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Abstract. Automated machine learning (ML) can streamline the char-
acterisation and management of chronic airway conditions. With the
advent of quantitative CT (qCT) imaging allowing precise extraction
of structural features from scans, assessment of airway obstruction lev-
els could be automated to compliment traditional testing. This "fea-
ture known" approach has the added potential benefit of identifying
key structure-function relationships through explainability measures. We
therefore aimed to develop inverse models to estimate spirometry pa-
rameters from high-dimensional quantitative data using these structural
metrics as constraints. With the ATLANTIS (NCT02123667) dataset,
this paper experiments with a selection of ML methods, specifically k-
nearest neighbours (kNN), random forest (RF) and support vector ma-
chine (SVM), to predict spirometry values (Forced Expiratory Volume
(FEV1), Forced Vital Capacity (FVC) and FEV1/FVC). The dynamic
ratio FEV1/FVC was predicted better by all models than FEV1 or FVC.
Results show effective counteraction to high-dimensionality through iter-
ative feature refinement guided by SHapley Additive exPlanations (SHAP),
and to limited training data through dynamic Gaussian noise (DGN).
Diagnostic-grade prediction accuracy was achieved with DGN SHAP se-
quential feature selection (SFS)-kNN at 1.64% MRE with 37/76 fea-
tures. A selection of typical variables including expiratory tissue density
and lung volume, vasculature and airway geometries were seen to be
important for prediction. This approach therefore can not only predict
pulmonary function, but also extract useful structural information in a
dynamic airway system through linking back to personalised abnormal-
ities.

Keywords: Machine Learning - SHAP - Quantitative CT - Airway Dis-
eases
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SHAP-prioritised ML for Spirometry 3

1 Background & Motivation

Asthma is a common chronic airway disorder with more than 300 million people
estimated to have been diagnosed worldwide [1]. In the UK, it affects approxi-
mately 12% of the population, resulting in an annual public healthcare burden of
£1.9 billion, in part through the ~6 million related primary care consultations
and ~100,000 hospital admissions [2]. According to the ‘Global Initiative for
Asthma’ (GINA), it can be defined as a heterogeneous condition characterised
by chronic inflammation and variable airway obstruction [1]. Patients are bur-
dened with symptoms such as wheezing, shortness of breath, chest tightness and
a cough, with these arising in episodes over time known as exacerbations [1, 3].
This results in impaired lung function and accelerated deterioration thereof.

Several challenges persist around asthma and the personalised management of
it, including accurate characterisation of underlying structural and functional
abnormalities. Currently this is done through a series of clinical tests, question-
naires and standard computed tomography (CT) scans [4, 5], which can holis-
tically take several hours, and although efficacious for broad diagnostics, often
lacks specificity. As a result, there is a need for more insightful assessment of lung
function, particularly for determining disease severity and tracking pathogenesis.

Currently, the clinically predominant lung function test is spirometry, which
measures the volume of air forcibly expelled in one second - ‘forced expiratory
volume’ (FEV1), and the maximum air a patient can expel from the lungs fol-
lowing a maximal inhale - ‘forced vital capacity’ (FVC) [6]. The dynamic ratio
of these values (FEV1/FVC) is a key diagnostic indicator of airway obstruction
[7]. A low ratio of <0.7 tends to indicate some level of ventilation hindrance
through narrowing of the trachea and bronchi, or small airway dysfunction [6].
This test comes with several limitations including variable spirometer accuracy
and human error, resulting in an acceptable margin of £2.5% [8]. It is also an
effort-dependent test that requires patient cooperation, making it less reliable
in young children and certain older populations. Moreover, although spirometry
indicates the presence of airflow limitation, it does not localise to, or provide
information on the specific malignancies [6].

Quantitative computed tomography (qCT) has emerged as a powerful tool for
evaluating lung structure, offering a more detailed evaluation of airway mor-
phology, lung parenchyma and vascular features. Through qCT we can capture
three-dimensional airway changes, detect signs of small airway disease and iden-
tify precise heterogeneities contributing to airflow limitation [9]. CT scans from
both cycles provide complementary information, with inspiratory scans high-
lighting lung inflation and tissue density, while expiratory scans show key resid-
ual features like air trapping [10]. Despite the routine imaging of asthma patients,
qCT remains underutilised in asthma care due to the inherent complexity of its
manual analysis, leaving a need for advanced computational methods to derive
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meaningful insights.

