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Abstract. In the realm of Multi-Armed Bandits (MAB), the integra-
tion of habituation with intermittent breaks emerges as a compelling
paradigm to enhance exploration-exploitation trade-offs. This study thor-
oughly investigates the application of habituation with breaks in two
prominentstrategies: Softmax and Upper Confidence Bound (UCB). Em-
pirical findings indicate that habituation with breaks can enhance long-
term performance, mitigate reward stagnation, and support continuous
adaptation. By elucidating the nuanced interplay between habituation,
breaks, and MAB strategies, this work aims to inform future develop-
ments in decision-making algorithms designed for dynamic, real-world
applications.
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1 Introduction

Multi-Armed Bandit (MAB) algorithms play a pivotal role in decision-making
under uncertainty, finding broad applications in fields such as online advertis-
ing, clinical trials, and reinforcement learning. The key challenge faced by MAB
strategies is balancing exploration (gathering information about untested op-
tions) with exploitation (maximizing rewards based on existing knowledge) [4][5].
Recent studies have introduced the promising concept of combining habituation
with pauses, aimed at addressing this fundamental dilemma.

Habituation is a well-documented learning phenomenon characterized by a
reduction in response to repeated stimuli over time [20]. In the context of MAB
algorithms applied to the optimization of visual content delivery, habituation
can significantly influence their performance. For instance, if an agent habituates
to a suboptimal option (referred to as an arm), it may persistently select this
option, ignoring better alternatives [8]. Habituation can be viewed as a form of
"forgetting," where the agent gradually loses confidence in its reward estimates
for specific options over time.
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Classical MAB research proposes various strategies— epsilon-greedy, Thomp-
son sampling, Softmax, UCB - to balance exploration and exploitation. However,
habituation has not been widely studied in this domain (Greenewald et al., 2017).
Approaches to avoid stagnation or reward plateaus sometimes include: Entropy-
based exploration, Adaptive temperature (for Softmax) and Contextual bandits.
While these strategies can mitigate stagnation, none explicitly model habitua-
tion as a cognitive-like “forgetting” process. Comparing our approach with such
methods could illuminate which strategy is most effective across different non-
stationary settings.

In our approach, we propose employing a habituation model that periodically
updates estimates while exploiting the option with the highest predicted reward
probability. Previous studies [6] have demonstrated the effectiveness of introduc-
ing pauses in the context of epsilon-greedy algorithms. We laid the groundwork
for understanding how habituation and strategically timed breaks influence the
performance of Multi-Armed Bandit (MAB) algorithms [3][2]. That research in-
troduced a novel perspective by integrating behavioral concepts into algorithmic
design, revealing the potential benefits of periodic breaks in mitigating habitua-
tion effects. Building upon these findings, this article extends the discussion by
delving deeper into the interplay between habituation and breaks, with a partic-
ular focus on how these mechanisms impact the efficiency of UCB and Softmax
strategies. The Softmax strategy introduces a probabilistic element, determining
the probability of selecting each arm based on its estimated value. Conversely, the
UCB strategy relies on a confidence-based approach, guiding decisions through
uncertainty assessments [16].

Integrating habituation with pauses into these strategies may enhance their
adaptability and decision-making efficiency, opening new avenues for addressing
complex decision-making scenarios [1]. Therefore, our study aims not only to ex-
amine how pauses impact these strategies but also to provide practical guidelines
for their application in real-world scenarios.

2 Literature review

The existing literature on Multi-Armed Bandit (MAB) algorithms reveals insuffi-
cient attention to the topic of habituation. While MAB studies are extensive, the
integration of habituation with pauses remains largely unexplored. Habituation,
a form of non-associative learning, is defined as the gradual reduction in sensitiv-
ity to repetitive, unchanging stimuli [12]. This phenomenon is widespread across
various organisms, including humans, and is considered an adaptive mechanism
that filters out less significant stimuli to focus resources on novel or important
information [18].

