
Assimilation of Data for Dynamic Digital Twins

by Learning Covariance Information

T. Ça§lar1, I. Alt�nta³1, and R.A. de Callafon2

1 San Diego Supercomputer Center
Universiy of California, San Diego
{tcaglar,altintas}@sdsc.edu

2 Dept. of Mechanical and Aerospace Enrgineering
Universiy of California, San Diego

callafon@ucsd.edu

Abstract. When computations of the dynamic behavior of a digital
twin includes the recursion of an internal state, data assimilation can
be used to adjust the numerical values of the state. The optimal linear
adjustment of this state on the basis of observations and simulations is
known as a Kalman �lter, in which an optimal linear gain is computed
based on covariance information to minimize the variance on the state
error. This paper illustrates that such covariance information can be
learned and used to �nd an optimal trade-o� between the observations
and simulations for state adjustment. Although the concept of learning
covariance information is well understood by the Ensemble Kalman Filter
(EnKF), this paper emphasizes the underlying approach how to learn
covariance information with the purpose of convergence and minimal
variance of the state error. The concept is illustrated for a dynamic digital
twins of a linear oscillatory mechanical system and a non-linear dynamic
wild�re progression. The examples illustrate that the results on data
assimilation heavily depends on the quality of the covariance information.

Keywords: Data Assimilation · Ensemble Kalman Filter · Digital Twin.

1 Introduction

Combining observations from sensors with a digital dynamic simulation model
enables the possibility to improve the quality of the data produced by a digital
twin as a dynamic replica of a physical process. Although the original concept
of a digital twin has been acknowledged almost a decade ago in manufacturing
[8�10], the perceived bene�ts and e�ectiveness in monitoring, simulation, fore-
casting and optimization often require more detailed analysis [11]. Recognizing
when computations in a digital twin are used to replicate dynamic and time-
dependent behavior, such a dynamic digital twin can be combined with data
assimilation techniques with very recent applications in power and mechanical
systems modeling [2, 4]. In most of these applications it has been recognized that
the idea of data assimilation can be formalized with the concept of a Kalman
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�lter or an Ensemble Kalman �lter [5], traditionally used in atmospheric data
assimilation [14] or wild�re data assimilation [3, 12, 13] applications.

The connection between a (dynamic) digital twin, data assimilation and
Kalman �ltering has been recognized in the literature [6]. Especially when the
dynamic behavior of a digital twin includes the recursion of an internal state,
data assimilation with a Kalman �lter can be used to adjust the numerical values
of the state. Unfortunately, most of the Kalman �lter applications involving a
digital twin are formulated as conditional probability optimization problems [6].
Although theoretically correct, application to a dynamic digital twin in which
states are updated at discrete-time instances becomes not immediately clear.
Furthermore, it is insightful to connect classical and explicit solutions of the
Kalman gain used in the Kalman �lter [1] to dynamic digital twins that have a
simple linear dynamic behavior. In addition, it is worthwhile to provide insight
on how the Kalman gain can actually be learned or estimated from the actual
data obtained from sensor observations and discrete-time simulations provided
by the dynamic digital twin.

This paper gives a short review on how the Kalman gain for the Kalman
�lter is computed for a dynamic digital twin with a Linear Time Invariant (LTI)
dynamic behavior. Subsequently, it is shown how the Kalman gain can be com-
puted using the combination of two covariance matrices that can be learned from
the variance of the output and the state produced by a digital twin (forward)
simulation. It is also indicated how the covariance matrices can be learned by
performing multiple simulations, called ensembles, proving a direct connection
to the ensemble Kalman �lter. The practical application, and computational
requirements of combining data assimilation with a digital twin by either com-
puting or learning covariance information is illustrated for two examples. The
�rst example is an oscillatory linear mechanical system for which reliable posi-
tion and velocity information must be obtained. The second example involves
a dynamic digital twin that can simulate wild�re behavior for which covariance
information is learned via ensembles. The examples illustrate that a signi�cant
improvement in the quality of the data assimilation of the dynamic digital twin
can be achieved, provided accurate and reliable covariance information can be
estimated from the data.