Machine learning (ML) offers a promising avenue for extracting such clinically
useful information from qCT data to streamline asthma classification and man-
agement. However, feature panels tend to be extensive, which added to the small
patient cohorts often typical of respiratory datasets, makes training a general-
isable model to effectively capture complex relationships challenging. A way to
circumvent this is dimensionality reduction to an optimal feature subset, whilst
synthetic data generation can expand and diversify the training data [11, 12]. Ex-
isting artificial intelligence (AI) applications in respiratory imaging, such as con-
volutional neural networks (CNNs) to detect COVID-19 or cancer nodules, have
tended to draw on inspiratory scans alone, which does not fully capture patient-
specific breathing dynamics [13, 14]. Further, current best attempts to predict
pulmonary function in specific airway diseases have also drawn on CNNs, with
none yet reaching diagnostic-grade accuracy [15, 16]. These deep learning tech-
niques are of course black-box, whereas a 'feature known’ approach allows inverse
modelling of structure-function relationships, offering inherent interpretability
advantages, including over traditional spirometry.

This study therefore looked to bridge gaps in asthma healthcare and Al, by ap-
plying ML techniques to qCT-derived features to provide interpretable, diagnostic-
grade predictions of spirometry outcomes. We aimed to overcome the challenges
presented by a small, high-dimensional dataset through guided iterative feature
elimination and dynamic introduction of synthetic noise.

The rest of the paper is structured as follows: Section 2 describes the data we
used as well as the pre-analysis and normalisation implemented. Following initial
data handling and exploration, Section 3 introduces the ML models tested as
well as the experimented adaptations thereof. Results are presented in Section 4
and discussed in Section 5, with concluding remarks and perspectives on future
works presented in Section 6.

2 Data and Preprocessing

This work was carried out using the (Assessment of Small Airways Involvement
in Asthma) ATLANTIS ((NCT02123667) dataset, a multinational prospective
cohort study which was collated to assess the link between small airways disease
and severity of asthma [17]. Of the 363 patients for which there was complete
and quality controlled imaging data; 310 were from asthma patients (collected at
least 6 months from their diagnosis) and 53 from healthy controls. This dataset
also held extensive electronic health records including a full complement of de-
mographic and clinical data.

Using Mi-TAP, a deep learning-based qCT algorithm developed by the Galban
lab (https://websites.umich.edu/~cgalbanlab/index.html), a panel of 67
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variables was extracted including values and ratios relating to physiological pre-
sentations like lung volume, tissue density, vasculature and emphysema, from in-
spiratory and expiratory CT scans. To avoid missing values or their imputation in
the resulting dataframe distorting the distribution of the target variable and in-
troducing significant bias, rows with incomplete dependent data were dropped (9
subjects). Of the sparse missing value instances in the predictor variables, mean
imputation was used. The feature set was then normalised using the skLearn
standard scaling module to ensure comparability across variables. Finally, prior
to running models the dataset was split into training (70%), validation (15%),
and test (15%) sets to facilitate development and evaluation.

3 Methods

Following initial data exploration to examine the relationship between each vari-
able and the pulmonary function metrics of interest: FEV1, FVC and FEV1/FVC;
a collection of ML models were tested on the whole qCT dataset:

1. Mean Prediction - Used as a simple benchmark for model performance as
per

1 N
@:N;yi (1)

where N is the total number of observations and y; is the actual target value.

2. Linear Regression - A more sophisticated benchmark for model perfor-
mance as per

Yi = f(Xi,8) +ei (2)

where Y; is the dependent variable, X; is the independent variable vector, 3
is the vector of weight coefficients and ¢; is an error term.

3. kNN - Predictions were derived using a weighted voting mechanism, where
the contribution of each of the k nearest neighbours was inversely propor-
tional to their Euclidean distance from the query point. Bayesian optimisa-
tion was applied to tune k£ and the distance metric, ensuring optimal local
interpolation.

