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Abstract. The paper presents research focused on the decision-making
process of multiple classifiers, conditioned by the characterisation of at-
tributes provided by supervised discretisation. This transformation of
the input domain imposes a specific distribution of data and features,
exploited by the homogeneous ensembles of estimators based on the
informativeness of attribute domains in a dataset. The committees of
inducers aggregated decisions through several defined voting scenarios.
The procedure was applied to two classifiers that worked on selected pub-
licly available datasets with different properties. Performance was stud-
ied with particular attention given to characteristics and irregularities of
input domains before and after discretisation, sensitivity of learners to
various data forms, and consequences of the employed voting schema.

Keywords: Voting · Aggregating Decisions · Multiple Classifier · Dis-
cretisation · Decision-Making.

1 Introduction

Decision-making is especially important in the field of machine learning or expert
systems [23]. Among many influential factors, the level of complexity of such
processes depends not only on the number, but also on the types of criteria, the
nature, and characteristics of the input domain. Any changes in these elements
have an impact on the effectiveness of data exploration in knowledge discovery
issues, resulting in variations in the performance of learning systems.

The decision on the assignment of an object to a class can be reached based
on one model or through the collaborative work of several approaches. Exploit-
ing their properties, mode of operation, and specificity leads to the construction
of multiple models [17]. Classifier ensembles take advantage of model diversity
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to improve predictive accuracy, reduce errors, and increase the stability of re-
sults [19]. Models created by the same learning algorithm are called homoge-
neous. With multiple suggested decisions, some voting strategy is needed to
reach a final verdict, such as majority or weighted voting [4].

Constant technological progress brings increasing volumes of data that vary
in their structures, the perspective with which they describe the studied problem,
and their physical location. It necessitates the development of techniques that
enable the processing of diverse and dispersed data. Some data unification can
be needed to simplify decision aggregation [1]. The appropriate preparation of
the data, especially in the context of its adaptation to the learning algorithm,
constitutes an important step in the data mining process. The outcome of this
step is translated into the decisions proposed by the model.

Discretisation is one of the methods used in the preparation of data for anal-
ysis. It transforms the values of continuous attributes into a finite number of
intervals (called bins) [12]. Therefore, to some extent, it always changes the
characteristics of the data and has some influence on the predictions. The trans-
formation can be used to simplify the data or prepare it for learners which require
categorical values. The process can be performed using different approaches. In
unsupervised discretisation methods, information about the values of the deci-
sion attribute is omitted during the process of attribute domain transformation.
Supervised discretisation algorithms construct intervals that are most support-
ive to class distinction. This property can be used to evaluate features, causing
their reduction when a single bin is assigned to represent their entire domains.

In the research works presented, the characterisation of attributes provided
by a supervised discretisation procedure was exploited to disperse data and
attributes. Different groups of features, represented either in the continuous of
discrete domains, were allotted votes, used through the several voting scenarios.
These were implemented by homogeneous multiple classifiers based on the two
popular machine learning algorithms, Naive Bayes and PART, implemented in
WEKA workbench [24]. The two inducers operated on several datasets with
varying characteristics. Performance was evaluated by labelling samples from
test sets, discretised in dependent and independent modes.

The wide ranges of results obtained, observed for various methods of aggre-
gating decisions, point to relations between data formats and transformations
of the input domain and the sensitivities of inducers used in the research. The
enhanced predictions cannot always be guaranteed, as they are conditioned by
many factors. However, the presented mode of operation of a voting classifier can
offer conditions beneficial to performance. With such findings, the experiments
validated the investigated approach to the creation of classifier committees based
on the different characteristics of the attribute domains in a dataset.

The paper consists of five sections. Section 2 is devoted to the approaches of
ensemble learning and popular voting techniques. Section 3 includes descriptions
of applied discretisation approaches and modes, learning algorithms, and used
voting scenarios. Observations on the results of the experiments performed are
presented in Section 4. Conclusion and future plans are given in Section 5.
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2 Ensembles and Voting as Means of Reaching a Decision

In the field of decision-making a single model, also known as an underlying or
base model, may not work well individually. However, when weak models are
aggregated to cooperate through a committee or ensemble [1], they can form a
strong model. The idea is based on the concept of ’wisdom of the crowd’, which
suggests that the decision-making of a larger group of people is typically better
than that of an individual, even when this individual is an expert.

