7_26

https://dx.doi.org/10.1007/978-3-031-97567-7_26
https://dx.doi.org/10.1007/978-3-031-97567-7_26


8 I. Altintas et al.

References

1. Code repository link for the gridfire tools for predictive wildfire modeling (2025),
https://github.com/pyregence/gridfire

2. Pyregence Consortium Website (2025), https://pyregence.org/
3. The National Research Platform website. (2025), https://

nationalresearchplatform.org/
4. Web link for the ELMFIRE tools for predictive wildfire modeling (2025), https:

//elmfire.io/index.html
5. Web link for the Firemap tools for predictive wildfire modeling (2025), https:

//firemap.sdsc.edu
6. WIFIRE Commons Data and Model Catalog (2025), https://wifire-commons.

sdsc.edu/
7. WIFIRE Website (2025), https://wifire.ucsd.edu/
8. Altintas, I., Block, J., de Callafon, R., Crawl, D., Cowart, C., Gupta, A., Nguyen,

M., Braun, H., Schulze, J.P., Gollner, M., Trouve, A., Smarr, L.: Towards an In-
tegrated Cyberinfrastructure for Scalable Data-driven Monitoring, Dynamic Pre-
diction and Resilience of Wildfires. In: Proc. of the Int. Conf. on Computational
Science, ICCS 2015. pp. 1633–1642 (2015)

9. Crawl, D., Block, J., Lin, K., Altintas, I.: Firemap: A dynamic data-driven pre-
dictive wildfire modeling and visualization environment. Procedia Computer Sci-
ence 108, 2230 – 2239 (2017). https://doi.org/10.1016/j.procs.2017.05.174,
http://www.sciencedirect.com/science/article/pii/S1877050917307585, in-
ternational Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

10. Cruz, M.G., Alexander, M.E., Wakimoto, R.H.: Development and testing of models
for predicting crown fire rate of spread in conifer forest stands. Canadian Journal
of Forest Research 35(7), 1626–1639 (2005)

11. Lautenberger, C.: Wildland fire modeling with an eulerian level set
method and automated calibration. Fire Safety Journal 62, 289–
298 (2013). https://doi.org/10.1016/j.firesaf.2013.08.014, https:
//www.sciencedirect.com/science/article/pii/S0379711213001343

12. Noonan-Wright, E.K., Opperman, T.S., Finney, M.A., Zimmerman, G.T., Seli,
R.C., Elenz, L.M., Calkin, D.E., Fiedler, J.R.: Developing the us wildland fire
decision support system. Journal of Combustion 2011(1), 168473 (2011)

13. Rothermel, R.: A Mathematical Model for Predicting Fire Spread in Wildland
Fuels. USDA Forest Service research paper INT, Intermountain Forest & Range
Experiment Station, Forest Service, U.S. Department of Agriculture (1972), https:
//books.google.com/books?id=AfyMv5NBSjoC

14. Srivas, T., Artés, T., de Callafon, R.A., Altintas, I.: Wildfire Spread Prediction and
Assimilation for FARSITE Using Ensemble Kalman Filtering. Procedia Computer
Science 80, 897 – 908 (2016). https://doi.org/10.1016/j.procs.2016.05.328,
http://www.sciencedirect.com/science/article/pii/S187705091630727X, In-
ternational Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016,
San Diego, California, USA

15. Srivas, T., Artés, T., de Callafon, R.A., Altintas, I.: Wildfire Spread Prediction and
Assimilation for FARSITE Using Ensemble Kalman Filtering. Procedia Computer
Science 80, 897 – 908 (2016). https://doi.org/10.1016/j.procs.2016.05.328,
International Conference on Computational Science 2016, ICCS 2016, 6-8 June
2016, San Diego, California, USA

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97567-7_26

https://github.com/pyregence/gridfire
https://pyregence.org/
https://nationalresearchplatform.org/
https://nationalresearchplatform.org/
https://elmfire.io/index.html
https://elmfire.io/index.html
https://firemap.sdsc.edu
https://firemap.sdsc.edu
https://wifire-commons.sdsc.edu/
https://wifire-commons.sdsc.edu/
https://wifire.ucsd.edu/
https://doi.org/10.1016/j.procs.2017.05.174
https://doi.org/10.1016/j.procs.2017.05.174
http://www.sciencedirect.com/science/article/pii/S1877050917307585
https://doi.org/10.1016/j.firesaf.2013.08.014
https://doi.org/10.1016/j.firesaf.2013.08.014
https://www.sciencedirect.com/science/article/pii/S0379711213001343
https://www.sciencedirect.com/science/article/pii/S0379711213001343
https://books.google.com/books?id=AfyMv5NBSjoC
https://books.google.com/books?id=AfyMv5NBSjoC
https://doi.org/10.1016/j.procs.2016.05.328
https://doi.org/10.1016/j.procs.2016.05.328
http://www.sciencedirect.com/science/article/pii/S187705091630727X
https://doi.org/10.1016/j.procs.2016.05.328
https://doi.org/10.1016/j.procs.2016.05.328
https://dx.doi.org/10.1007/978-3-031-97567-7_26
https://dx.doi.org/10.1007/978-3-031-97567-7_26