2 Problem Statement

For formulating the concept of discrete-time state reconstruction, it is assumed
that a recursive progression of a state xk as function of the discrete-time index
k is given by a known Non-Linear (NL) and possibly time varying discrete-time
dynamic system

xk+1 = fk(xk, uk) + wk, x0 = x(0)
yk = hk(xk) + vk

(1)

where uk ∈ Rm is a known input, wk ∈ Rm is an unknown state noise, yk ∈ Rp

is a measured output, vk ∈ Rp is an unknown measurement noise and where the
initial condition x0 may be assumed to be unknown. Furthermore, for notational
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simplicity it is assumed that the dimension n of xk ∈ Rn is known and xk+1 ∈ Rn

has the same dimension to allow for recursion of the state xk through (1).

The unknown initial condition x0 ∈ Rn and the notion of noise wk on the
state equation indicates that progression of the state from xk to xk+1 is subjected
to uncertainty. The measurements yk are not perfect either, as they are subjected
to measurement noise vk. Without loss of generality, we may assume a �rst order
moment zero-mean E{wk} = 0, E{vk} = 0 that are uncorrelated between time
instance k and k + 1 (e.g. white noise) with a possible non-stationary second
moments modeled by the cross-covariance

E

{[
wk

vk

] [
wT

k vTk
]}

=

[
Wk Sk

ST
k Vk

]
or

E{wkw
T
k } = Wk

E{vkvTk } = Vk
E{wkv

T
k } = Sk

(2)

with time-varying auto-covariances Wk, Vk and cross-covariance matrix Sk.

For data assimilation, the objective is obtain an optimal estimate x̂k+1 of the
actual state xk+1 using the observation yk and the digital twin (1) driven by the
input uk and a (previous) state estimate x̂k. Optimality of the estimate x̂k+1

is de�ned via by ensuring that the stochastic (possibly non-stationary) state
estimation error3 ek+1 = xk+1 − x̂k+1 or equivalently

ek = xk − x̂k (3)

for any value of k, satis�es two important properties:

� The �rst property is (global) convergence of the (possibly non-stationary)
state estimation error

lim
k→∞

E{ek} = 0

as the time index k progresses. It should be mentioned that an estimate
x̂0 of the initial condition x0 can be used to possibly shorten the time of
convergence to the value of kε where

kε = min
k

E{ek} ≤ ε

instead of setting x̂0 simply to x̂0 = 0.

� The second property is (global) optimality of the state estimation error by
requiring a minimization of (the trace of) the error covariance matrix

Pk = E{ekeTk }

for each value of k.

3 Also often de�ned as the adjusted state error or Kalman state error as this
pertains to the error on a reconstructed state x̂k created by either a state estimation,
state adjustment or Kalman �lter.
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It can be seen that with a desired mean value E{ek} = 0 as k → ∞, only
the second moment (e.g. variance) on the state estimation error ek is used to
de�ne the state estimation to be optimal. A �lter that minimizes the variance
of the state estimation error ek is also known as a Kalman �lter. Hence, an
optimal state estimation is not necessarily the fastest and visa-versa, but (global)
convergence of the state estimation error is required to allow optimality to be
de�ned only by the second moment of the state estimation error.