An ensemble of classifiers (multiple classifier) trained using the same learning
algorithm is referred to as homogeneous, whereas an ensemble generated from
estimators trained using different methods is called heterogeneous [15]. The col-
laboration of multiple base inducers allows different perspectives to be taken
into account and negates the impact of individual uncertainties [2]. It reduces
variance or deviation, errors, providing better stability and robustness of models,
and increasing the accuracy of predictions for the collaborative system.

Combining multiple judgments raises the issue of not only hearing their indi-
vidual voices, but also establishing some means of reaching the final decision. To
this end, voting can be implemented [9]. A classifier committee can employ ma-
jority voting, weighted voting, or soft voting. Majority voting exists when each
model votes for one class, and the one that receives the most votes is selected.
With weighted voting, each model is assigned a weight, and the result depends
on the sum of the votes multiplied by the model weights. The soft voting method
applies when the models return the probabilities for each class. The final decision
is made based on the average probability for each class.

In the context of ensemble learning methods [25], bagging, boosting, and
stacking should be mentioned. Bagging involves creating different subsets of
samples of the training data, which are randomly selected with replacement
from the original dataset. Each subset of the training data is used to train a dif-
ferent classifier of the same type. The individual estimators are then combined
by majority vote on their decisions. For each instance, the class selected by the
majority of the classifiers is the decision of the ensemble. A popular algorithm us-
ing the bagging technique is Random Forests, built from decision trees [6]. Some
training parameters of individual trees can be changed randomly, for example,
bootstrapped replicas of the training data, or feature subsets.

Boosting involves creating a series of simple inducers, where each new model
focuses on correcting errors made by previous ones. The process is sequential
and each model builds on the results of the previous one. The aim of boosting is
to create a strong estimator by combining the results of several weak classifiers,
ultimately improving the overall accuracy of the model. The final decision is
made based on a weighted vote or aggregation of the results of all weak classifiers.

Stacking improves prediction accuracy by integrating the results from differ-
ent base learners [17]. The approach consists of multiple base classifiers and a
meta-classifier. Each base estimator is trained separately using a distinct learn-
ing algorithm to perform the classification task, and their combined results are
used by the meta-classifier to generate the final prediction.
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3 Framework of Experiments

In the research several datasets with varied characteristics were used, always
with a noticeable proportion of attributes that after supervised discretisation
were assigned single intervals. The characterising property of this process was
used to distribute data. Based on continuous and discrete forms of features,
an approach to aggregating decisions was defined that involved several voting
scenarios. The procedure was applied for homogeneous multiple classifiers whose
performance was studied. The section details the research stages.

3.1 Datasets and Attribute Domains

To provide a wide scope for observations, in the research four pairs of datasets
were used. Three pairs used data available in the UCI Machine Learning Repos-
itory [13]. These were, respectively, Avila [8], Magic [5] and Wave [7]. The fourth
pair, Style, relied on data from the stylometric domain [18]. Within each pair,
the datasets were simply enumerated 1 and 2, resulting in Avila1 and Avila2,
Magic1 and Magic2, Wave1 and Wave2, Style1 and Style2.

The datasets can be grouped into two categories depending on the number
of attributes. Wave and Style contained roughly twice as many characteristic
features as Avila and Magic. There were no missing values. The single decision
attribute was categorical, while the condition attributes (criteria) had continu-
ous values. Each of the eight datasets consisted of a single train and two test sets.
Each set was prepared for a binary classification task with balanced data. Both
classes were assumed to be of the same importance, with the same misclassifica-
tion costs, so the performance of the predictors was evaluated by classification
accuracy [22] obtained for the test sets, over which the average was calculated.

3.2 Data Transformation and Distribution

In the research two popular discretisation approaches were used: the supervised
Kononenko algorithm (denoted dsK) [14], and unsupervised method of equal
width binning (denoted duw) [10]. Supervised approaches take into account spe-
cific attribute values, but also how distribution of datapoints in the input domain
relates to information on classes, while unsupervised procedures focus entirely
on the domain of the transformed attribute.

