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Abstract. The classi�cation of dispersed data poses challenges due to
inconsistencies and con�icts arising from independently collected sources.
This study introduces a coalition-based classi�cation framework that in-
tegrates con�ict analysis and rule-based learning. The approach employs
four decision rule induction methods � exhaustive search, genetic algo-
rithms, covering algorithms, and LEM2 � combined with three decision-
making strategies: �rst rule approach, all rules approach, and weighted
rules approach. Experiments were conducted on datasets from the UCI
Machine Learning Repository. The theoretical contribution of the paper
is a novel classi�cation structure for dispersed data, which utilizes con�ict
analysis to identify consistent sources and form coalitions. The practi-
cal contribution involves the development of an interpretable method
that enables the generation of transparent rules and allows comparison
of di�erent approaches in the context of dispersed data. Results indicate
that the covering algorithm with weighted rules approach achieves the
highest classi�cation performance across all metrics. The limitations of
the study include the poor performance of the LEM2 method, which of-
ten fails to generate covering rules, leading to random classi�cations, as
well as aspects of scalability that may need further attention for large
datasets.

Keywords: Dispersed data classi�cation · Decision rule induction · Con-
�ict analysis · Coalition-based learning · Hierarchical classi�cation · In-
terpretable machine learning · Rough set theory.

1 Introduction

The rapid expansion of data collection in various �elds has led to an increasing
occurrence of dispersed datasets, where data is stored across multiple indepen-
dent sources. Handling such fragmented data poses signi�cant challenges � not
only in achieving high classi�cation accuracy but also in ensuring interpretability
and transparency in decision-making. Traditional aggregation methods often fail
due to inconsistencies and con�icts arising from heterogeneous sources. Instead
of simple data merging, a more structured approach is required to consolidate
knowledge while preserving local data integrity.
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The aim of this study is to introduce a novel framework for classi�cation
based on dispersed decision tables. Our method focuses on identifying coalitions,
i.e., groups of data sources exhibiting a su�cient level of consistency. By applying
con�ict analysis, we categorize data attributes and form coalitions that enable
e�ective knowledge extraction while maintaining data integrity. Unlike central-
ized approaches, where all data is combined into a single model, our method
operates in a hierarchical manner, ensuring that only compatible information is
aggregated. The key advantage of this framework is its ability to generate in-
terpretable decision rules, making it particularly suitable for applications where
explainability is crucial.

Machine learning techniques can generally be classi�ed into two categories:
highly interpretable models, such as rule-based classi�ers and decision trees [8],
and black-box models, such as deep learning and neural networks, which of-
fer high accuracy but lack explainability [10]. In many real-world applications,
the ability to justify predictions is as important as achieving high classi�ca-
tion performance. The problem of classi�cation based on dispersed data has
been explored in various domains, with di�erent methodologies aimed at han-
dling fragmented and independently collected datasets. Traditional approaches
include ensemble learning [21], where multiple classi�ers are trained separately
and combined through voting or weighted averaging, as seen in bagging, boost-
ing, and stacking techniques. However, these methods focus on improving accu-
racy rather than integrating knowledge from dispersed sources. Federated learn-
ing o�ers an alternative by allowing decentralized model training without direct
data exchange, preserving privacy but limiting interpretability [13]. Some stud-
ies have proposed hierarchical classi�cation frameworks, where local models are
combined at di�erent levels, yet they often lack explicit con�ict resolution mech-
anisms. Pawlak's con�ict analysis model [12] has been widely used for addressing
inconsistencies in decision-making, particularly in rough set-based learning and
three-way decision theory [23]. Prior research has also explored data fusion tech-
niques, where statistical and mathematical measures are used to reconcile incon-
sistencies [22], but these approaches typically do not generate human-readable
patterns such as decision rules. The proposed study builds on these foundations
and bridges the gap by introducing a coalition-based method for dispersed data
classi�cation, integrating con�ict analysis with rule-based learning to enhance
interpretability while maintaining classi�cation performance. Thus, the proposed
method delivers an explicit mechanism for identifying consistent sources and gen-
erating transparent decision rules � an aspect that distinguishes it from existing
classi�cation approaches.

A core aspect of this study is the application of con�ict analysis, originally
introduced by Pawlak [12] and extended by other authors [6, 18], to dispersed
datasets. By assigning categorical values -1, 0, 1 to attribute characteristics,
we quantify di�erences across data sources and establish coalition. Unlike prior
paper [14, 15] that applies con�ict analysis in combination with decision trees,
our approach directly incorporates it into the decision-rule generation process.
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The proposed methodology emphasizes rule-based knowledge extraction �
a fundamental aspect of interpretable AI. Decision rules, structured as Horn
clauses, are derived using four di�erent rule-generation techniques: exhaustive
search, genetic algorithms, covering algorithms, and the LEM2 algorithm. We
introduce and compare three decision-making strategies for classi�cation based
on rule sets generated for coalitions: �rst rule approach, all rules approach and
weighted rules approach.