3 LTI discrete-time system with stationary noise

3.1 Luenberger Observer

To start the explanation of learning covariance information, it is worthwhile
to �rst analyze the most simple case of a dynamic digital twin: a Linear Time-
Invariant (LTI) discrete-time system with stationary state and observation noise.
For this simple case, an elegant solution to the optimal state estimation problem
is given by a Luenberger observer with an optimal (Kalman) observer gain. To
explain this elegant solution, consider a LTI discrete-time system given by4

xk+1 = Axk +Buk + wk, x0 = x(0)
yk = Cxk + vk

(4)

where fk(xk, uk) = Axk + Buk + wk and hk(xk, vk) = Cxk + vk compared to
(1). Stationary white noises vk and wk in (4) are represented by

E

{[
wk

vk

] [
wT

k vTk
]}

=

[
W S
ST V

]
(5)

with �xed noise auto-covariance matrices W , V and cross-covariance matrix S.
With the LTI discrete-time dynamics (4) and covariance information (5), the
optimal estimation x̂k+1 of the state xk+1 is given by a Luenberger observer{

x̂k+1 = Ax̂k +Buk + L(yk − ŷk), x̂0 = x̂(0)
ŷk = Cx̂k

(6)

where the �xed observer or Luenberger gain L is optimal when set equal to the
Kalman gain [1] given by

L = (APCT + S)(CPCT + V )−1 (7)

in which the matrix P is the solution to a Discrete Algebraic Ricatti Equation
(DARE)

P = APAT − (APCT + S)(CPCT + V )−1(APCT + S)T +W (8)

4 The analysis is done for a LTI system, but can easily include a non-linear input b(uk)
instead of Buk, as either a linear or non-linear input contribution can be accounted
for in a Luenberger observer.
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that represents the �xed error covariance matrix

P = E{ek+1e
T
k+1} = E{ekeTk } (9)

of the state estimation error, for which the trace is minimized by the choice of
the Kalman gain L.

The derivation of the result in (7) is done by �rst computing P in (9) as a
function of L, using the Luenberger observer given in (6). This leads to a discrete-
time Lyapunov equation for which completing the squares allows the selection
of a matrix gain L that minimizes the trace of P and leads to the Kalman gain
L in (7). Substitution of L in (7) back into the discrete-time Lyapunov equation
leads to the DARE in (8) to compute the optimal error covariance matrix P .

3.2 State estimation as a discrete-time �lter

The Luenberger observer can also be written as

x̂k+1 = (A− LC)x̂k +Buk + Lyk, x̂0 = x̂(0) (10)

clearly showing a discrete-time �lter that uses the matrices A, B, C of the
discrete-time LTI system in (4), the optimal observer (Kalman) gain L in (7)
and both uk and yk as inputs. The �lter interpretation in (10) is often adopted
for the actual implementation of a LTI discrete-time Kalman �lter.

Furthermore, the LTI discrete-time dynamics of the state estimation error ek
in (3) is described by

êk+1 = (A− LC)êk + wk − Lvk, ê0 = x(0)− x̂(0) (11)

clearly showing the need for all eigenvalues |λi(A− LC)| < 1 to ensure

lim
k→∞

E{ek} = 0 (12)

It is worth mentioning that if the pair (A,C) is observable, a so-called (stabiliz-
ing) solution P to (8) can be computed for which all eigenvalues |λi(A−LC)| < 1
with L given in (7). Clearly, observability of a LTI discrete-time system is a basic
property needed to be able to perform state estimation that ensures (12). As a
�nal remark, it is worth recognizing that the Kalman gain L in (7) is chosen
as a trade-o� to minimize the covariance P = E{ekeTk }, but does not neces-
sarily places all eigenvalues of λi(A − LC) at 0 to ensure the fastest discrete-
time convergence of the state estimation error ek. Only if the covariance matrix
V = E{vkvTk } of the output noise vk is close to zero, a large value of L may be
chosen to strongly rely on the output measurements yk for fast convergence.