4. RF - A random forest ensemble was constructed using multiple decision
trees trained on different subsets of the data. Each tree contributed to the
final prediction via averaging, reducing variance and improving generalisa-
tion. Key hyperparameters such as the number of trees, maximum depth,
and feature selection strategy were optimised using Bayesian methods.
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5. SVM - A support vector approach was employed looking at linear, ra-
dial basis function (RBF), and polynomial kernels to map input features
into a higher-dimensional space. The model sought to optimise the epsilon-
insensitive loss function, ensuring robust predictions by balancing margin
width and prediction error. Bayesian optimisation was applied to tune the
kernel type (linear, RBF, polynomial), the regularisation parameter C, and
kernel-specific parameters such as the RBF kernel coefficient v and polyno-
mial degree d, all evaluated using mean squared error (MSE) as the objective
function. For example, the RBF kernel was defined as:

K (w5, 25) = exp(—7llz; — 2;]%) (3)
and the polynomial kernel as:
K(zi,x)) = (x{ 2 + ) (4)

where v and d were included in the optimisation process alongside C'.

Mean relative error (MRE) was used as the main accuracy metric and models
incorporated learning curves to look at performance on the training vs validation
sets. Loss function convergence was examined during optimisation. After evalu-
ation of initial model performances, the dynamic ratio FEV1/FVC was carried
forward as the primary output variable. Feature selection was explored through
the iterative selection techniques - recursive feature elimination (RFE) and se-
quential feature selection (SFS), applied post-optimisation. These were used to
reduce dimensionality while retaining the most informative features.

Interpretability was enhanced through use of SHapley Additive exPlanations
(SHAP), enabling detailed, model agnostic insights into the contributions of in-
dividual qCT variables. These were subsequently ranked in descending order and
used to adapt the standard SF'S and RFE approaches. Instead of relying solely on
internal model coefficients or traditional selection criteria, features were explic-
itly prioritised for addition or removal based on their SHAP-derived importance
scores. This hierarchical sorting post-optimisation ensured retention of globally
influential features while systematically eliminating variables with minimal pre-
dictive contributions. To explore meaningful associations with biologically rele-
vant demographic and clinical parameters, variables such as height, weight, age,
BMI, blood pressure, and gender were then incorporated. Challenges posed by
the risk of overfitting to limited training data were mitigated through dynamic
Gaussian noise augmentation for regularisation. This approach systematically
produced multiple noise-enhanced copies of the original data. Specifically, the
training dataset was iteratively augmented by adding Gaussian noise with zero
mean and incrementally increasing variance:

Xnew,step =X+ €steps  Estep ™ N(Oa O—Etep) (5)

where the standard deviation for each augmentation step was defined as:

step X (max_ noise — initial noise)

(6)

Ostep = initial _noise + steps — 1
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4 Results

4.1 Model performance for FEV1/FVC vs FEV1 or FVC

All models demonstrated superior performance when predicting FEV1/FVC
compared to FEV1 or FVC, with the best from the latter metric being kNN at
15.46% MRE and 15.73% for FEV 1. Prediction of pre-bronchodilator FEV1/FVC
was likely better as this dynamic ratio incorporates information from both in-
spiratory and expiratory phases of breathing, thus models could better capture
relationships between features from both scan types and the output variable. For
FEV1/FVC, initial application of the models to the full qCT dataset showed
some efficacy with all models surpassing mean prediction - 10.91% MRE but
only kNN beating the linear regression benchmark - 9.71% (Table 1).

Table 1. Overview table showing the MRE % results for FEV1/FVC prediction by
each model, with the data types used (qCT), Demo=Demographic and Clin=Clinical)
and method setup.

Model (MRE - %)
Data & Setup kNN |Random Forest|SVM
qCT 9.30 10.73 10.71
qCT with RFE/SFS 8.87 9.87 9.08
qCT with SHAP RFE/SFS 8.74 8.88 7.89
qCT/Demo/Clin with SHAP RFE/SFS 6.95 9.91 10.00
qCT/Demo/Clin with DGN SHAP RFE/SFS| 1.64 4.66 5.16

4.2 Efficacy of iterative feature refinement

The iterative feature selection methods, RFE and SFS, consistently enhanced
predictive accuracy for all models by systematically refining the feature space
(Table 1). Similarly, integrating SHAP-based feature prioritisation further en-
hanced predictive accuracy compared to RFE/SFS alone (Table 1). Among the
evaluated methods, SFS-SVM and RFE-RF achieved the greatest accuracy im-
provement when combined with SHAP-prioritisation, with the latter showing er-
ror reduction from 9.87% to 8.88% MRE, while SFS-SVM improved from 9.08%
to 7.89% (Table 1). These results strongly suggest that ranking globally im-
portant features enhances traditional RFE/SFS methods by potentially better
capturing non-linear relationships.