Considering the objective of this study, the following key research questions
are addressed:

� How can decision rules be integrated into a classi�cation system based on
dispersed data, combined with a hierarchical coalition framework using con-
�ict analysis?

� Which decision-making strategies are most e�ective for rule-based classi�ca-
tion within coalitions?

� How e�ective are di�erent decision rule induction methods in generating
transparent and meaningful classi�cation rules?

By structuring the problem through con�ict-aware coalitions and rule-based
decision-making, this study provides an interpretable, dispersed classi�cation
framework that balances accuracy with explainability � addressing a critical
need in modern machine learning applications.

The structure of this paper is organized as follows. Section 2 presents the
proposed framework for dispersed data classi�cation, including con�ict analysis,
coalition formation, and rule induction. Section 3 describes the dataset, experi-
mental setup and the experimental results, analyzing the performance of di�er-
ent rule induction methods and decision-making approaches. Finally, Section 4
provides the conclusion and future work.

2 Methods and models � decision rules for dispersed data

In the study, we adopt a dispersed data approach to classi�cation, emphasizing
the interpretability of results and the transparency of decision-making within
each local unit. To achieve this, we propose the use of decision rules. The model
follows a hierarchical structure, using data similarity within local units to form
consistent groups. Integrating coherent datasets allows the generation of reli-
able decision rules. Furthermore, this approach enables the creation of shared
rules across multiple local units, improving overall interpretability. The model
for combining local units into coalitions was �rst used in the papers [14, 15].
However, it has never been applied in conjunction with decision rules created
using rough set theory. The formal de�nition of a framework for dispersed data
is presented below.

We consider dispersed data in tabular form, so let us assume that a set of local
decision tables with the same conditional attributes are given Di = (Ui, A, d), i ∈
{1, . . . , n}, where Ui is the universe, a set of objects; A is a set of conditional
attributes; d is a decision attribute. Local decision tables managed by local units
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are collected independently and can be found in separate locations. Local tables
can also be inconsistent. The proposed approach is dedicated to both qualitative,
quantitative and mixed types of attributes stored in local tables. We recognize
coalitions based on data stored in local tables, using statistical characteristics of
attribute values in tables and Pawlak's con�ict analysis model [12]. In Pawlak
model an information system is de�ned S = (LD,A), where LD is a set of local
decision tables

LD = {Di : i ∈ {1, . . . , n}}

and A is a set of conditional attributes (qualitative and quantitative) occurring
in local tables Di. This information system contains the characteristics of a given
attribute values' a ∈ A in a given local table Di stored in the form of trisection
� only three values are used {−1, 0, 1}. For each attribute a ∈ A a function
a : LD → {−1, 0, 1} is de�ned. The interpretation of the values stored in the
system S is as follows. If a(Di) = 0 it means that the values stored in the local
table Di for attribute a are in the area of typical values of attribute a among
all local tables LD. The value a(Di) = 1 means that the values stored in the
local table Di for attribute a are above average/typical. Conversely, a(Di) = −1
means that the values stored in the local table Di for attribute a are below
average/typical. To determine the value in the system S, we proceed di�erently
for qualitative and quantitative attributes.

For each quantitative attribute aquan ∈ A, we compute the average of its
values within each local table Di for i ∈ {1, . . . , n}. Let this average be denoted
as V al

i

aquan
. Additionally, we calculate the global average and the global standard

deviation across all local tables, denoted as V alaquan
and SDaquan

, respectively.
Next, we de�ne a function aquan : LD → {−1, 0, 1} that categorizes each local
table based on its average attribute value:

aquan(Di) =


1 if V alaquan + SDaquan < V al

i

aquan

0 if V alaquan
− SDaquan

≤ V al
i

aquan
≤ V alaquan

+ SDaquan

−1 if V al
i

aquan
< V alaquan

− SDaquan

(1)

For each qualitative attribute aqual ∈ A, we construct a frequency vec-
tor representing the distribution of its values. Suppose aqual has c values de-
noted as val1, . . . , valc. For each local table Di, we de�ne the vector V aliaqual

=

(ni
1, . . . , n

i
c), where ni

j is the number of occurrences of valj in Di. To categorize
local tables based on attribute distribution, we use the 3−means clustering algo-
rithm using Euclidean distance on the vectors V aliaqual

for i ∈ {1, . . . , n}. This
clustering groups tables with similar distributions into three clusters. Each table
is then assigned a category:

� aqual(Di) = 1 for tables Di in the �rst cluster,

� aqual(Di) = 0 for those Di in the second cluster,

� aqual(Di) = −1 for those Di in the third cluster,
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Once the information system de�ning the con�ict situation is established,
we quantify the intensity of con�ict between pairs of decision tables using the
function ρ : LD × LD → [0, 1]:

ρ(Di, Dj) =
card{a ∈ A : a(Di) ̸= a(Dj)}

card{A}
.