The Kononenko algorithm is based on the calculation of the conditional en-
tropy. Taking into account the binary discretisation of a continuous attribute
A with respect to set S, candidate cut-points T of the discretised attribute
are tested referring to the changes in entropy caused by them. For the optimal
cut-point Topt that splits the set S into two subsets, class information entropy
E(A, Topt;S) is minimal, and this cut-point is selected. This process is applied
recursively until the inequality (1) is satisfied:

log

(
N

NC1
. . . NCk

)
+ log

(
N + k − 1

k − 1

)
>
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∑
j

log

(
NAj

NC1Aj
. . . NCkAj

)
+
∑
j

(
NAj + k − 1

k − 1

)
+ logNT , (1)

where N is the number of training instances, and NCi the number of training
instances from the class Ci. NAx denotes the number of instances with x-th
value of the given attribute, NCiAy

the number of instances from class Ci with
y-th value of the given attribute. NT is the number of possible cut-points. The
method works in a top-down fashion. It starts with one interval, divided into
subintervals until a stopping condition is reached. Therefore, it is possible that
for some variable a single interval is assigned as a categorical representation.

The equal width binning method is considered simple. It consists of the fol-
lowing steps: (i) sorting the values of a continuous attribute, (ii) designating the
minimum and maximum values of the processed attribute, and (iii) dividing the
range into the k equal width discrete intervals, where k is a parameter defined
by a user. The advantage of this method is speed. It is also directly controlled
by the value of the parameter k, which can result in an uneven distribution of
values if the datapoints are clustered in a certain range.

Supervised discretisation can be considered a mechanism for feature reduc-
tion. If there are some variables to which a single bin is assigned to represent
their entire domains, then in a discrete domain these attributes have zero in-
formative content and can be discarded. However, if processed by some other
approach (for example, an unsupervised discretisation algorithm), they can still
be found useful. In the research, the characterisation of attributes by Kononenko
discretisation (shown in Table 1) was employed as a controlling factor when the
features in the datasets were distributed into two categories in order to separate
1 bin variables from multi-bin variables.

Table 1. Attributes in datasets and characteristics found by supervised discretisation
of train sets with the Kononenko algorithm.

Number of Dataset
attributes Avila1 Avila2 Magic1 Magic2 Wave1 Wave2 Style1 Style2
Total 10 10 10 10 21 21 20 20

1 5 4 3 4 8 8 8 10
Number 2 3 4 6 6 10 7 7 8
of bins 3 1 1 1 3 5 4 2

4 1 1 1 1

To some extent, these numbers of discrete bins assigned to attributes can
be treated as measures of importance for characteristic features [20], showing
the complexity of the relations between attribute values and the distinction of
classes. The minimal value of 1 means that a variable is estimated as irrelevant,
and for each of the used datasets the number of such features was at least 30%
and at most 50%. The higher numbers of bins indicate that specific discrete cate-
gorical representations need to be distinguished to support recognition of classes.
However, in the input continuous domain all variables have non-zero informative
content. Rejecting any of them has an impact on classifier performance. Whether
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it works to advantage or disadvantage depends on the data but also on the mode
of operation of the inducer and its sensitivity to changes in data format.

When a discretisation process is applied to datasets that are composed of
several sets with the same features (such as a train and test sets), translation of
attribute domains can be performed in several ways [3]. The simplest to execute
is the independent transformation, where the domain characteristics are studied
only locally, within each set separately, and regardless of all other sets. This
approach can lead to establishing for a variable not only different cut-points
between intervals, but also different numbers of bins, in particular for supervised
discretisation algorithms. In a way, it can be treated as constructing discrete data
models, the comparison of which then becomes a part of pattern recognition
and classification. Another way of proceeding involves imposing definitions of
intervals built for one set (typically a train set) on the other set (a test set). This
processing path completely disregards the local characteristics of the datapoints
in the test sets.

Depending on the irregularities present in the data [21], both types of dis-
cretisation procedures applied to datasets can be beneficial or detrimental to the
evaluation of performance. Therefore, both were used in the research. For each
studied dataset, when its parts were discretised, the two test sets included were
subjected to independent processing of all sets, and then they were denoted as
test independent, Tind. When discrete test sets were constructed by application
of definitions for bins formed for the corresponding train sets, they were denoted
as test on learn, ToL.

