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Abstract. Water Distribution Networks (WDNs) are critical to urban
infrastructure, ensuring the delivery of clean water but subject to age-
ing, environmental challenges, and operational pressures. This study em-
ploys a fuzzy logic-based approach using the Mamdani inference system
to evaluate risks in Hashtgerd’s WDN. Key risks include contamination
in water wells, structural vulnerabilities in tanks, and mechanical failures
in pump stations. The findings reveal an overall risk level of 69.1%, with
individual contributions of 66.18% from wells, 66.87% from pump sta-
tions, and 71.9% from tanks. Recommendations include stricter zoning,
improved maintenance, advanced monitoring, and enhanced security.

Keywords: Water Distribution Networks · Risk Assessment · Fuzzy In-
ference System · Failure Modes and Effects Analysis · Quantitative Risk
Evaluation.

1 Introduction

The risk analysis framework is crucial for sustainable development, helping to
identify and assess threats to water supply systems. Water Distribution Net-
works (WDNs) are vital to urban infrastructure, delivering clean water globally.
As public infrastructure standards evolve, ensuring the safety and reliability of
WDNs has become increasingly important [13]. Ageing infrastructure and en-
vironmental uncertainties necessitate an integrated approach to risk assessment
and mitigation. Quantitative risk evaluation, based on historical failure data and
a blend of expert and data-driven models, is key to maintaining system reliabil-
ity [9]. WDNs face challenges from material degradation, environmental stress,
and operational limits. Ageing pipelines are prone to failure, aggravated by cor-
rosive soil, heavy traffic, and extreme weather [5, 14]. A typical WDN structure
and purification process are shown in Fig. 1.
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Fig. 1. Water Network Infrastructure.

This paper presents a methodology using Mamdami’s Fuzzy Inference System
(M-FIS) to evaluate risks in WDNs, emphasizing water contamination, structural
vulnerabilities in tanks, and mechanical failures in pump stations. The objective
is to combine precise evaluation with fuzzy logic’s flexibility, offering recommen-
dations to mitigate risks and improve safety. The proposed approach is evaluated
based on real data from Hashtgerd’s case study in Iran.

The paper is structured as follows: Section 2 reports a brief literature re-
view on related work; Section 3 describes the methodology and the enabling
techniques; Section 4 describes the application of the methodology to the case
study; Section 5 ends the paper, addressing future research.

2 Related work

Quantitative risk assessment forms the backbone of modern WDN management
strategies, enabling the identification and mitigation of failure risks. Advanced
statistical and Machine Learning (ML) algorithms, like Cox regression, supple-
ment WDN risk assessment based on pipe-specific traits such as diameter [8].
ML approaches have also been proven to address a wide range of WDN-related
challenges. For example, Yang et al. analyse pipeline failures using Decision
Tree (DT) models, showing that the elapsed time since the last failure was the
most important variable explaining future failures [18]. Biganzoli et al. show
that Artificial Neural Networks (ANNs) provides a powerful framework of fail-
ure predictions based on survival data and nonlinear interactions between risk
factors [6]. Roozbahani et al. proposed, instead, an Integrated Fuzzy Hierarchi-
cal Risk Assessment model for Water Supply Systems (IFHRA-WSS) model for
improving water supply system risk management [15]. Integrating Geographic
Information System (GIS) and fuzzy logic enhances risk management, as seen in
Iran’s Varamin aquifer, where fuzzy models ranked subsidence risks for targeted
action [12]. Furthermore, Wu et al. use GIS data, combined with Graph Neural
Networks (GNNs), to predict water network leakage risk with better performance
than existing methods by focusing on key factors like pipe age, material, and
failure history [17]. Kaghazchi et al., instead, developed a Hybrid Bayesian Net-
works (HBN) model for hydraulic performance simulation and irrigation system
risk assessment, achieving high accuracy [10]. Table 1 represents a first qual-
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Table 1. Comparison of Different Methods.

Criteria (Our Method) Machine
Learning (RF,

ANN, DL)

Bayesian
Networks (BN)

Markov Models

Handling
Uncertainty

Strong (which
improves

readability)

Needs large dataset
for accurate
predictions

Good (probabilistic
reasoning)

Good (assumes
predefined states
and transitions)

Interpretability High (rule-based
and transparent)

Low (black-box
models)

Medium
(graph-based but

complex)

Low (probabilistic
but interpretable)

Computational
Cost

Low (fuzzy rules are
computationally

simple)

High (training ML
models is

resource-intensive)

Medium (depends
on network
complexity)

Medium (state-space
modelling required)

Data
Requirement

Low (expert
knowledge based)

High (requires
extensive labeled

dataset)

Medium (needs
Probability
estimations)

Low (can work with
small dataset)

Adaptability
to New Data

Limited (Rules need
manual updates)

Strong (automatic
pattern recognition)

Strong (can update
probability tables)

Strong (adjusts to
new transitions)

itative attempt to address such a classification, a sort of roadmap towards a
reasoned comparison of related methods.