This function measures the proportion of attributes in which two tables Di and
Dj di�er. A higher value of ρ(Di, Dj) indicates greater disagreement between
the tables. Next, coalitions are formed as groups of decision tables that exhibit
a low level of con�ict. Speci�cally, a coalition is de�ned as a set of tables in
which every pair (Di, Dj) satis�es ρ(Di, Dj) < 0.5, meaning that at least half of
their attributes share the same classi�cation. This threshold ensures a su�cient
level of similarity within each coalition while still allowing for some variation.
For each coalition, an aggregated decision table is constructed, consolidating the
information from its members. For the j−th coalition, the aggregated decision
table is denoted as:

Daggr
j = (Uaggr

j , A, d)

where: Uaggr
j represents the union of all objects from the local tables in the j−th

coalition, A is the set of attributes, which remains the same as in the original local
tables, d is the decision attribute, which also remains unchanged. The attribute
values in the aggregated table are inherited directly from the corresponding
local tables. Speci�cally, for each object x ∈ Ui, the value of attribute a in the
aggregated table is the same as in the local tableDi from which x originates. This
aggregation process e�ectively combines data from multiple local sources without
explicitly recognizing whether there are overlapping objects between di�erent
local tables. This assumption is based on the lack of direct identi�ers linking
objects across tables (tables are independently stored), making it impossible to
detect duplicates or shared instances.

Once the aggregated local decision tables are constructed, rule induction is
performed separately for each table to derive a set of local decision rules. Con�ict
analysis assumes an important role in this process. It ensures that only tables
with su�cient similarity are combined, allowing rule induction to be based on a
uniform set of information. As a result, classi�cation decisions are in�uenced not
only by the rules themselves, but also by the quality of collaboration between
sources established during coalition formation. In the literature, various methods
for extracting decision rules have been proposed [5, 16]. Traditional brute-force
approaches systematically explore all possible rule combinations but are compu-
tationally infeasible for datasets with a large number of attributes. To overcome
this limitation, heuristic-based algorithms have been developed, using optimiza-
tion techniques such as ant colony systems [9], approximation methods [11], and
other innovative approaches [19, 20] to generate decision rules e�ciently. In this
study, we apply four rough set-based rule induction methods:

� Exhaustive search algorithm (Exh) [1]
� Genetic algorithm (Gen) [3]
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� Covering algorithm (Cov) [2]

� LEM2 algorithm (LEM2) [7]

These four methods were chosen due to their diverse mechanisms for rule gen-
eration and their sensitivity to di�erent aspects of rough set-based classi�ca-
tion. The exhaustive search algorithm systematically explores all possible object-
oriented reducts (or local reducts) within the dataset. By performing a brute-
force search, it guarantees the discovery of the optimal set of decision rules.
However, this approach is computationally expensive and impractical for high-
dimensional datasets due to its exponential complexity. Despite its limitations,
exhaustive search serves as a benchmark for evaluating the performance of heuris-
tic algorithms. The genetic algorithm is a metaheuristic optimization technique
designed to e�ciently explore large search spaces and uncover patterns in multi-
dimensional data. Unlike exhaustive search, genetic algorithm does not guarantee
an optimal solution but aims to �nd high-quality reducts within a feasible time.
Each candidate solution (individual) represents a potential subset of attributes
(reduct), and evolutionary operations such as mutation, crossover, and roulette
wheel selection drive the search for an optimal rule set. The covering algorithm
constructs decision rules incrementally by identifying minimal � or near minimal
� rule sets that comprehensively cover all objects in the dataset. This method
focuses on interpretability by generating concise rule sets with the most relevant
conditions. The LEM2 algorithm e�ectively handles datasets containing incon-
sistencies or uncertainty by deriving rules that maximize class discernibility. The
algorithm operates iteratively. It initializes an empty rule set and systematically
generates new rules to cover instances within the dataset. For each attribute, it
evaluates potential conditions that can best partition the data into meaningful
subsets. The selected conditions aim to minimize impurity (entropy), ensuring
that the resulting rules accurately separate di�erent decision classes. Rules are
further re�ned using support and con�dence measures, and a pruning strategy is
applied to enhance generalization. By addressing uncertainty and noise in data,
LEM2 provides a robust mechanism for identifying reliable patterns even when
the dataset is imprecise. The four selected methods represent a broad spectrum of
strategies, from exhaustive search to heuristic optimization and rule re�nement.
In the context of dispersed data classi�cation, employing such a diverse set of
methods allows for evaluating their robustness to inconsistencies across sources
and for �exibly adapting the rule generation process to the local characteristics
of the data. The covering algorithm and the LEM2 algorithm, which operate
more locally and tolerate uncertainty, may be particularly useful when analyz-
ing tables with high variability. In contrast, the exhaustive search algorithm and
the genetic algorithm enable exploration of a broader pattern space, which may
increase the likelihood of identifying meaningful generalizations across sources.