3.3 Data Mining Approaches Used

In the research works, for the construction of homogenous multiple classifiers,
the Naive Bayes (NB) and PART algorithms were used, implemented in WEKA
software [24]. Both classifiers are capable of operating on numeric and categorical
variables, which was a requirement from the perspective of intended experiments.
They have a different mathematical background and exhibit different sensitivity
when data is transformed by discretisation.

The Naive Bayes classifier is often used as a reference model. It is based on
Bayes’ theorem, which assumes that all attributes are independent of each other.
Based on the features that describe the given object, it calculates the probability
of an object belonging to particular classes and then selects the class label with
the highest probability [16]. It is widely used in machine learning applications,
for example, natural language processing, spam filtering, and sentiment analysis.

PART [11] algorithm relates to decision rules and decision trees. It generates
partially constructed C4.5 decision trees and derives a rule from each one. The
rules are induced within the framework of the separate-and-conquer approach.
When a rule is constructed, all instances covered by this rule are repeatedly
removed until all instances are covered. The rule construction stage differs from
standard separate-and-conquer methods in that a partially pruned decision tree
is constructed for a set of instances. The leaf to which the largest number of
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objects is assigned is transformed into a rule, and then the tree is discarded. At
the end of the training stage, a list of decision rules is obtained.

3.4 Voting Scenarios for Homogenous Multiple Classifiers

The two selected machine learning algorithms were exploited in the research to
obtain a homogenous multiple classifier, that is, one type of learner working on
diversified data. The diversification and distribution of the data was controlled
by characteristics of the input space discovered by supervised discretisation.
The data preparation procedure is shown in Fig. 1. To reach a final decision,
the complex classifiers employed simple majority voting, through several defined
voting schemas.

Fig. 1. Procedure of data preparation for multiple classifiers using voting scenarios.

In all voting scenarios, three votes were considered. The individual votes came
from data distributed with the help of characterisation property of supervised
discretisation procedure applied to attributes that caused assigning multiple or
single intervals to represent discrete attribute domains. The votes were obtained
either in a single step or in two, causing one level and two level voting. The
prevailing influence was given either to multiple-bin variables or to 1-bin features.
The votes were always based on knowledge learnt from some combination of
continuous and discrete data.

Let A denote the entire set of features. (A)R denotes representation in the
continuous domain, while (A)C stands for a discrete representation. The set A
is partitioned into two subsets, Am and A1 (A = Am∪A1), the former including
such variables that were assigned multiple intervals by supervised discretisation,
and the latter the features with just single bins. Then (Am)R denotes the group
of multi-bin variables and (A1)R the set of single-bin features, both represented
in the continuous domain. (Am)C is used to indicate the set of multi-bin vari-
ables represented in the discrete domain obtained by the supervised Kononenko
procedure. (A1)C denotes the set of single-bin variables in a discrete domain
resulting from unsupervised equal width binning with the varying number of
intervals, so for (A1)Ci

, i defines the number of bins required.
The voting scenarios (VS) (visualised in Fig. 2), explored through the exper-

iments conducted on the datasets, were as follows:
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– VS1 denoted (Am)R(Am)C(A1)R—single level voting, multi-bin variables
carry the majority as they are given two votes over the one of single-bin
variables, both groups of features considered in the continuous domain, but
with added impact of characterisation by supervised discretisation. This sce-
nario of aggregating decisions can be seen as taking advantage of supervised
discretisation. It sifts through variables and selects those that are important,
yet with keeping those found unimportant still in considerations and their
original informative content in the continuous domain. Thus two votes rely
on the continuous form of variables and one on the discrete,

– VS2 denoted (Am)R(Am)C(A1)C—differs from the first in forms of single
bin variables, as they are employed in their discrete forms in the process of
decision making. This is possible by the application of some unsupervised
discretisation algorithm, such as equal width binning. Since the procedure
requires the input parameter i specifying the number of bins to be con-
structed, several variants (Am)R(Am)C(A1)Ci

are obtained, and they are
treated separately. Therefore, two votes are based on discrete representation
of data and one on continuous,