4.3 Integration of demographic and clinical data

The inclusion of demographic and clinical variables yielded mixed results. Both
the SFS-SVM and SFS-RF models exhibited slightly reduced predictive accu-
racy. This is possibly due to overfitting caused by the increased feature space,
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with models potentially capturing the additional noise rather than meaning-
ful patterns. Conversely, the datapoint-greedy SHAP SFS-kNN model yielded a
lower MRE of 6.95% with 37 of 76 selected features (Table 1).

A)
No Gaussian Noise With Gaussian Noise

—e~ Training MRE . —e— Training MRE
=~ Validation MRE

I
'
5
z
=

Mean Relative Error (MRE)

Mean Relative Error (MRE)

|
|

25 50 s 100 125 150 175 200 225 200 400 600 800 1000 1200

B)

predicted Values

03 04 05 06 07 08 09 10
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Fig.1. A) Learning curves for the SHAP RFE-RF model as applied to the same
qCT and demographic/clinical dataset (76 features) with and without Gaussian noise,
showing reduced overfitting. B) Predicted vs actual plot for the diagnostic grade SHAP
SEFS-kNN showing tight grouping of points to the line of best fit.

4.4 Dynamic Gaussian noise optimisation

High-dimensional feature sets posed a risk of overfitting in some models. To ad-
dress this, dynamic Gaussian noise augmentation was introduced during training,
significantly benefiting SHAP-prioritised models. As shown in Figure 1A, the in-
clusion of Gaussian noise improved model generalisability by stabilising training
and validation errors, reducing sensitivity to small perturbations, and mitigat-
ing overfitting. The most pronounced improvement was observed in SHAP SFS-
kNN, where MRE decreased to 1.64% with 37/76 selected features (Table 1).
This effect is evident in the predicted vs actual plot (Figure 1B), where values,
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including those near extremes, tightly fit the ground truth. Similarly, SFS-SVM
with SHAP prioritisation improved to 5.16% MRE using 44/67 features (qCT
alone), while SHAP SFS-RFE demonstrated a substantial error reduction from
9.91% to 4.66% with 54/76 features. All models significantly outperformed both
the mean and linear regression baselines (p<0.01) by paired t-test, reinforcing
the utility of iterative noise regularisation in preventing overfitting.

4.5 Linking back to structure with SHAP

SHAP values provided key insights into the structural determinants of lung func-
tion predictions, enhancing the clinical interpretability of the models. The most
influential features identified were vascular parameters (vessel volume, number of
components, vessel volume 5 down), parenchymal remodelling metrics (PRM2
- normal tissue %), airway structural markers (pil0 - normalised airway wall
thickness metric), and expiratory tissue density/lung volume - all of which are
potentially closely associated with functional decline (Figure 2). This demon-
strates the potential for SHAP-derived feature importance to guide mechanis-
tic investigations from routine disease characterisation and inform personalised
treatment strategies.

High
PRM_2

VESSEL_VOLUME

Exp_HU
VESSEL_VOLUME_5DOWN
Exp_Vol
NUM_COMPONENTS
PRM_1

Pil0

scatnetEmph_mean

Ins_GGOI

Feature value

WallPct_3 8 1
WallPct_3_8 2
Ins_950

WT _subseg
dBlood_var
NUM_VESSELS
Jac_var
NUM_ENDPOINTS
Ins_Vol

Wall_pct_2

-0.10 -0.05 0.00 0.05 0.10 0.15
SHAP value (impact on model output)

Fig. 2. Plot of SHAP values for each feature from the SHAP SFS-kNN model (with
dynamic Gaussian noise) applied to the held-out test set.
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5 Discussion