In the proposed classi�cation approach for dispersed data, for each coalition
a separate set of local decision rules are generated, forming local models that
collectively contribute to global decision. The �nal classi�cation is determined
through a majority voting mechanism. In cases where a tie occurs, the decision
is drawn from the set of decision classes that received the highest number of
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votes from the local models. The study explores three di�erent strategies for
determining the classi�cation outcome of local models for a given test object.

� First rule approach (FRA) � The classi�cation is determined by the decision
class of the �rst rule in the given rule set that covers the test object. If no
rule covers the object, the decision class is randomly selected from the set
of all possible classes. Consequently, the classi�cation outcome of the local
model is in�uenced by the order in which decision rules appear within the
set.

� All rules approach (ARA) � The classi�cation is determined by the decision
class that receives the highest number of votes among the rules covering the
test object. In the event of a tie, the decision class is randomly selected from
the set of tied classes. If no rule covers the object, the decision class is chosen
at random from all possible classes.

� Weighted rules approach (WRA) � Each rule covering a given object is as-
signed a weight, calculated as the ratio of the rule's match count to the total
number of objects in the aggregated table associated with the coalition's rule
set. The weights are then summed for each decision class, and the class with
the highest total weight is selected as the �nal decision. In the event of a tie,
the decision class is randomly chosen from those with the highest summed
weight. If no rule covers the object, the decision class is randomly drawn
from the set of all possible classes.

The selection of three decision-making strategies allows for examining how dif-
ferent aggregation mechanisms in�uence classi�cation outcomes in the context
of dispersed data. In such settings, where local models may vary in quality and
completeness, the FRA strategy enables rapid decision-making, ARA aggregates
knowledge from multiple rules, and WRA introduces a mechanism for weighting
rules based on their representativeness. This combination makes it possible to as-
sess which approach performs best in environments characterized by fragmented
and inconsistent information.

Figure 1 illustrates the structure of the proposed hierarchical framework with
con�ict analysis and decision rules. As was described above, we start with lo-
cal decision tables (Di), which represent individual data sources with identical
attributes. The con�ict analysis step categorizes attributes into -1, 0, 1 and
measures table di�erences. Next, coalition formation groups tables with low
con�ict, ensuring that coalitions are not necessarily disjoint. These coalitions
are then merged into aggregated decision tables, consolidating information from
each group. The decision rule induction phase applies four rule extraction meth-
ods to generate classi�cation rules for each coalition. Finally, the classi�cation
process determines the outcome using three approaches: First Rule Approach,
All Rules Approach, or Weighted Rules Approach. The framework emphasizes
structured data integration, rule-based learning, and collective voting for im-
proved classi�cation based on dispersed datasets.
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Fig. 1. Structure of the proposed framework with con�ict analysis and decision rules
for dispersed data classi�cation

3 Dataset, Experimental Setup, and Evaluation Protocol

The proposed classi�cation approach for dispersed data was tested on two datasets
from the UC Irvine Machine Learning Repository [17, 4]. Vehicle Silhouettes
dataset aims to classify vehicle into one of four categories based on features ex-
tracted from images taken from various angles. It includes eighteen quantitative
conditional attributes and four decision classes, with a total of 846 objects. Car
Evaluation dataset is designed for evaluating car acceptability based on six cat-
egorical attributes: buying price, maintenance cost, number of doors, passenger
capacity, luggage boot size, and safety. The target variable represents the accept-
ability of the car, categorized into four decision classes: unacceptable, acceptable,
good, and very good. The dataset consists of 1,728 instances. The datasets were
randomly split into two disjoint subsets using strati�ed sampling: a training set
containing 70% of the instances and a test set comprising the remaining 30%.

Each dataset was then transformed into multiple dispersed versions to sim-
ulate real-world scenarios where data is collected independently across di�erent
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locations. Speci�cally, four dispersed versions were generated for each dataset,
using 5, 7, 9, and 11 local tables. This process followed a strati�ed approach,
ensuring that each local table retained the full set of attributes while containing
only a subset of the original objects. Notably, since the data was dispersed in
a manner that re�ects independent collection, it was not possible to trace or
match individual objects across di�erent local tables. Consequently, a total of 8
dispersed datasets were created.