– VS3 denoted (Am)R(Am)C ((A1)C1 . . . (A1)Ck
)—similar to the second voting

scenario as refers to the same forms of variables, but with two level voting.
On one level, all k constructed data variants obtained for single-bin vari-
ables by unsupervised discretisation agree on a decision by simple majority
voting. This decision is passed on to the second level with votes from multi-
bin variables in their continuous and discrete forms. Still two votes rely on
discretised data, but in this scenario the influence of a particular data vari-
ant, indicated by the input parameter i of unsupervised discretisation, is
minimised,

– VS4 denoted (Am)R(A1)R ((A1)C1 . . . (A1)Ck
)—two level voting with the

prevailing votes of single bin variables, which are considered in both continu-
ous and discrete forms. On the other hand, two votes come from continuous
attributes distributed between the two categories, which is supported with
the third vote aggregated through voting of all discrete variants of 1-bin
features transformed by unsupervised algorithm,

– VS5 denoted (Am)C(A1)R ((A1)C1
. . . (A1)Ck

)—two level voting similar to
the forth voting schema, but with using only discrete forms of multi-bin
variables. With this approach, two votes rely on discrete data, taking into
consideration all k unsupervised variants, which is supported by the original
continuous form of 1-bin features.

4 Observations on Performance for Voting Classifiers

Depending on their own specific sensitivity to the input data form, domain trans-
formation by discretisation procedures can cause inducers to react in various
ways. Some can be simply enabled, if they can operate only on nominal or
discrete features. For others the translation can be beneficial, while still other
classifiers can be harmed by reduction of accessible information reaching too far.
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a)

b)

Fig. 2. Data, domains and voting scenarios investigated, with voting in: a) single level,
b) two levels.

If learners possess their own inherent mechanism that corresponds to discreti-
sation procedure, then any consequences of such transformation of the input
domain can become obscured, indistinguishable from other processing.

The Naive Bayes and PART classifiers that were used in the research can
efficiently work both in the continuous and discrete domain. The performance
detected in the continuous domain is given in Table 2. For the Avila and Magic
datasets, operating on smaller numbers of attributes, PART outperformed the
Naive Bayes classifier. The opposite can be stated for Wave and Style datasets,
where Naive Bayes was better than PART, however, the differences were less
noticeable.

Table 2. Performance [%] of inducers operating on the datasets in the continuous
domain (A)R.

Dataset
Inducer Avila1 Avila2 Magic1 Magic2 Wave1 Wave2 Style1 Style2
NB 61.04 73.75 67.78 71.11 88.13 88.26 98.75 85.07
PART 81.74 91.88 71.94 72.08 76.18 83.68 97.08 79.10
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Since discretisation by the Kononenko algorithm was a controlling factor
for data distribution, it was reasonable to test the employed inducers on the
data subjected to this transformation as the only processing step. The observed
performance, given in Table 3, is provided for the labelling of samples from the
test sets that were discretised independently on train data (denoted Tind), and
for test sets transformed based on intervals constructed for train data (denoted
ToL). Generally, discretisation caused mixed results, in some cases improved
performance was detected while in others some decrease occurred.

Table 3. Performance [%] of inducers operating on the datasets in the discrete domain
obtained by the Kononenko algorithm (A)C .

Dataset
Inducer Test set Avila1 Avila2 Magic1 Magic2 Wave1 Wave2 Style1 Style2
NB Tind 63.89 50.00 50.00 50.00 95.35 88.75 92.15 64.38

ToL 90.07 93.54 64.24 70.76 86.94 88.19 98.19 78.47
PART Tind 72.78 10.63 77.85 50.00 88.68 89.79 92.08 65.49

ToL 90.63 87.64 77.22 70.21 83.06 85.90 95.90 81.46

For the most part, independent discretisation of test sets brought worse levels
of correct predictions than when relying on interval definitions learnt for train
sets. It shows data irregularities observable in sets that refer to the same vari-
ables, but are considered separately. The exception to this trend was visible for
both Wave datasets for both inducers, and for PART for Magic1. The marked dif-
ferences in performance for both classifiers working on continuous versus discrete
data gave reasons to expect variations in accuracy for decision-making processes
conditioned by data form, as defined by all investigated voting scenarios.