3.3 State estimation as a forward model with state adjustment

Yet another way of writing the Luenberger observer is using the concept of a
forward model given by {

ẑk+1 = Ax̂k +Buk
ŷk = Cx̂k

(13)
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that simply creates a �open-loop� or �forward� simulated state ẑk+1 and the
simulated output ŷk, similar to (6), as a function of a previously estimated state
x̂k and input uk. With the concept of the forward model in (13), the Luenberger
observer in (6) can be written as a recursive procedure

forward model :

{
ẑk+1 = Ax̂k +Buk, x̂0 = x̂(0)
ŷk = Cx̂k

state adjustment :
{
x̂k+1 = ẑk+1 + L(yk − ŷk)

(14)

that shows the adjustment of the open-loop simulated or forward state ẑk+1

to an adjusted state x̂k+1. The adjusted state x̂k+1 is equivalent to the state
estimate x̂k+1 in (6) in which the Kalman gain L in (7) and the output error
yk − ŷk between the measurement yk and the simulated output ŷk is used. Since
the covariance P of the state estimation error ek remains the same for a LTI
system with stationary noise, there is no need for an update of the covariance P
over time. The two-step procedure in (14) is often adopted if the forward model
is a NL discrete-time system similar to (1), not allowing the state estimation
to be written as a single LTI discrete-time �lter operation as in (10). In case of
an LTI system with unknown time-varying noise covariance matrices as in (2),
recursive update of covariance matrices may also be needed.

3.4 Kalman gain in terms of covariance matrices

The computation of the Kalman gain L in (7) requires the explicit computation
of the symmetric and positive de�nite matrix P to the DARE in (8). Knowing
that P = E{ekeTk }, where ek is de�ned as the state estimation error ek in (3),
one may wonder if the Kalman gain can be interpreted in terms of auto- and
cross-covariance matrices of error signals. This interpretation would unleash the
possibility to compute the Kalman gain directly from covariance information that
can be learned from data. To elaborate on this interpretation of the Kalman gain
in light of the two-step procedure given in (14), the following error signals are
de�ned.

Following (14), the �rst error signal is simply the output error

ey,k = yk − ŷk (15)

as seen in the Luenberger observer (6) or in the state adjustment step of (14).
The second error signal is the forward state error or unadjusted state error

de�ned by

ez,k+1 = xk+1 − ẑk+1 (16)

that is di�erent from the state estimation error ek+1 as de�ned previously in
(3). It should be noted that the forward simulated state ẑk+1 is only given by
the forward simulation ẑk+1 = Ax̂k +Buk as part of the forward model in (14),
so the forward state error or unadjusted state error ez,k+1 in (16) has not been
adjusted with any measurements or Kalman gain L.
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Assimilation of Data for Dynamic Digital Twins 7

With the explicit de�nition of the above mentioned error signals, the Kalman
gain can be interpreted as in terms of auto- and cross-covariance matrices of error
signals. With the output error signal ey,k in (15) it is clear that

ey,k = Cxk + vk − Cx̂k
= Cek + vk

so that an auto-correlation of ey,k leads to

Reyey = E{ey,keTy,k} = CPCT + V (17)

that is part of the de�nition of the Kalman gain L in (7). With the de�nition of
the forward state error signal ez,k+1 in (16) it is clear that

ez,k+1 = Axk +Buk + wk −Ax̂k −Buk
= Aek + wk

so that a cross-correlation between the forward state error ez,k+1 and the
output error ey,k leads to

Rezey = E{ez,k+1e
T
y,k} = APCT + S (18)

that is also part of the de�nition of the Kalman gain L in (7). As a result, we
can rewrite (7) as

L = RezeyR
−1
eyey , with Rezey = E{ez,k+1e

T
y,k} and Reyey = E{ey,keTy,k} (19)

and ey,k indicating the de�ned output error in (15) and ez,k+1 indicating the
de�ned forward state error or unadjusted state error ez,k+1 in (16).