3 The proposed approach

This study applies a fuzzy logic-based method to assess risks in Hashtgerd’s
drinking water facilities using the M-FIS. Enhancing traditional Failures Modes
and Effects Analysis (FMEA), it better captures the subjectivity of risk factors.
The two-stage approach evaluates and aggregates risk across water wells, tanks,
and pump stations. Initially, hazards are assessed via severity, occurrence, and
detectability — defined respectively as potential impact, likelihood, and ease of
detection. These are expressed using fuzzy linguistic terms (low, medium, high)
to handle judgment uncertainty. Triangular membership functions model the
fuzzy sets, as shown in Eq. 1 [4]:

µA(x) =


0, if x ≤ a or x ≥ c

x−a
b−a , if a < x ≤ b

c−x
c−b , if b < x < c

a : lower bound
b : peak value
c : upper bound

µA(x) : membership function

(1)

M-FIS computes fuzzy risk levels for each hazard, which are defuzzified via
the centroid method to yield crisp risk scores. These scores guide risk ranking
and prioritization, following FMEA principles tailored to water utility opera-
tions. In the second stage, average component scores inform a system-level risk
assessment, using a second set of fuzzy rules. For example: “If the Water Wells
Risk is High, the Tank Station Risk is High, and the Pump Station Risk is High,
then the Overall Facility Risk is Critical.”
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The final defuzzified output quantifies the overall safety level of the water
facility system. As a key element of the expert system, the defuzzifier converts
fuzzy values into crisp results within Fuzzy Inference System (FIS) process-
ing. Several types exist, such as Mean Of Maximum (MOM), Centroid Of Area
(COA), Largest Of Maximum (LOM), Bisector of Area (BOA), and Smallest Of
Maximum (SOM), with COA being the primary method used in this study [1,3].
The centroid method is detailed in Eq. 2, where µi(x) denotes the membership
values of each rule output.

R∗ =

∑
i µi(x) · xi∑

i µi(x)
R∗ : final risk value (2)

The defuzzified final score offers a clear overview of risk, supporting strategic
prioritization [16]. Fuzzy logic handles subjectivity through membership func-
tions (low, medium, high) and “if-then” rules [2] The followed approach is de-
picted in Fig. 2.
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Fig. 2. Structure of the Proposed Model.

This model follows a systematic risk analysis process, beginning with expert
inputs, where domain experts identify potential failure modes. Expert knowledge
is embedded in the following layers4: (1) hazard layer, responsible for detect-
ing the hazards related to the different considered subsystems; (2) input layer,
quantifying each hazard subsystem per subsystem according to three critical risk
factors: occurrence, severity, and detectability ; (3) intermediate layer, evaluating
the risk for each hazard and for each subsystem. The evaluation is carried out
by RiskEval components, which are based on M-FIS and Monte Carlo Simula-
tion (MCS); (4) final layer, which combines all the partial risk evaluations into
a single final risk level for the entire WDN.

Using MCS for Risk Priority Number (RPN) computing. MCS is a technique
that uses random sampling to approximate complex mathematical or physical
4 In this context, experts are who design, maintain or operate the system and subsys-

tems as well: mechanical, chemical, hydraulic engineers, to mention some of them.
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systems, enabling the estimation of various outcomes under uncertainty. It is
widely used in risk analysis, optimization, and decision-making processes [7].
In this paper, the usage of FIS mechanism is boosted by applying the MCS
technique to RPN computing. RPN computing involves estimating the RPN
by modelling the uncertainty of its factors - Severity (S), Occurrence (O), De-
tectability (D) - using probability distributions. The formula RPN = S · O ·D
describes the traditional approach in RPN computing.

In this context, MCS generates N random samples, it computes RPN values
and analyses their distribution to assess and prioritize risks. The result is a
probability distribution of RPN values instead of a single deterministic number,
as deterministically computed by the M-FIS approach. Eq. 3 defines the formula
by which the mean RPN value is computed

RPN =

∑N
i=1 Si ·Oi ·Di

N
(3)

where Si, Oi, and Di are sampled according their probability distributions.

4 The Hashtgerd Case Study

This section describes the application of the proposed method to a case study,
substituting the Hazard Layer and the Input Layer with a dataset. For the sake
of the space, only the analyses related to Water Wells subsystem are shown, even
if all the subsystems have been considered in the proposed case study.

Dataset. The considered dataset is related to the WDN of the 55,640 people
city of Hashtgerd Alborz, in Iran in 2020 [11]. The active water facilities of
Hashtgerd City include five water wells, one pumping station, two water tanks,
as well as the corresponding values for the O, S, and D, which span from 0 to
10. Additionally, they describe the Risk value and Critical Level computed using
the fuzzy model. Specifically, five levels of criticality have been identified: Very
Very High (VVH), Very High (VH), High (H), Medium (M), and Low (L).