For the first voting schema, VS1, with predictions shown in Table 4, three
votes are considered in one level of aggregating decisions. The multi-bin vari-
ables have two votes (one based on continuous domain and the other on discrete)
against a single vote given to 1-bin features, which means that the latter have in-
fluence on the decision-making process only when continuous and discrete forms
of multi-bin attributes differ in their proposed labels for a test sample.

Table 4. Performance [%] of inducers operating with (VS1) Voting Scenario:
(Am)R(Am)C(A1)R.

Dataset
Inducer Test set Avila1 Avila2 Magic1 Magic2 Wave1 Wave2 Style1 Style2
NB Tind 65.69 74.38 64.31 68.82 92.43 87.64 97.71 76.67

ToL 78.82 82.64 66.04 72.01 88.13 88.26 98.75 82.78
PART Tind 82.22 60.63 77.85 72.01 81.25 83.47 93.33 70.42

ToL 90.56 90.63 77.22 73.75 78.96 86.11 94.65 82.64

When independently processed test sets are considered, this voting scenario
gave better results than when working in dsK discrete domain (for (A)C) for the
Avila, Magic and Style datasets, while for Wave the accuracy was degraded for
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both classifiers. For ToL test sets, Naive Bayes returned higher predictions for
all datasets apart from Avila, while for PART the accuracy in four cases slightly
increased, in three decreased, and once was the same.

Comparison of this voting scenario with the performance for the data before
any transformations or distribution leads to the conclusion that for NB classifier
only for the Avila datasets clear advantages can be observed regardless of the test
set type. For other datasets, accuracy was varied and not necessarily maintained.
PART indicated different trends, showing its own sensitivity to the processing
path, and improved results for Avila1, Magic1, Wave1 for both types of test sets
and for Magic2, Wave2, Style2 for ToL test sets only.

The second voting scenario (VS2) differs from VS1 in the form of one com-
ponent, the A1 features being considered in discrete domains. It involved the
construction of several variants of data, because attributes that were assigned
single bins by supervised discretisation were transformed with an unsupervised
procedure. The number of intervals varied from two to ten. The performance
reported by the inducers is provided in Table 5. For each dataset, each learner
and the type of test set used in evaluation, the bolded entries indicate detected
maximum. An analysis immediately calls attention to the high diversity of re-
sults obtained. However, both inducers show improvements over the first voting
scenario for both types of test sets for the majority of datasets.

The performance observed for multiple classifiers operating according to the
third voting scenario (VS3) is presented in Table 6. This schema relies on the
same representations for groups of attributes as in VS2, but with a very no-
ticeable difference: the decision-making process is executed in two levels. The
internal level involves reaching a decision by taking the votes from all discrete
data variants obtained by unsupervised transformations. Once this decision is
available, it is passed on to the second level of voting, where again the attributes
with multiple bins defined by supervised discretisation play the leading role.

For both types of test sets, Naive Bayes performed mostly better, with the
exception of the Wave1 and Style1 datasets, for which the accuracy was slightly
decreased with respect to the best cases observed when VS2 was employed. PART
for all datasets exhibited decreased performance. Clearly in this case, aggregating
decisions between data variants resulting from unsupervised discretisation led to
the best cases being over-voted by others, less advantageous to predictions.

For Voting Scenario 4 (VS4), the results are shown in Table 7. It employs two
levels of voting and starts in the same way as VS3, making a decision based on
votes referring to the variables (A1) represented in all discrete variants considered
after unsupervised discretisation with equal width binning. In this case, at the
second level of aggregating decisions, (Am)C is replaced by (A1)R. So, at this
level, two votes are based on 1-bin variables and only one on Am features.

In consequence of these changes with respect to VS3 (and VS1 and VS2),
for both inducers, for most datasets, performance decreased. The exception can
be observed for independently discretised test sets and Avila2 and Magic1 for
NB, and Avila2 and Magic2 for PART, where some increase can be noted in
comparison to the third voting scenario. The suggestions of the attributes A1,
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Table 5. Performance [%] of inducers operating with (VS2) Voting Scenario:
(Am)R(Am)C(A1)C .