In psychological terms, habituation is the process by which an organism re-
duces its responsiveness to repetitive, non-reinforcing stimuli over time. In this
study, we align habituation with the concept of dynamic forgetting: the algo-
rithm gradually loses confidence or “interest” in the same arm if it is repeatedly
chosen. As noted by Canadian psychologist Donald Hebb: "Habituation is the
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first and most elementary form of learning," forming the foundation for more
complex learning processes, such as classical or instrumental conditioning [10]
[19]. Habituation can be described as a diminishing response to repeated stimuli
or a persistent choice of the same arm. Forgetting is an algorithmic mechanism
that mimics diminished sensitivity to rewards, which can be reset or partially
offset by breaks. By clarifying these notions, we underscore that habituation is
not merely a random decay but rather a structured decline in arm preference,
potentially mitigated by breaks. Habituation is characterized by a decrease in
sensitivity to a given stimulus and the recovery of this sensitivity after a period
without exposure [17]. This phenomenon has been extensively studied in fields
such as neuroscience, psychology, and biology to better understand learning,
memory, attention, and neural plasticity [14] [13].

The Softmax strategy facilitates exploration through probabilistic selection,
where the probability of choosing a specific arm is proportional to its estimated
reward, taking a parameter into account [7]. A high parameter value results
in more exploration, while a low value leads to more exploitation [21]. This
probabilistic approach counters habituation by ensuring that even suboptimal
arms have a non-zero probability of being selected [22].

UCB algorithms balance exploration and exploitation by selecting arms with
the highest upper confidence bound of estimated rewards [4]. This approach
ensures more frequent selection of arms with higher uncertainty (less explored),
encouraging exploration [9]. The UCB algorithm adjusts the confidence bound
based on the number of times an arm has been chosen, reducing the likelihood
of suboptimal exploitation over time [1][11].

Observations suggest that the issue of habituation in the context of MAB re-
mains insufficiently investigated, despite its potential benefits for solving decision-
making problems under uncertainty. Existing studies on Softmax and UCB
strategies also inadequately address this issue, leaving a gap in understanding
how habituation with pauses impacts the effectiveness of these strategies. Intro-
ducing habituation management strategies is crucial for the effective functioning
of MAB algorithms [15]. Both Softmax and UCB offer robust frameworks for
balancing exploration and exploitation, reducing the risk of habituation [10].
Future research should develop these methods further and explore their ap-
plications across various domains to deepen the understanding of habituation
principles in adaptive learning systems.

3 Conceptual framework

Upper Confidence Bound (UCB) and Softmax strategies represent two distinct
approaches to the Multi-Armed Bandit (MAB) problem, where an algorithm
must effectively select from available options (arms) to maximize rewards.

The application of a habituation model with pauses in UCB and Softmax
strategies is justified for several reasons. Firstly, habituation introduces flexibil-
ity into the learning process, which is crucial in dynamic environments. Pauses
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in habituation allow for periodic rest, preventing premature convergence to sub-
optimal solutions or excessive exploration.

Habituation in MAB algorithms can be conceptually represented as a process
in which the agent becomes less sensitive to rewards from a specific arm when it
is repeatedly selected. This effect is illustrated in Figure 1 by a continuous curve
with a red segment labeled as A. The normal behavior of the algorithm under
ideal conditions is reflected in Figure 1 by line B. The occurrence of a break
results in an increase in the agent’s responsiveness (green curve). The behavior
and choices of the agent are shaped by the rewards received, and as the rewards
from a specific arm become more predictable, the agent tends to explore other
arms that may offer higher rewards.

Fig. 1. Example depicting the shape of the responsiveness decline curve with continu-
ous exposure (A) and with intermittent exposure breaks (B).

It is worth noting that habituation with pauses may be particularly bene-
ficial in situations where the decision-making environment changes or contains
unpredictable elements. Habituation allows the algorithm to adapt to changing
conditions, minimizing the risk of becoming stuck in suboptimal solutions. Con-
sequently, introducing a habituation model with pauses into UCB and Softmax
strategies may enhance their ability to effectively solve dynamic MAB problems.

Furthermore, integrating the habituation model with pauses into UCB and
Softmax strategies adds a valuable element of adaptability. Habituation, as a
learning phenomenon associated with decreasing sensitivity over time, enables
the algorithm to dynamically adjust its responses to changing circumstances.
This adaptability becomes crucial in the face of uncertainty or shifts in the
reward structure associated with each arm. In the UCB strategy, where the al-
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Fig. 2. A graphic illustrating the performance of a MAB algorithm in our experiment
with the added effect of habituation,with continuous exposure (A) and with intermit-
tent exposure breaks (B).

gorithm balances exploitation of known high-reward options with exploration of
potentially better ones, habituation with pauses provides a mechanism to pre-
vent premature convergence. Pauses allow the algorithm to periodically reassess
its choices, avoiding excessive focus on specific arms and potentially missing
better alternatives.
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In the case of the Softmax strategy, which introduces a probabilistic element
to decision-making, habituation with pauses supports more balanced exploration
of arms. Periodic pauses offer moments of reflection, allowing the algorithm to
rethink its exploration-exploitation strategy and adjust probabilities accordingly.
This adaptability enhances the Softmax strategy’s ability to navigate complex
decision spaces and discover optimal solutions.