The classi�cation quality was evaluated using the test set. To ensure a com-
prehensive comparison of results, multiple performance metrics were used: clas-
si�cation accuracy (acc); balanced accuracy (bacc); recall; precision (Prec.); F-
measure (F-m.); geometric mean (G-mean). F-measure is a harmonic mean of
Precision and Recall, assessing the classi�er's ability to maintain a balance be-
tween both metrics. While G-mean evaluates the classi�er's ability to maintain
high recall across all classes, avoiding over�tting to the majority class while
ensuring accurate classi�cation of minority classes.

Since one of the key advantages of the proposed approach is its interpretabil-
ity, Tables 1 and 2 present three decision rules with the highest number of
matches, generated by each of the four algorithms, based on one of the aggre-
gated tables for the Vehicle Silhouettes and Car Evaluation datasets (version
with 5 local tables).

Table 1. Top-matching decision rules generated by each induction method for the
Vehicle Silhouettes dataset (5 local tables).

Method Rules No. of matches
Exh (a6 = 11) ∧ (a9 = 20) ⇒ (class = van) 8

(a1 = 86) ∧ (a9 = 19) ⇒ (class = bus) 7
(a9 = 19) ∧ (a18 = 182) ⇒ (class = bus) 7

Gen (a6 = 11) ∧ (a9 = 20) ⇒ (class = van) 8
(a9 = 19) ∧ (a18 = 182) ⇒ (class = bus) 7
(a1 = 86) ∧ (a9 = 19) ⇒ (class = bus) 7

Cov (a7 = 139) ⇒ (class = van) 5
(a11 = 229) ⇒ (class = saab) 4
(a1 = 80) ⇒ (class = opel) 3

LEM2 (a9 = 20) ∧ (a6 = 11) ⇒ (class = van) 8
(a9 = 19) ∧ (a6 = 9) ⇒ (class = van) 6
(a9 = 19) ∧ (a8 = 46) ∧ (a11 = 169) ⇒ (class = bus) 5

Table 2. Top-matching decision rules generated by each induction method for the Car
Evaluation dataset (5 local tables).

Method Rules No. of matches
Exh (a6 = 0) ⇒ (class = unacc) 160

(a1 = 1) ∧ (a2 = 0) ⇒ (class = unacc) 36
(a3 = 2) ∧ (a4 = 2) ∧ (a5 = 0) ⇒ (class = unacc) 33

Gen (a6 = 0) ⇒ (class = unacc) 160
(a1 = 1) ∧ (a2 = 0) ⇒ (class = unacc) 36
(a3 = 2) ∧ (a4 = 2) ∧ (a5 = 0) ⇒ (class = unacc) 33

Cov (a6 = 0) ⇒ (class = unacc) 160

LEM2 (a4 = 2) ∧ (a3 = 3) ∧ (a6 = 0) ⇒ (class = unacc) 63
(a4 = 4) ∧ (a6 = 0) ⇒ (class = unacc) 45
(a4 = 4) ∧ (a3 = 3) ∧ (a6 = 0) ⇒ (class = unacc) 27
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As shown, all the presented rules contain between one and at most three condi-
tions, which makes them particularly easy to interpret. The number of matches
indicates how many training instances satisfy the given rule. This representation
allows for direct tracing of the decision-making process and identi�cation of the
most in�uential attributes contributing to the classi�cation.

The experiments were carried out according to the following scheme:

� Generate coalitions of local decision tables.
� Generate decision rules for aggregate coalitions' tables using one of four
rough set-based rule induction methods: exhaustive search algorithm, genetic
algorithm, covering algorithm, LEM2 algorithm.

� Classi�cation of objects from the test set, based on decision rules using one
of three di�erent approaches: �rst rule approach, all rules approachweighted
rules approach.

Tables 3 and 4 presents the measures' values for all dispersed datasets. The
table uses the following designations for the tested approaches: exhaustive search
algorithm (Exh), genetic algorithm (Gen), covering algorithm (Cov), LEM2 algo-
rithm (LEM2) and �rst rule approach (FRA), all rules approach (ARA)weighted
rules approach (WRA). During the experiments, di�erent values of the parame-
ter, number of reducts in the genetic algorithm, were tested: 10; 100; 1000. The
tables below show the results obtained for a parameter equal to 100, since for a
parameter equal to 10 the quality was much lower, while for a parameter equal
to 1000 no more improvement was noticed. For Vehicle Silhouettes dataset, the
best result is indicated in blue.