Data Test Dataset
Inducer variant set Avila1 Avila2 Magic1 Magic2 Wave1 Wave2 Style1 Style2
NB uw02 Tind 65.14 62.22 55.56 68.06 94.65 88.75 96.60 71.94

ToL 86.60 84.51 66.60 70.42 88.75 88.26 98.82 81.60
uw03 Tind 71.46 53.26 57.36 66.18 91.81 87.64 97.71 74.58

ToL 76.25 84.38 66.04 72.64 87.57 88.26 98.75 82.15
uw04 Tind 68.68 51.74 55.56 66.11 93.54 88.19 97.15 73.33

ToL 76.67 84.58 66.04 71.46 87.57 88.26 98.82 82.71
uw05 Tind 71.04 66.39 55.56 65.21 92.99 87.01 97.71 72.71

ToL 72.01 83.89 65.49 73.26 86.94 88.26 98.75 82.78
uw06 Tind 70.42 53.89 54.93 69.24 91.81 88.26 98.26 74.03

ToL 74.44 83.33 66.04 72.01 87.57 88.26 98.75 82.22
uw07 Tind 69.86 50.56 55.00 65.83 92.85 88.26 98.82 77.08

ToL 74.93 81.53 65.49 72.01 87.50 88.26 99.38 82.22
uw08 Tind 68.75 62.15 56.81 68.61 92.92 87.01 97.15 72.78

ToL 73.13 84.44 66.04 72.01 87.01 88.26 98.75 82.22
uw09 Tind 69.24 61.39 56.11 66.39 93.54 88.26 98.26 77.08

ToL 72.57 82.64 66.04 71.46 87.01 88.26 98.75 82.78
uw10 Tind 69.86 59.51 56.67 66.46 93.47 88.26 97.71 73.96

ToL 74.38 85.69 66.60 71.46 87.57 88.26 98.75 82.78
PART uw02 Tind 79.17 53.54 73.06 66.18 83.61 85.35 94.51 77.08

ToL 89.93 90.07 74.24 71.94 82.43 84.38 97.50 83.82
uw03 Tind 84.24 51.04 79.10 51.67 84.24 91.11 94.51 75.76

ToL 91.74 89.51 76.60 70.07 82.57 86.53 96.88 81.60
uw04 Tind 88.19 53.06 76.81 63.96 83.96 87.15 94.38 77.22

ToL 90.56 90.63 73.13 70.90 80.21 86.60 96.94 83.89
uw05 Tind 79.17 54.17 79.17 63.26 81.81 89.93 95.76 76.39

ToL 90.00 90.07 75.49 70.28 80.14 85.28 98.26 84.44
uw06 Tind 78.19 53.13 75.97 56.04 82.43 86.25 93.89 77.15

ToL 91.25 89.44 76.60 69.17 81.32 86.67 95.14 83.82
uw07 Tind 88.40 49.44 71.39 64.38 85.97 85.21 91.46 72.08

ToL 92.36 91.25 71.94 71.32 84.79 87.85 96.94 82.85
uw08 Tind 89.51 47.78 73.54 68.68 82.43 90.07 95.14 75.83

ToL 91.81 88.96 75.97 77.43 80.07 85.35 98.13 82.64
uw09 Tind 90.69 47.08 71.39 55.14 87.01 91.25 92.08 72.22

ToL 91.18 90.07 71.94 71.39 82.43 84.79 93.54 84.31
uw10 Tind 77.36 59.65 77.22 64.44 80.63 84.65 93.75 78.33

ToL 90.56 90.69 76.60 69.65 80.21 84.93 95.21 81.53

which were deciding in this case, turned out to be not sufficiently accurate to
arrive at higher levels of correct predictions. This confirmed the estimation of
their poor relevance for the task obtained by supervised discretisation.

The fifth voting schema, VS5, is similar to the VS4, with one difference:
variables that by supervised discretisation received multiple intervals are used
in their discrete form. A1 features are employed in both continuous and discrete
forms, and from the latter in one level of voting, the decision is established before
it is passed on to the second level of aggregating decisions. The results of such
processing are included in Table 8. It can be observed that the change in the
domain from continuous to discrete for the Am variables caused relatively small
differences with respect to performance for VS4. These differences go both ways,
for some datasets, to advantage, while for others, to disadvantage. For Naive
Bayes and Tind test sets, decreased performance was detected more often, but
for ToL test sets, improvement was more frequent. For the PART algorithm for
both types of test sets, worsened results were noted in almost all cases.
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Table 6. Performance [%] of inducers operating with (VS3) Voting Scenario:
(Am)R(Am)C ((A1)C . . . (A1)C).