In summary, applying a habituation model with pauses in UCB and Softmax
strategies not only introduces adaptability and flexibility but also addresses spe-
cific challenges related to premature convergence and exploration-exploitation
balance. This integration increases the algorithms’ potential to perform effec-
tively in dynamic decision-making environments, making them valuable tools
in areas such as online recommendation systems or autonomous agents facing
complex decision scenarios.

4 Experiment Setup

Figure 3 illustrates a segment of our experimental findings, showcasing the av-
erage number of selections favoring the highest-reward option over iterations,
incremented by 1000, and spanning a total of 3000 iterations. These results pro-
vide insight into how the algorithm adapts to different conditions over time.

Fig. 3. Experimental approaches: (A) performance under habituation with continuous
exposure, and (B) performance with habituation incorporating breaks.

In Figure 2, we compare the performance of a Multi-Armed Bandit (MAB)
algorithm under two experimental conditions: continuous exposure (A) and in-
termittent exposure with breaks (B). Figure 2 (A) highlights the behavior of the
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algorithm under continuous exposure, which incorporates the effects of habitua-
tion. The analysis reveals that continuous exposure leads to a progressive decline
in sensitivity to rewards from specific arms, resulting in suboptimal exploration
and exploitation behaviors. This diminishing responsiveness to predictable re-
wards adversely affects the algorithm’s ability to maximize the total reward,
highlighting the challenges posed by habituation in decision-making processes.
Understanding these dynamics is essential for developing strategies to counteract
habituation and improve the performance of MAB algorithms.

Conversely, Figure 2 (B) illustrates the performance of the same algorithm
when habituation effects are combined with intermittent exposure breaks. The
introduction of such breaks markedly enhances the total reward obtained com-
pared to the uninterrupted approach. Periodic breaks mitigate the decline in
sensitivity caused by continuous exposure, allowing for more effective explo-
ration and exploitation of available options. This adjustment not only optimizes
the algorithm’s performance but also demonstrates the potential benefits of in-
tegrating controlled interruptions in practical applications. By resetting sensi-
tivity levels, these breaks improve adaptability and mitigate the adverse effects
of habituation, ultimately enhancing the efficiency of decision-making in MAB
scenarios.

High-Level Procedure illustrating how habituation and “breaks” are intro-
duced into a standard Multi-Armed Bandit (MAB) feedback loop:

1. Initialization: Set reward estimates Qi(0) for each arm i. Initialize any
required habituation parameters.

2. Arm Selection: Choose an arm i based on either Softmax probabilities or
UCB indices.

3. Reward & Update: Observe the reward Ri; update Qi accordingly.
4. Habituation Decay: Gradually reduce the sensitivity to repeated pulls of

the same arm.
5. Check Break Condition: If a break is triggered (e.g., after X% of trials

or upon meeting a certain performance threshold):
– Partially reset the habituation level.
– Optionally adjust Qi or the counters Ni.

6. Repeat until the experiment ends.

The experimental setup for evaluating the Upper Confidence Bound (UCB)
algorithm under these conditions involves a systematic comparison between two
variants: UCB without breaks and UCB with habituation breaks. Key parame-
ters varied during the experiments include the exploration parameter (c), habit-
uation coefficient (α), temperature parameter (τ), and the percentage of breaks.
Within the MAB environment, n arms are initialized with reward probabilities
randomized between 0 and 1, and experiments are conducted across a fixed
number of iterations. At each iteration, the arm with the highest UCB in-
dex—calculated based on estimated rewards and the number of selections—is
chosen, the observed reward is recorded, and the algorithm updates its parame-
ters accordingly. This setup allows us to analyze the impact of habituation breaks
on the algorithm’s performance while systematically varying key parameters.
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Similarly, the Softmax algorithm is evaluated under analogous conditions,
comparing its performance without and with habituation breaks. Here, the pa-
rameters subject to variation include the habituation coefficient (α), tempera-
ture parameter (τ), and the percentage of breaks. Arms are selected according
to the Softmax probability distribution, with probabilities assigned based on the
estimated rewards. Observed rewards are used to update these estimates and
recalibrate the probability distribution, ensuring that the algorithm adapts to
the changing environment over successive iterations.