In this work, we explored the effectiveness of combining explainable feature se-
lection and dynamic noise augmentation (synthetic data generation) to eluci-
date complex relationships between numerous qCT-derived features and lung
function outputs within a limited dataset. Comparative analysis of model per-
formance across different spirometry output labels showed ubiquitous superior
prediction of the dynamic ratio FEV1/FVC. This is perhaps unsurprising given
that it intrinsically integrates both inspiratory and expiratory breathing phases,
highlighting the benefit of incorporating the static data from both scan types.
The only current attempt to use machine learning in a similar manner was by
Gawlitza et al., (2019), which applied several models to four manually selected
features in chronic obstructive pulmonary disease (COPD) patients, achieving
an MRE of ~14% with a kNN model. Comparatively, our optimised DGN SHAP
SFS-kNN method markedly improved prediction accuracy, at just 1.64% MRE
[18]. This was also significantly better than current deep learning benchmarks
by Park et al., (2023) and the literature best by Yoshida et al., (2024) with CNN
based models at 9.7% and 5.21% MRE respectively [15, 16]. Indeed, all three
model types (kNN, RF and SVM) achieved greater mean accuracy (Table 1).

Justification for our model choices stems from a need to leverage different model
architectures whilst maintaining comparability across setups and improving on
deep learning attempts through explicit features. The inclusion of RF, SVM, and
kNN enabled a comprehensive evaluation across diverse algorithmic paradigms,
each with distinct advantages in handling high-dimensional qCT data. Ran-
dom forest, being an ensemble of decision trees, effectively integrates categor-
ical and continuous data while inherently ranking feature importance, making
it highly adaptable. SVM, a margin-based classifier, benefits significantly from
informative feature selection since it constructs decision boundaries in high-
dimensional spaces, which explains its marked improvement when coupled with
SHAP-prioritisation. Conversely, a distance-based method like kNN treats all
features equally and is less sensitive to feature selection, which likely accounts
for its marginal improvement in performance when SFS/SHAP SFS were applied.
By comparing all three models, we ensured robust and comprehensive experi-
mentation across different methodologies for handling qCT-derived features and
clinical variables.

Moreover, the complementary use of RFE and SFS was motivated by their capac-
ity to systematically refine feature sets, mitigate overfitting and improve general-
isation. RFE is a backward elimination technique in which models are iteratively
retrained, progressively removing the least important features based on model
coefficients or feature importance scores until an optimal subset is identified,
eliminating non-contributory features. It was thus only applied to the the RF
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model which inherently ranks features. In contrast, SFS is a model-agnostic ap-
proach that incrementally adds features based on their individual contributions
to model performance until the optimal subset is achieved ensuring adaptabil-
ity to varying feature importances. The fact that the iterative feature selection
methods significantly improved model performance meant they effectively miti-
gated the curse of dimensionality that is inherent to qCT data, particularly given
the logistical and financial challenges of collating results from large numbers of
patients and processing such cohorts.

The integration of SHAP-prioritisation further refined feature selection by cap-
turing global feature importance and complex non-linear interactions beyond the
means of traditional RFE/SFS. Notably, the SVM model exhibited the greatest
improvement (MRE reduction from 9.08% to 7.89%), likely due to its kernel-
based structure, which benefited from well-curated feature sets that improved
the separability of decision boundaries. Ground was also gained for the RF model
from 9.87% MRE (with just RFE) to 8.88% with SHAP-prioritisation, building
on its inherent feature ranking to further mitigate dimensionality. Little im-
provement was seen for kNN since it lacks an internal weighting mechanism
to properly leverage feature importance. Taken holistically however, these re-
sults represent a notable benefit of being able to use the whole qCT dataset, a
marked advantage on the previous machine learning attempt by Gawlitza et al.,
(2019) who only used a select four features. Since abnormalities in airways and
parenchymal structural variables are likely to be interlinked, this affords better
capture of underlying structure-function relationships.

Indeed, from SHAP seen in Figure 2 and other models, key structural features
for determining lung function included vasculature and parenchymal features as
well as parameters reflective of airway wall thickness and lumen geometry. No
individual features were strongly important in FEV1/FVC predictions, perhaps
as a result of the large panel of variables, further highlighting the requirement for
holistic input to effectively capture relationships with the output variable. More-
over, these were neither precisely localised nor inherently defective, however they
do open an avenue of investigation into precise defects associated with impaired
lung function. By linking abnormal lung function results (e.g., FEV1/FVC <
0.5) to quantifiable anatomical changes, this approach facilitates the integration
of omics data for a deeper investigation into airway disease mechanisms. The
identification of key qCT-derived structural markers, opens avenues for person-
alised disease phenotyping. Such insights could support targeted therapeutic
interventions, enabling clinicians to tailor treatments based on patient-specific
structural abnormalities, potentially improving early detection and monitoring
of airway conditions.