Dataset
Inducer Test set Avila1 Avila2 Magic1 Magic2 Wave1 Wave2 Style1 Style2
NB Tind 70.49 54.51 55.00 68.13 93.54 88.26 97.71 74.58

ToL 72.64 83.82 66.04 72.01 87.57 88.26 98.75 82.78
PART Tind 84.65 53.33 74.17 60.35 84.10 87.50 93.82 77.64

ToL 90.00 90.07 75.97 68.47 81.88 84.79 96.25 82.78

Table 7. Performance [%] of inducers operating with (VS4) Voting Scenario:
(Am)R(A1)R ((A1)C . . . (A1)C).

Dataset
Inducer Test set Avila1 Avila2 Magic1 Magic2 Wave1 Wave2 Style1 Style2
NB Tind 62.01 67.22 63.19 59.65 58.13 59.65 77.15 68.47

ToL 59.10 59.10 64.31 57.85 55.07 56.60 74.93 66.39
PART Tind 72.29 78.68 64.79 65.49 63.68 73.96 70.90 75.97

ToL 66.39 78.13 66.53 64.79 67.71 71.25 72.64 76.46

The wide ranges of results observed for various methods of aggregating de-
cisions show relations between data formats and transformations of the input
domain and the sensitivities of inducers used in the research. The enhanced pre-
dictions cannot be guaranteed, as the outcome is conditioned by many factors.
However, depending on characteristics of the attribute domains, local properties
of each processed set, and approach used to discretisation of test sets employed
in evaluation of performance, the presented mode of operation of a voting clas-
sifier can benefit from dispersing data and taking into account characterisation
of features by supervised discretisation. When those attributes which are thus
found as supporting distinction of classes play the leading role in decision-making
but are also supported with suggestions from 1-bin variables, the more involved
process of pattern recognition and classification can lead to improved accuracy.

5 Conclusions

Voting constitutes one of the collaborative approaches to a decision-making pro-
cess involving multiple criteria and classification committees. To reach a final
decision on assigning a class label to a studied object, suggestions are taken from
a number of models that represent the knowledge discovered by data mining. In
the research described in this paper the models were learnt from data dispersed
based on the characterising property of supervised discretisation. Through the
assigned intervals, the transformation evaluates the complexity of the relations
between the attributes and their values and the distinction of classes, which
was exploited for dividing the features into categories. Votes allotted to different
groups and the forms of variables were next used within the several investi-
gated one-level and two-level voting scenarios for selected homogeneous multiple
learning systems, capable of operating in both continuous and discrete domains.
The performance was evaluated by labelling test sets discretised in two distinc-
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Table 8. Performance [%] of inducers operating with (VS5) Voting Scenario:
(Am)C(A1)R ((A1)C . . . (A1)C).

Dataset
Inducer Test set Avila1 Avila2 Magic1 Magic2 Wave1 Wave2 Style1 Style2
NB Tind 62.22 48.61 55.00 58.96 59.24 59.03 76.04 64.17

ToL 71.39 62.64 64.31 57.85 54.51 56.60 74.93 66.39
PART Tind 67.64 39.72 68.47 54.93 67.64 78.96 70.28 68.75

ToL 65.83 76.18 67.78 59.51 67.01 69.93 72.15 76.46

tively different ways, allowing to investigate irregularities present in the several
datasets explored.

The approach to classifier ensemble construction based on attribute domain
characteristics was investigated for five defined scenarios, including majority and
aggregation voting techniques with Naive Bayes and PART algorithms. The re-
sults from the experiments showed conditions for possible improved predictions
and the effects of dependent and independent discretisation modes on the perfor-
mance of the classifier. They confirmed the validity of the research framework.

In future research, the application of other inducers with different modes of
operation will be studied. Furthermore, other schemas for aggregation decisions
by voting will be defined, involving combinations of learners dependent on their
sensitivity to data form. Heterogeneous ensembles will also be researched.
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