The above result shows that the Kalman gain can be interpreted as the prod-
uct of the cross-correlation matrix Rezey of the forward state error ez,k+1 in (16)
at time k+1 and the output error ey,k in (15) at time k with the auto-correlation
matrix Reyey of the same output error ey,k in (15) at time k. This interpretation
is useful when either the covariance matrix P in (8) cannot be computed and/or
the linear discrete-time dynamics characterized by the matrices A, B and C is
not known. When the discrete-time dynamics is non-linear, a Kalman gain L to
adjust the open-loop or forward simulated state ẑk+1 to the adjusted state x̂k+1

can be computed by estimating the auto- and cross-correlations based on (a �-
nite number of) ensembles of the error signals ey,k and ez,k+1. This observation
is the basis of the ensemble Kalman Filter (EnKF) and the principle of learning
covarinace information via ensembles.

4 Ensemble Kalman Filter

Let us go back to the original problem formulation of discrete-time state re-
construction for the NL discrete-time system in (1). The interpretation of the
Luenberger observer as a two-step procedure in (14) and the representation of
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the Kalman gain as a product of an cross- and an auto-covariance matrix in
(19) allows us to formulate state reconstruction for (1). Although this is a viable
extension of the Luenberger observer with a Luenberger gain L equivalent to the
(linear) Kalman gain, information on the cross- and an auto-covariance matrices
now has to be estimated from ensembles of the forward state error ez,k+1 at time
k + 1 in (16) and the output error ey,k at time k in (15).

Ensembles are needed, as no explicit computations of the cross- and an auto-
covariance matrices are possible due to the non-linearity of (1) and replicated in a
forward model. Ensembles to create an estimate R̄ezey for Rezey = E{ez,k+1e

T
y,k}

and an estimate R̄eyey for Reyey = E{ey,keTy,k} can be done by making the follow-
ing two basic assumptions on the probability distribution of the state estimate
x̂k, the state noise wk and the output noise vk:

1. Assume the given (previous) state x̂k at time k has an uncertainty character-
ized by a mean value x̄k and a variance Xk according to a Normal probability
distribution

x̂k ∼ N (x̄k, Xk), x̄k = E{x̂k} and Xk = E{(x̂k − x̄k)(x̂k − x̄k)T }

2. Assume the zero mean valued state noise wk and output noise vk also have
a Normal probability distribution with a non-stationary variance

E

{[
wk

vk

] [
wT

k vTk
]}

=

[
Wk Sk

ST
k Vk

]
or

E{wkw
T
k } = Wk

E{vkvTk } = Vk
E{wkv

T
k } = Sk

as given earlier in (2).

Under these assumption, N ensembles of x̂jk, v
j
k and wj

k for j = 1, 2, . . . , N
at time instance k can be created by taking samples from the above probability
distributions. Based on these ensembles, the Ensemble Kalman �lter (EnKF)
can be formulated again as a recursive Luenberger observer similar to (14).
However, a Kalman gain L̄ is now computed as a product of estimated cross-
covariance matrix R̄ezey and the inverse of an estimated auto-covariance matrix
R̄eyey . The state adjustment is done from an estimated mean value z̄k+1 of the

open-loop/forward simulated state ensembles ẑjk+1 and an estimated mean value

ȳk of the output ensembles ŷjk over j = 1, 2, . . . , N . In summary, the EnKF can
be summarized by the recursive steps:

forward model :

{
ẑjk+1 = fk(x̂jk, uk)

ŷjk = hk(x̂jk)
for j = 1, 2, . . . , N

state adjustment :


x̄k+1 = z̄k+1 + L̄(yk − ȳk)

z̄k+1 = 1
N

∑N
j=1 ẑ

j
k+1

ȳk = 1
N

∑N
j=1 ŷ

j
k

L̄ = R̄ezey R̄
−1
eyey

covariance update :

{
Xk+1 = 1

N (x̂jk+1 − x̄k+1)(x̂jk+1 − x̄k+1)T

x̂jk+1 = ẑjk+1 + L̄(yk − ŷjk) for j = 1, 2, . . . , N

(20)
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in which the subsequent computational steps to in the state adjustment are
explained in the following.