Water Wells. Table 2 reports the input dataset for this component (first four
columns) as well as the risk computed using the Water Well Fuzzy Model, and
the last column shows the level of the risk. Fig. 3 shows how the risk of water
wells varies with occurrence and severity, considering the values of detectability
set to its middle value. As the occurrence and severity decrease, the overall
risk decreases. Conversely, an increase in either factor raises the risk. The plot
demonstrates a positive correlation between risk and both the occurrence and
severity of hazards. Key risks for water wells include their proximity to highways
and urban areas, raising the potential for contamination from vehicle spills and
hazardous discharges. Additionally, inadequate wellhead protection and poor soil
conditions heightened the risk of water quality deterioration. The highest risk
for water wells is placing them near highways and busy routes (92.9%), while
the lowest risk is directly injecting well water into the network (33.3%).
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Table 2. Water Well — List of Hazards and Risk Evaluation.

Hazard O S D Risk Critical Level
Wells near highways and busy routes 7 8 8 92.9 VVH
Soil conditions of the area 6 8 8 83.3 VH
Urban activities, pollution sources 7 6 8 83.3 VH
Contaminated aquifer (treated wastewater recharge-hardness/TDS) 5 7 8 83.3 VH
Intentional contamination of water through sabotage operations 4 8 8 83.3 VH
Contaminated aquifer (toxic minerals - wastewater recharge) 4 7 8 83.3 VH
Poor well maintenance, corrosion, casing issues 6 6 6 50 M
Lack of proper wellhead protection 4 7 7 83.3 VH
Insufficient perimeter and physical security 3 8 8 66.7 H
Physical attacks 6 6 5 50 M
Encroachment on buffer zone 3 5 8 50 M
Forestry and agricultural activities 3 5 8 50 M
Direct injection of well water into the network 2 5 6 33.3 L
Animal husbandry and livestock activities 1 6 7 50 M
Industrial and mining activities 1 4 7 50 M
Final Risk of Water Wells 66.18 H
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Fig. 3. MATLAB’s surface view of risk re-
lated to water wells hazard.
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Overall Risk The risk assessment of Hashtgerd’s WDN found an overall risk
level of 69.1%, with water wells, tank stations, and pump stations contributing
66.18%, 71.9%, and 66.87%, respectively. These results highlight the critical role
of water tanks in determining the overall risk, followed by pump stations and
water wells. Fig. 4 illustrates the surface plot of the final risk in a WDN: this
plot is generated considering the middle value of the water tank risk.

Improving risk estimation with MCS. MCS is used to overcome the limitation
of computing crisp values of risk evaluation by M-FIS evaluators. By comput-
ing the statistical distribution of RPN for each hazard, the values computed by
fuzzy methods are validated by using another technique. To account for uncer-
tainties in risk assessment, we introduced controlled variability in the O, S and
D values during the MCS. Each parameter has been perturbed using a uniform
distribution, pSim = p + U(−0.5, 0.5), ∀p ∈ {O,S,D}. The MCS technique
was implemented in Matlab with 10,000 for each system hazard. Sample sizes

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97567-7_14

https://dx.doi.org/10.1007/978-3-031-97567-7_14
https://dx.doi.org/10.1007/978-3-031-97567-7_14


Computational Risk Assessment in Water Distribution Network 7

count 150,000 for water wells, 120,000 for pump stations, and 140,000 for wa-
ter tanks. As a result of the analysis, the three highest-risk hazards, based on
the mean RPN, are “Wells near highways/roads,” “Soil conditions,” and “Urban
activities/pollution.” These results are concordant with the fuzzy analysis.

Discussion Here, some considerations and lessons learned are reported. To mit-
igate these risks, the study recommends stricter zoning, relocating critical in-
frastructure, and proactive maintenance—such as predictive monitoring sen-
sors, corrosion-resistant materials, and real-time water quality systems to en-
able timely intervention. In particular, water tanks, with a risk of 71.9%, were
found to be the most vulnerable due to their location near high-traffic areas
and insufficient protection, suggesting the need for improved zoning regulations,
better well-head sealing, and advanced monitoring systems. Strengthening se-
curity against sabotage is critical. M-FISs prove their effectiveness in managing
uncertainties but require extensive computational resources. Future improve-
ments could focus on streamlining data collection and enhancing the system’s
applicability. Computational risk assessment of WDN is possible using various
methodologies like FIS, ML, Bayesian Networks (BNs), and Markov models.

5 Conclusions

This paper presents a two-stage fuzzy inference model, which first evaluates indi-
vidual risks for water wells, tanks, and pump stations, and then combines them
into an overall network risk score. In addition, incorporating MCS enables prob-
abilistic estimation of risk, giving confidence intervals for risk estimates rather
than point estimates. This study identifies water tank as the most critical risk fac-
tor (71.9%), followed by pump stations (66.87%) and water wells (66.18%). Key
threats include corrosion, ageing infrastructure, pressure fluctuations, and phys-
ical attacks. The proposed fuzzy-based risk assessment model can be adapted for
use in other cities with different climates, water sources, and infrastructure con-
ditions. Implementing zoning regulations, proactive maintenance strategies and
security enhancements will significantly improve the resilience of Hashtgerd’s
WDN. Future improvements can integrate Artificial Intelligence (AI) and Inter-
net of Things (IoT) to enhance risk prediction by analysing real-time sensor data,
detecting anomalies, and predicting failures. Testing the FIS and MCS models
in different climates will assess its adaptability to environmental stressors.
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