As demonstrated in figure 1A, the introduction of dynamic Gaussian noise im-
proved the convergence of learning curves for the models, leading to a more
stable alignment between training and validation errors. Minimal convergence
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was seen between curves and the test set error was typically far higher, empha-
sising the necessity of noise augmentation. Typically, the introduction of noise
can be used to test generalisation of a model [18]. The novelty here lies in in-
cremental Gaussian noise in training, playing a critical role in stabilising model
performance by reducing sensitivity to minor perturbations through controlled
variability, thereby mitigating overfitting. In the tree ensemble RF model this
likely served to decorrelate trees and help capture more diverse patterns. No-
tably, despite not being directly depicted in figure 1A, the RF error on the
held-out test set was also far closer to the validation error, further underscor-
ing the enhanced generalisability benefits. SFS-kNN also significantly benefited
from this synthetically expanded training data, as it relies on Euclidean distance
between points. Furthermore, SHAP SFS-SVM demonstrated notable improve-
ment, achieving approximately ~ 5% MRE, likely identifying more generalisable
support vectors, contributing to improved margins and stabilising better deci-
sion boundaries. To the best of our knowledge, this was the first study to apply
Gaussian noise to mitigate the challenges posed by high-dimensional qCT data.
It is also a rare instance of synthetic noise successfully enhancing model training
in a biomedical ML study.

The performance here of synthetic noise augmentation underscores a key limi-
tation of this work: its relatively small training set. While Gaussian noise im-
proved model robustness by mitigating overfitting, it cannot fully substitute for
a larger, more diverse training cohort. Expanding the dataset would likely fur-
ther reduce MRE, potentially approaching or surpassing the +2.5% threshold
across all model types. However, challenges in generalisability remain, partic-
ularly across diverse populations with varying demographic and clinical char-
acteristics. Moreover, the current models were trained on a single cohort and
results have not yet had external validation. Variability in qCT image qual-
ity due to factors such as scanner differences or acquisition protocols may also
have impacted feature consistency and model reliability. Additional model re-
finements, such as the integration of custom loss functions, could help adapt
to these complexities. The predictive improvement of the kNN model upon in-
clusion of demographic/clinical data, as well as the RF upon Gaussian noise
augmentation for the same extended data, further points to leveraging an en-
sembling approach to better utilise the disparate information held in continuous
and categorical feature types.

6 Future work and Conclusion

Ultimately the goal of this work is to integrate automated lung function pre-
diction into clinical diagnostic practise given that CT imaging is routinely used
and qCT software readily available. To this end, although our SHAP-prioritised
SFS-KNN model demonstrated diagnostic-grade accuracy as defined as within
+2.5% by Graham et al., (2019), external validation with a cohort of scans pro-
cessed through the same qCT platform (and thus the same panel of features)
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is needed [8]. Future work will also explore incorporating a time aware element
to longitudinally map lung function trajectories from initial CT imaging. Accu-
rate tracking of pulmonary decline, particularly in abnormal cases, would be to a
major clinical benefit in streamlining the management of asthma and airway dis-
eases holistically. Successful application of this setup to dynamic ratios of other
pulmonary tests more relevant to other conditions, such as residual volume/total
lung capacity (RV/TLC) from body plethysmography, would allow extension to
multiple labels. Finally, in a held-out abnormal test set, the inverse modelling to
precise structural heterogeneities with SHAP could be an interesting approach
to investigating overlapping features in airflow obstruction.

To conclude, this study demonstrates the viability of automated machine learn-
ing techniques to characterise the functionality of patient breathing dynamics
from static qCT data, with the best performing SHAP SFS-kNN model showing
diagnostic grade accuracy (1.64% MRE). Dynamic Gaussian noise and iterative
feature selection were shown to be effective in capturing underlying complexi-
ties in a small, high-dimensional dataset. Inverse modelling, guided by SHAP
explainability measures effectively refines feature selection and offers a unique
approach to understanding structure-function relationships in chronic airway
conditions. These findings are preliminary proof-of-concept for a novel method
in future precision respiratory diagnostics and disease management.
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