1. With the N ensembles of the open-loop/forward state ẑjk+1 and output ŷjk
obtained by the forward model in (20), one can learn or estimate the mean
value z̄k+1 of the forward state ẑk+1 = E{ẑjk+1} via

z̄k+1 =
1

N

N∑
j=1

ẑjk+1

In addition, the mean value ȳk of the output ŷk = E{ŷjk} can be estimated
via

ȳk =
1

N

N∑
j=1

ŷjk

With the estimated mean values, we obtain N ensembles of the forward state
error and output error signals

ejz,k+1 = ẑjk+1 − z̄k+1 + wj
k

ejy,k = ŷjk − ȳk + vjk
(21)

in which also the noise ensembles wj
k and v

j
k for j = 1, 2, , . . . , N are included.

2. With the N ensembles of the forward state error ejz,k+1 and the output error

ejy,k for j = 1, 2, . . . , N , an estimate R̄ezey of the cross-covariance matrix

Rezey = E{ez,k+1e
T
y,k} can be learned via

R̄ezey =
1

N

N∑
j=1

ejz,k+1e
j
y,k

T
(22)

and an estimate R̄eyey of the auto-covariance matrix Reyey = E{ey,keTy,k}
can be learned via

R̄eyey =
1

N

N∑
j=1

ejy,ke
j
y,k

T
(23)

As indicated in (20), the computed estimates R̄ezey and R̄eyey of respectively
the cross-covarariance Rezey and auto-covariance Reyey can now be used to com-
pute an estimate L̄ of the Kalman gain L via L̄ = R̄ezey R̄

−1
eyey to facilitate the

state adjustment x̄k+1 = z̄k+1 + L̄(yk − ȳk). It is worth noting that N ≥ p,
where p is the number of outputs or the length of yk and ŷk, to ensure R̄eyey is
invertible. In general, it is recommended that N ≥ 10p to provide more accurate
auto and cross-covariance estimates. With the state estimation error now de�ned
by ēk+1 = xk+1 − x̄k+1, it is also worth noting that the resulting Kalman gain
L̄ in (20) does not necessarily guarantee that limk→∞ E{ēk} = 0, due to the
non-linearity of (1) and replicated in the forward model of (20). So care must
be given to relatively large Kalman gain L̄ that could possible destabilize or
increase the state estimation error ēk+1.
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5 Illustration for oscillatory mechanical system

To illustrate the performance of data assimilation by learning covariance infor-
mation, we �rst consider a 1 degree of freedom (DOF) single mass/spring/damper
mechanical system. The reason for choosing this simple example is due to the
clear interpretation of the states of the resulting second order dynamical system:
position and velocity. The dynamic digital twin is a LTI 10Hz sampled Zero Or-
der Hold discrete-time model and for a mass m = 5 kg, spring k = 2.5 N/m and
a damper d = 0.5 Ns/m, the LTI system is given by the state-space model{

xk+1 = Axk +Bũk, x0 = x(0)
yk = Cxk +Dũk + nk

where ũk = uk +mk and

A =

[
0.9975 0.0994
−0.0497 0.9876

]
, B =

[
0.0010
0.0199

]
,

C =

[
1 0
−0.5 −0.1

]
, D =

[
0

0.2

] (24)

in which both the position and acceleration are chosen as observation yk. The
independent noise signal mk with a covariance Λm indicates a noise present on
the applied known input uk and the nk with a covariance Λn is a measurement
noise on the observations yk. This can be written in the standard form of (4)
with wk = Bmk and vk = nk+Dmk with the following noise covariance matrices

W = E{w(k)w(k)T } = BΛmB
T ≈ 1

1000

[
0.0050 0.0990
0.0990 1.9768

]
V = E{v(k)v(k)T } = DΛmD

T + Λn ≈ 1
1000

[
100 0
0 300

]
S = E{w(k)v(k)T } = BΛmD

T ≈ 1
1000

[
0 0.9963
0 19.8838

] (25)

Step-wise changes in the known force input uk leads to the measured position
and acceleration measurement shown in Figure 1. It can be observed that the
measurement are fairly noisy and the objective is to use both input and output
measurements to produce an estimate of the position and velocity.
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Fig. 1. Noisy force input and position, acceleration output measurements to be used
for data assimilation of position and velocity of a 1DOF oscillatory mechanical system.