The findings from these experiments underscore the significant role that ha-
bituation breaks play in enhancing the performance of MAB algorithms. By
addressing the limitations imposed by continuous exposure, such as diminished
sensitivity and suboptimal decision-making, the introduction of controlled breaks
fosters more effective exploration-exploitation dynamics. These results not only
provide a deeper understanding of habituation effects but also open new avenues
for optimizing MAB algorithms in diverse applications, ranging from recommen-
dation systems to adaptive learning environments.

4.1 Upper Confidence Bound (UCB) algorithm with habituation
and breaks

For each action i selected based on:
1. Select action i according to the rule:

it = argmax
i

(
Qi(t) + c ·

√
ln(t)

Ni(t)

)
(1)

Where:

– Qi(t) - estimated average reward for action i at time t,
– Ni(t) - number of selections of action i until time t,
– c - parameter controlling the balance between exploration and exploitation.

2. After performing action i and receiving reward Ri(t), update the estimated
average reward for action i:

Qi(t+ 1) =
(1− α) ·Qi(t) + α ·Ri(t)

Ni(t) + 1
(2)

Where:

– α - learning rate parameter.

4.2 Softmax algorithm with habituation and breaks

For each action i selected based on the softmax distribution:
1. Select action i according to the softmax distribution:

P (i) =
eQi(t)/τ∑
j e

Qj(t)/τ
(3)

Where:
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– Qi(t) - estimated average reward for action i at time t,
– τ - parameter controlling the degree of exploration.

2. After performing action i and receiving reward Ri(t), update the estimated
average reward for action i:

Qi(t+ 1) =
(1− α) ·Qi(t) + α ·Ri(t)

Ni(t) + 1
(4)

Where:

– α - learning rate parameter.

5 Results

The figures 4 and 5 present the cumulative rewards obtained using the Softmax
and UCB algorithms, respectively, under varying conditions of habituation and
exposure breaks. Each configuration demonstrates the impact of habituation
parameters (α and τ) and the introduction of breaks (10% and 30%) on the
algorithms’ performance over 3000 iterations.

In both figures, non-habituation serves as a baseline, consistently yielding the
highest cumulative rewards. The curves for habituation without breaks show a
decline in cumulative rewards due to the progressive decrease in sensitivity to re-
peated rewards, which negatively affects exploration and exploitation efficiency.
This decline highlights the inherent challenges of habituation in decision-making
processes.

The introduction of breaks (10% and 30%) significantly mitigates the adverse
effects of habituation. For the Softmax algorithm in Figure 4, the 30% break
consistently outperforms both the non-break and 10% break setups across all
parameter combinations, with noticeable improvements in cumulative rewards.
The effects are particularly pronounced in configurations where α = 1.05 and
τ = 25, followed closely by α = 1.2 and τ = 5. This indicates that breaks not
only reset sensitivity to rewards but also enhance the algorithm’s adaptability
to dynamic conditions.

Similarly, Figure 5 reveals that the UCB algorithm benefits significantly from
the introduction of breaks. While the non-habituation curve remains superior in
absolute cumulative rewards, the 30% break approaches this benchmark closely,
especially in scenarios where α = 1.05 and τ = 25. The improvement is more
substantial in the UCB algorithm compared to Softmax, underscoring the effec-
tiveness of breaks in addressing habituation-related performance degradation.

Comparatively, the 10% breaks show moderate improvements but fail to
reach the levels achieved with 30% breaks. These results suggest that longer
or more frequent breaks are crucial for optimizing algorithmic performance, es-
pecially in environments prone to habituation effects.

In summary, the experiments demonstrate that introducing 30% breaks sig-
nificantly enhances the cumulative rewards for both Softmax and UCB algo-
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Fig. 4. Performance of the Softmax algorithm under different experimental setups:
non-habituation, habituation, and habituation with 10% and 30% breaks.

rithms. The optimal parameter combinations (α = 1.05, τ = 25) further am-
plify these benefits, providing a robust strategy for mitigating the negative im-
pacts of habituation in Multi-Armed Bandit algorithms. These findings high-
light the practical importance of incorporating controlled breaks into algorith-
mic designs, particularly in applications requiring sustained performance over
prolonged decision-making tasks.
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Fig. 5. Performance of the UCB algorithm under different experimental setups: non-
habituation, habituation, and habituation with 10% and 30% breaks.