Based on the presented results, it can be concluded that the impact of dif-
ferent decision rule generation methods and voting approaches on classi�cation
quality varies across datasets. Not all datasets respond equally to these varia-
tions, indicating that the e�ectiveness of a particular method depends on the
speci�c characteristics of the data. The Vehicle Silhouettes dataset showed a
wider variation on e�ciency measures across di�erent methods. The Car Eval-
uation dataset exhibited more stable performance across most methods, except
for LEM2-based approaches, which had signi�cantly lower scores.

As can also be seen, the covering algorithm (Cov) with weighted rules ap-
proach (WRA) consistently outperforms other methods across all evaluation
metrics. This suggests that the combination of covering-based rule generation
and weighted voting is particularly e�ective in handling dispersed data clas-
si�cation, ensuring both strong predictive performance and robustness across
di�erent datasets. The exhaustive search (Exh) and genetic algorithm (Gen)
methods also achieve competitive results, often ranking just below Cov_WRA.
While these methods exhibit solid classi�cation accuracy and recall, they tend
to perform slightly worse in precision and balanced accuracy. This indicates that
while they e�ectively capture patterns in the data, they may be more prone to
misclassi�cations in certain classes, particularly in datasets with a more complex
decision boundary.

On the other hand, the LEM2 algorithm proves to be unsuitable for these
datasets, delivering extremely poor performance across all metrics. After a thor-
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Table 3. Results of classi�cation accuracy (Acc), balanced accuracy (BAcc), precision
(Prec.), Recall, F-measure (F-m.), geometric mean (G-mean) for the Vehicle Silhouettes
dataset. LT means local table.

Data, no. of tables Method Acc BAacc Prec. Recall F-m. G-mean
Exh_FRA 0.480 0.480 0.486 0.480 0.478 0.631
Exh_ARA 0.508 0.513 0.518 0.508 0.507 0.654
Exh_WRA 0.516 0.519 0.523 0.516 0.511 0.659
Gen_FRA 0.480 0.480 0.486 0.480 0.478 0.631
Gen_ARA 0.512 0.516 0.521 0.512 0.510 0.657

Vehicle, 5LT Gen_WRA 0.516 0.519 0.523 0.516 0.511 0.659
Cov_FRA 0.504 0.503 0.513 0.504 0.503 0.650
Cov_ARA 0.512 0.518 0.526 0.512 0.511 0.658
Cov_WRA 0.535 0.539 0.545 0.535 0.532 0.675
LEM2_FRA 0.264 0.250 0.070 0.264 0.110 0.441
LEM2_ARA 0.264 0.250 0.070 0.264 0.110 0.441
LEM2_WRA 0.264 0.250 0.070 0.264 0.110 0.441
Exh_FRA 0.449 0.446 0.449 0.449 0.443 0.605
Exh_ARA 0.508 0.505 0.511 0.508 0.505 0.652
Exh_WRA 0.500 0.494 0.499 0.500 0.496 0.645
Gen_FRA 0.449 0.446 0.447 0.449 0.443 0.605
Gen_ARA 0.504 0.501 0.506 0.504 0.500 0.649

Vehicle, 7LT Gen_WRA 0.500 0.494 0.499 0.500 0.495 0.645
Cov_FRA 0.476 0.475 0.480 0.476 0.473 0.628
Cov_ARA 0.528 0.526 0.532 0.528 0.526 0.667
Cov_WRA 0.516 0.512 0.517 0.516 0.513 0.657
LEM2_FRA 0.295 0.278 0.354 0.295 0.197 0.470
LEM2_ARA 0.287 0.270 0.377 0.287 0.178 0.463
LEM2_WRA 0.287 0.270 0.377 0.287 0.178 0.463
Exh_FRA 0.508 0.496 0.526 0.508 0.508 0.648
Exh_ARA 0.484 0.475 0.497 0.484 0.488 0.632
Exh_WRA 0.496 0.485 0.505 0.496 0.497 0.640
Gen_FRA 0.508 0.496 0.526 0.508 0.508 0.648
Gen_ARA 0.484 0.475 0.497 0.484 0.488 0.632

Vehicle, 9LT Gen_WRA 0.496 0.485 0.505 0.496 0.497 0.640
Cov_FRA 0.504 0.492 0.517 0.504 0.505 0.646
Cov_ARA 0.480 0.470 0.490 0.480 0.483 0.629
Cov_WRA 0.492 0.479 0.499 0.492 0.493 0.637
LEM2_FRA 0.256 0.243 0.069 0.256 0.109 0.433
LEM2_ARA 0.256 0.243 0.069 0.256 0.109 0.433
LEM2_WRA 0.256 0.243 0.069 0.256 0.109 0.433
Exh_FRA 0.453 0.452 0.449 0.453 0.449 0.608
Exh_ARA 0.469 0.467 0.468 0.469 0.467 0.620
Exh_WRA 0.484 0.485 0.483 0.484 0.481 0.633
Gen_FRA 0.445 0.445 0.442 0.445 0.441 0.602
Gen_ARA 0.457 0.456 0.458 0.457 0.455 0.611