Data assimilation to obtain the position and velocity can be as simple as
taking the position measurement as-is, and either digitally di�erentiating the
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position measurement or digitally integrating the acceleration measurements.
Unfortunately, either choices will be far from optimal, especially if the observa-
tions yk are subjected to noise, as illustrated in Figure 2 as a reference.
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Fig. 2. Noise performance of data assimilation for a 1DOF mechanical system to esti-
mate velocity based on digital di�erentiation of position measurements.

Alternatively, the use of the correct Kalman gain L optimizes the procedure
of assimilating the position and acceleration data into a position and velocity
update. The results are summarized in Figure 3 for comparison with Figure 2.
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Fig. 3. Noise performance of data assimilation for a 1DOF mechanical system to esti-
mate position and velocity based on noisy input/output measurements by learning of
covariance matrices and adjusting the Kalman gain.

With the full information on the state matrices in (24) and the noise covari-
ance matrices in (25) of the linear dynamical digital twin, the optimal Kalman
gain L in (7) can be directly computed by solving P for the DARE in (8). Alter-
natively, the procedure of creating ensembles and learning the auto-covariance
information Reyey in (17) and cross-covariance Rezey in (18) can be used to
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compute the same Kalman gain L in (19). It can be observed from Figure 3
that the state error converges (on average) to the actual position and velocity
measurement. Although the convergence is in the order of several seconds, the
variance on the position and velocity estimation has been signi�cantly reduced
compared to the results shown earlier in Figure 2. This trade-o� between state
error convergence and reduction of the variance is due to the ratio between the
covariance matrices Reyey and Rezey learned from data that eventually deter-
mines the Kalman gain L in (19).

6 Illustration on wild�re data

The approach of adjusting the internal state for data assimilation can also be
applied to a more complex and non-linear dynamic digital twin that simulates
the dynamic growth of a wild �re. The farsite wild �re simulation tool [7] can
be considered to be a (non-linear) time varying discrete-time dynamic system
(1) with a recursive state of real valued eastern- and northern-coordinates of a
�re perimeter xk at time step k. Forward simulation of a �re perimeter xk+1 at
time step k+1 is done by using information on surface fuels, topography and fuel
adjustment factors, collectively combined in an environmental parameter depen-
dent function fk(·) at time step k. Important inputs uk at time step k include
wind speed and wind direction. Dynamically, the farsite wild �re simulation
tool is a non-linear discrete-time integrator that can be started from an initial
�re perimeter x0.
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Fig. 4. Unadjusted simulation of the Maria 2019 wild �re (blue lines) compared to the
measured �re perimeter observations (black lines).

Subsequent �re perimeters xk can be computed by the implicit computation
of the environmental parameter dependent function fk(·), along with wind data
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uk. As been demonstrated in earlier work, running a digital twin of a wild�re
simply open-loop over multiple subsequent time indexes k + 1, k + 2, . . . with-
out adjustment based on �re perimeter measurements yk+1,k+2 , . . . may lead to
compounding errors in the state estimates x̂k+1, x̂k+2, . . .. Such compounding
errors will lead to divergence of the predicted wild�re perimeters ŷk+1, ŷk+2, . . .
as the time index progresses. This is evident from a simulation of the 2019 Maria
�re depicted in Figure 4. In Figure 4 a comparison is made between the progres-
sion of �true� measured/noisy �re perimeters (black lines) and an unadjusted
digital twin simulation of the same �re, starting at a di�erent initial �re perime-
ter x0. It can be observed that the unadjusted �re simulations diverge from the
measured/noisy observations.