6 Conclusion

Habituation is a multifaceted phenomenon that significantly influences the per-
formance of Multi-Armed Bandit (MAB) algorithms. While habituation poses
challenges by diminishing sensitivity to repeated stimuli, incorporating mecha-
nisms such as breaks in exposure and adaptive strategies offers promising solu-
tions. Modeling habituation as a form of "forgetting" enables MAB algorithms
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to maintain dynamic reward probability estimates, ensuring a balance between
exploration and exploitation. This consideration is critical for designing algo-
rithms that achieve optimal outcomes in dynamic environments. The inclusion
of breaks in habituation proves particularly advantageous. Firstly, it enhances
exploration by encouraging the discovery of potentially more rewarding options,
preventing the overexploitation of suboptimal arms. Secondly, breaks mitigate
the rapid depletion of high-performing arms, enabling the algorithm to avoid
premature convergence and maintain flexibility in decision-making. These ben-
efits are evident in the comparative analysis of Softmax and Upper Confidence
Bound (UCB) algorithms. In the Softmax approach, breaks prevent the dom-
inance of a single arm, promoting balanced exploration and exploitation. For
UCB, breaks facilitate broader exploration by resetting confidence bounds, lead-
ing to improved long-term performance and minimizing the risk of suboptimal
convergence. Practical applications, such as recommendation systems, further
underscore the importance of habituation breaks. By increasing the diversity
of suggested content and preventing repetitive recommendations, breaks can
enhance user experience, extend session durations, and boost engagement. Simi-
larly, in advertising platforms, breaks help balance the trade-off between explor-
ing ad effectiveness and exploiting high-performing ads, ultimately maximizing
revenue. Beyond these specific domains, the introduction of breaks enhances al-
gorithmic stability and reduces the impact of randomness on results, improving
decision precision across various MAB scenarios. Our findings indicate that in-
corporating breaks into habituation can substantially bolster both exploration
and long-term performance in MAB algorithms. By periodically “resetting” di-
minished responsiveness, the algorithm remains attentive to arms that may have
been prematurely overlooked, which is vital in non-stationary environments (e.g.,
shifting user preferences or volatile market conditions). In the context of po-
tential applications, one can envision a simplified advertising scenario where
frequent exposure to the same banner leads to user “ad fatigue” and a drop
in click-through rates. By incorporating breaks in the habituation mechanism,
the system periodically “refreshes” its selection of ad creatives, thereby avoiding
over-promotion of any single campaign. Consequently, this approach maintains
higher user engagement, leading to better overall financial performance and a
more balanced distribution of ad impressions. This dynamic reactivity translates
into more robust, real-world outcomes, such as increased diversity in recommen-
dation systems and improved revenue in advertising platforms. Furthermore,
controlled breaks help balance exploitation of currently profitable arms with on-
going exploration, preventing excessive fixation on suboptimal options. Conse-
quently, break-based habituation strategies offer a practical and psychologically
inspired means of maintaining adaptability and maximizing cumulative rewards
in complex decision-making tasks. Future research and refinement of habitua-
tion models in MAB algorithms hold significant potential for advancing both
theoretical understanding and practical implementations. By addressing habit-
uation through carefully designed breaks, MAB algorithms can achieve superior
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outcomes, offering robust solutions for real-world challenges in domains such as
finance, advertising, and content recommendation.

7 Future work

Future research on implementing habituation with breaks in Multi-Armed Ban-
dit (MAB) algorithms should focus on several key areas to further enhance the
performance of these algorithms and their applications in various fields. One
crucial area for future study is the exploration of different parameter combina-
tions, such as tau in Softmax algorithms and alpha in Upper Confidence Bound
(UCB) algorithms. Different values of these parameters can significantly affect
the performance of the algorithms, so extensive experimentation is necessary
to identify the optimal settings. Additionally, while simulations and theoretical
analyses provide valuable insights, implementing and testing these algorithms
with breaks in real-world scenarios, such as recommendation systems, advertis-
ing platforms, and financial applications, is essential for assessing their practical
utility. Future work should focus on real-world deployments to understand how
these algorithms perform with real data and dynamically changing conditions.
Furthermore, exploring the integration of additional contextual information or
advanced function approximation techniques, such as neural networks, could lead
to more adaptive and efficient exploration strategies. Another promising direc-
tion is the development of hybrid approaches that combine break-based habit-
uation with other exploration-enhancement mechanisms, ultimately improving
long-term performance across diverse and rapidly evolving application domains.
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