Vehicle, 11LT Gen_WRA 0.472 0.474 0.472 0.472 0.469 0.624
Cov_FRA 0.539 0.535 0.540 0.539 0.530 0.676
Cov_ARA 0.504 0.503 0.501 0.504 0.500 0.648
Cov_WRA 0.512 0.513 0.513 0.512 0.507 0.655
LEM2_FRA 0.276 0.262 0.233 0.276 0.217 0.452
LEM2_ARA 0.252 0.240 0.215 0.252 0.200 0.430
LEM2_WRA 0.252 0.240 0.215 0.252 0.200 0.430

ough analysis of this issue, it was found that in many cases, the LEM2 algorithm
failed to generate any rules covering certain objects from the test set. Since the
proposed classi�cation approaches rely on the presence of covering decision rules
for object classi�cation, the absence of such rules results in a random assign-
ment of class labels for uncovered objects. Naturally, this signi�cantly degrades
classi�cation quality, leading to poor performance across all evaluation metrics.
This limitation suggests that LEM2 struggles to generalize e�ectively in the dis-
persed data setting, likely due to its sensitivity to inconsistencies and the way
it formulates decision rules. In future work, the coverage requirements will be
relaxed to allow classi�cation based on partial rule coverage. Instead of requir-
ing a rule to fully match an object, classi�cation will be determined even if a
rule partially covers the object. This adjustment aims to increase the number
of classi�ed instances, reducing the number of cases where no matching rule is
found and minimizing the need for random assignment, ultimately improving
classi�cation quality.
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Table 4. Results of classi�cation accuracy (Acc), balanced accuracy (BAcc), precision
(Prec.), Recall, F-measure (F-m.), geometric mean (G-mean) for the Car Evaluation
dataset. LT means local table.

Data, no. of tables Method Acc BAacc Prec. Recall F-m. G-mean
Exh_FRA 0.362 0.365 0.702 0.362 0.445 0.594
Exh_ARA 0.362 0.365 0.702 0.362 0.445 0.594
Exh_WRA 0.362 0.365 0.702 0.362 0.445 0.594
Gen_FRA 0.362 0.365 0.702 0.362 0.445 0.594
Gen_ARA 0.362 0.365 0.702 0.362 0.445 0.594

Car, 5LT Gen_WRA 0.362 0.365 0.702 0.362 0.445 0.594
Cov_FRA 0.362 0.365 0.702 0.362 0.445 0.594
Cov_ARA 0.362 0.365 0.702 0.362 0.445 0.594
Cov_WRA 0.362 0.365 0.702 0.362 0.445 0.594
LEM2_FRA 0.040 0.250 0.002 0.040 0.003 0.197
LEM2_ARA 0.040 0.250 0.002 0.040 0.003 0.197
LEM2_WRA 0.040 0.250 0.002 0.040 0.003 0.197
Exh_FRA 0.362 0.365 0.702 0.362 0.445 0.594
Exh_ARA 0.362 0.365 0.702 0.362 0.445 0.594
Exh_WRA 0.362 0.365 0.702 0.362 0.445 0.594
Gen_FRA 0.362 0.365 0.702 0.362 0.445 0.594
Gen_ARA 0.362 0.365 0.702 0.362 0.445 0.594

Car, 7LT Gen_WRA 0.362 0.365 0.702 0.362 0.445 0.594
Cov_FRA 0.362 0.365 0.702 0.362 0.445 0.594
Cov_ARA 0.362 0.365 0.702 0.362 0.445 0.594
Cov_WRA 0.362 0.365 0.702 0.362 0.445 0.594
LEM2_FRA 0.040 0.250 0.002 0.040 0.003 0.197
LEM2_ARA 0.040 0.250 0.002 0.040 0.003 0.197
LEM2_WRA 0.040 0.250 0.002 0.040 0.003 0.197
Exh_FRA 0.699 0.250 0.489 0.699 0.576 0.459
Exh_ARA 0.699 0.250 0.489 0.699 0.576 0.459
Exh_WRA 0.699 0.250 0.489 0.699 0.576 0.459
Gen_FRA 0.699 0.250 0.489 0.699 0.576 0.459
Gen_ARA 0.699 0.250 0.489 0.699 0.576 0.459