The solution to the problem of divergence is well understood and can be
solved by assimilating the observations yk+1, yk+2, . . . into the prediction of the
state estimates x̂k+1, x̂k+2, . . .. In essence, this is done by learning the covariance
matrices Rezey , Reyey via the estimates given in (22), (23) via N ensembles of
the forward state error and the output error in (21) and adjusting the state x̂k+1

with the Kalman gain in (19). Again with the correct estimation of the covariance
information, the divergence of the wild�re simulation can be signi�cantly reduced
as illustrated in Figure 5 for comparison with Figure 4.
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Fig. 5. Hourly sdjusted data assimilation of the Maria 2019 wild �re (red lines) com-
pared to the measured �re perimeter observations (black lines).

A few important recommendations on the learning of the covariance matrices
R̄ezey and Rezey in (20) should be highlighted here to ensure the quality of the
data assimilation results for a wild�re similar to Figure 5.

� For digital twins of wild�res where the dimension or the orientation of the
vertices of the forward simulated ensembles ŷjk are di�erent from the dimen-
sion of the observation yk, an interpolation and realignment of the observa-
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tion yk is needed to be able to compute the average ȳk, the cross covariance
estimate R̄eyey and the state adjustment in (20).

� For digital twins of wild�res where the dimension or the orientation of the
vertices of the forward simulation ensembles ẑjk+1 are di�erent, an interpola-

tion and realignment of the ensembles ẑjk+1 is needed to be able to compute

the average z̄k+1 and the cross covariance estimate R̄exey in (20).
� Last, but not least, to ensure that the estimate R̄eyey is invertible to com-

pute the Kalman gain L̄ in (20), the number of ensembles N must satisfy
N ≥ p, where p is the number of data points in the measured (and possibly
interpolated) �re perimeter yk and forward simulated �re perimeter ŷk. In
general, it is recommended that N ≥ 10p to provide more accurate auto and
cross-covariance estimates, otherwise an incorrect Kalman gain L̄ is obtained
at each data assimilation step.

The �rst two observations are important to ensure the Kalman gain L̄ and
the resulting state adjustment x̄k+1 = z̄k+1 + L̄(yk − ȳk) in (20) are computed
correctly. The latter condition imposes severe restriction on the number of points
(resolution) p of the �re perimeter in case the computational resource or compu-

tational time for data assimilation is limited. For real-time predictions, reduction
of the resolution of the data assimilated wild�re perimeter may be needed. The
reduced resolution can also be observed in Figure 5 to allow for computations
to be completed within the hourly time frames of each data assimilation step.

7 Conclusions

The quality of the data produced by a dynamic digital twin as a dynamical
replica of a physical process can be signi�cantly improved by adjusting the open-
loop or forward simulations of the digital twin with observations from the physi-
cal process. The idea of adjustment of the simulation can be formalized with the
concept of data assimilation, that is founded upon an adjustment of the internal
state of the dynamic digital twin using a Kalman gain. For that purpose, the
dynamic behavior of a digital twin must includes the recursion of an internal
state that can be adjusted using the computed Kalman gain in a Kalman �lter.

For linear dynamic digital twins, the Kalman gain can be computed explic-
itly with information on the linear dynamic behavior and covariance informa-
tion on the state and observation noise. Without such information, the Kalman
gain can be computed as a combination of two covariance matrices that can be
learned from the covariance information of the output vector and the state vector
produced by the digital twin (forward) simulation. The covariance information
can be learned by performing ensemble simulations, each used to estimate �rst
moment (average) and second moment (variance). Ensembles may be compu-
tationally demanding and therefore the size of the output vector may have to
be limited. Illustration of combining data assimilation with a digital twin of a
mechanical system and a wild�re simulation show promising results, indicating
the broad application of the approach.
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