Car, 9LT Gen_WRA 0.699 0.250 0.489 0.699 0.576 0.459
Cov_FRA 0.699 0.250 0.489 0.699 0.576 0.459
Cov_ARA 0.699 0.250 0.489 0.699 0.576 0.459
Cov_WRA 0.699 0.250 0.489 0.699 0.576 0.459
LEM2_FRA 0.699 0.250 0.489 0.699 0.576 0.459
LEM2_ARA 0.699 0.250 0.489 0.699 0.576 0.459
LEM2_WRA 0.699 0.250 0.489 0.699 0.576 0.459
Exh_FRA 0.699 0.250 0.489 0.699 0.576 0.459
Exh_ARA 0.699 0.250 0.489 0.699 0.576 0.459
Exh_WRA 0.699 0.250 0.489 0.699 0.576 0.459
Gen_FRA 0.699 0.250 0.489 0.699 0.576 0.459
Gen_ARA 0.699 0.250 0.489 0.699 0.576 0.459

Car, 11LT Gen_WRA 0.699 0.250 0.489 0.699 0.576 0.459
Cov_FRA 0.699 0.250 0.489 0.699 0.576 0.459
Cov_ARA 0.699 0.250 0.489 0.699 0.576 0.459
Cov_WRA 0.699 0.250 0.489 0.699 0.576 0.459
LEM2_FRA 0.699 0.250 0.489 0.699 0.576 0.459
LEM2_ARA 0.699 0.250 0.489 0.699 0.576 0.459
LEM2_WRA 0.699 0.250 0.489 0.699 0.576 0.459

To verify the signi�cance of di�erences in the obtained results, statistical tests
were conducted. The F-measure values were grouped based on the rule genera-
tion method and the �nal decision-making approach, forming twelve dependent
groups, each containing eight observations. The Friedman test con�rmed the
presence of statistically signi�cant di�erences in the F-measure results across
the evaluated approaches, with χ2(7, 11) = 47, 89, p = 0.000001. Comparative
box-whiskers charts for the results with three values of stop criterion were created
(Fig. 2). Based on the charts, we can see that exhaustive search (Exh), genetic
algorithm (Gen), and covering algorithm (Cov) exhibit similar and stable per-
formance, with medians around 0.5. LEM2-based methods perform signi�cantly
worse, with medians below 0.3, indicating poor classi�cation performance. Exh,
Gen, and Cov methods show compact interquartile ranges, meaning they are
consistent in performance with relatively few variations. LEM2-based methods
exhibit the widest IQR and range, showing high variability in classi�cation qual-
ity. Weighted rules approach (WRA) tends to produce slightly better results than
�rst rule approach (FRA) and all rules approach (ARA) across Exh, Gen, and
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Cov. In conclusion, we can say that the WRA method generally provides the
most consistent improvements in classi�cation performance.

Fig. 2. Comparison of F-measure obtained for the proposed approaches.

4 Conclusions

This study introduced a coalition-based classi�cation framework that integrates
con�ict analysis and rule-based learning to address the challenges of classifying
dispersed data. By forming coalitions based on consistency across data sources
and employing four rule induction methods � exhaustive search, genetic algo-
rithms, covering algorithms, and LEM2 � alongside three decision-making strate-
gies (FRA, ARA, WRA), the proposed approach e�ectively balances classi�ca-
tion performance and interpretability.

Experimental results on the Vehicle Silhouettes and Car Evaluation datasets
demonstrated that the covering algorithm with weighted rules approach consis-
tently outperformed other methods, achieving the highest accuracy, balanced
accuracy, precision, recall, F-measure, and G-mean. In contrast, the LEM2 algo-
rithm performed poorly, often failing to classify objects due to missing covering
rules. Statistical validation using the Friedman test con�rmed signi�cant di�er-
ences between methods, reinforcing the importance of selecting appropriate rule
induction and decision-making approaches for dispersed data classi�cation.

The proposed framework has potential applications in �elds such as medicine,
where it can support the integration of diagnostic results collected from var-
ious healthcare facilities; �nance, where it can assist in analyzing client data
originating from distributed branches; and expert systems within decentralized
organizations, where interpretability and decision transparency are of key im-
portance. The coalition-based structure enables the preservation of local data
context, which increases trust in classi�cation outcomes.

A limitation of the study lies in the sensitivity of the LEM2 algorithm to the
absence of rules covering the majority of test objects, which leads to random
classi�cations and reduced result quality. Furthermore, scaling the approach to
datasets with a very large number of sources or features may introduce compu-
tational challenges and reduce the e�ectiveness of coalition formation.
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Future research will focus on relaxing rule coverage constraints to reduce mis-
classi�cation rates and further improve classi�cation robustness in highly frag-
mented datasets. Additionally, extending this approach to more diverse datasets
and real-world applications will provide further validation of its e�ectiveness.
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