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Abstract. Fast and accurate flood forecasting models are fundamental
for managing flood risk and mitigating the negative impacts that floods
can have on the society and the environment. For the pan-European
area, currently, the European Flood Awareness System (EFAS) is the
official flood forecasting and early warning system. It’s forecasts derive
from a process-based rainfall-runoff model (LISFLOOD), which requires
large amounts of high quality hydro-meteorological data, that usually are
not uniformly available, affecting the quality of the outputs. Running
process-based models at high spatial resolution for large spatial scales
requires high-performance computer clusters to deliver timely forecasts.
Recently, the use of machine learning-based forecasting models like long
short-term memory (LSTM) as surrogate models for traditional process-
based models has gained popularity. Compared to traditional process-
based models, machine learning-based forecasting models offer the advan-
tage of lower computational resource requirements and greater tolerance
for variations in input data quality. Additionally, machine learning-based
compression models, such as convolutional autoencoder (CAE), can fur-
ther reduce computational costs by compressing the data. Moreover,
large-scale models, frequently exhibit lower accuracy in forecasting river
discharge in smaller watersheds, in which data may be less available and
rivers are smaller, but still significant, and cannot be overlooked. These
watersheds exhibit a fast response to rainfall events, thus requiring fast
river discharge forecasts to guarantee enough lead time to take action in
case of an imminent flood. To enhance forecasting accuracy, data assim-
ilation (DA)—a technique that integrates data from multiple sources to
optimize forecasting outcomes—can be effectively employed to improve
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the precision of river discharge forecasting. In this work, we propose a
latent three-dimensional variational data assimilation (3D-Var) method
combined with machine learning models to deliver fast and accurate river
discharge forecasting. We tested our method on the real-world datasets
(EFAS and Lamah-CE) and achieved an average 53.6% improvement in
forecasting accuracy measured by Mean Squared Error (MSE) compared
to LSTM forecasting, while delivering one-day lead-time river discharge
forecasting in approximately one minute for an area of around 30,000
km2.

Keywords: flood forecasting · three-dimensional variational data as-
similation · convolutional autoencoder · long short-term memory.

1 Introduction

River flow forecasting is key in flood risk management, being fundamental for
early warning systems, thus improving emergency preparedness and support-
ing decision-making for mitigating potential impacts to people, infrastructures
and environment. Traditional hydrological and hydraulic models, such as widely
used conceptual models based on physical data, are currently the most estab-
lished techniques for forecasting river floods. However, these models often rely
on extensive parameter calibration and suffer from computational inefficiencies,
particularly when applied at large spatial scales [9, 26]. The complexity of river
systems and precipitation events, the varying watershed characteristics and the
scarcity of high quality data, have revealed significant limitations in traditional
methods, also for efficient real-time data assimilation [8, 37, 42, 18]. Recent ad-
vances in machine learning (ML) offer a promising alternative by enabling faster
and more adaptive flood forecasting, potentially learning complex hydrological
patterns without requiring physical modeling, reducing the computational re-
sources necessary for data preparation for model set-up [24] and not requiring
the subsequent calibration phase. Recent studies have demonstrated that ML-
based models can outperform traditional methods in terms of forecasting speed
and accuracy [39, 7]. Achieving accurate and timely flood forecasting on multiple
spatial scales is a significant step forward in flood risk management.

Three-dimensional variational data assimilation (3D-Var) is widely used in
flood forecasting as a method of fusing observations to correct the background
fields forecasted by models [23, 31, 35, 34, 15]. However, when dealing with high-
dimensional data, 3D-Var is typically computationally intensive and thus re-
quires an implementation in a reduced space [4, 10], often called control space [3]
or latent space [5]. In recent years, many researchers have utilized compres-
sion models such as Autoencoder (AE) [1, 41] and convolutional autoencoder
(CAE) [32, 2, 33] in combination with the 3D-Var method, a technique known as
latent data assimilation (DA) [17, 16, 13, 14, 30]. By reducing the dimensionality
of the field, this approach significantly accelerates the computation of 3D-Var
while achieving the desired accuracy. In addition, traditional hydrological mod-
els, such as LISFLOOD [43], require significant computational effort and long
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simulation times to model river discharge. As a result, a common approach
today in the research is to use machine learning-based models as surrogate mod-
els to enhance computational efficiency [20, 46, 29, 11, 44, 12, 47, 45]. As a widely
used surrogate model in flood forecasting, long short-term memory (LSTM) [22]
features a specialized gating mechanism that effectively handles long-term de-
pendencies, making it well-suited for capturing complex temporal patterns in
hydrological data. In this paper, to achieve fast and accurate flood forecasting,
we propose a flood forecasting method that integrates the 3D-Var technique
with a machine learning based surrogate model using a LSTM to achieve faster
and more accurate flood forecasts. We validate our method using real datasets,
including the European Flood Awareness System (EFAS) [36] and the LArge-
SaMple DAta for Hydrology and Environmental Sciences for Central Europe
(Lamah-CE) [28].

The following sections of this article are organized as follows: Section 2 de-
scribes the dataset and preprocessing, Section 3 introduces the proposed method,
Section 4 presents the experimental results, and Section 5 summarizes the paper
outcomes while outlining potential directions for future research.

2 Datasets and preprocessing

This section provides an overview of the datasets utilized in this research to
validate our proposed method. The first step involved identifying hydrological
data with the highest available spatial and temporal resolution, suitable for sub-
sequent experiment and comparison. River discharge simulations from the EFAS
have been selected to be studied alongside river discharge observations, provided
by the LamaH-CE dataset. Data sets like LamaH-CE and the EFAS are suitable
for such investigations, as their combination of data quality, extensive cover-
age, consistency across large domains, diversity, and public availability provides
a solid foundation for improving the knowledge of hydrological processes and
developing new modeling techniques.

2.1 Datasets description

EFAS is a pan-European project aimed at providing early flood forecasting and
warnings to support disaster risk management and mitigation. EFAS covers the
entire European continent, releasing flood forecasts at a spatial resolution of 1
arcmin. Its forecasts are based on the LISFLOOD [43] hydrological model, an
integrated and distributed rainfall-runoff and river routing model specifically de-
signed for large-scale applications. LISFLOOD simulates hydrological processes
such evapotranspiration, soil moisture dynamics, snow melt, obtaining the runoff
for each cell of the grid. Runoff values are then routed into the river network,
allowing for representation of river flow, which is one of the LISFLOOD outputs,
expressed in cubic meters per second. Historical runs of EFAS river discharge are
based on reanalysis of meteorological data, and over the LamaH-CE area, they
are available from 1991 to nowadays. The LamaH-CE dataset is a comprehensive
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resource for large-scale hydrological research and modeling, focused on, but not
limited to, river discharge observations. Covering a temporal range from 1981
to 2017, it provides high-resolution hydro-meteorological data for 859 gauged
catchments in Central Europe, representing diverse climatic and geographical
conditions. River discharge observations, expressed in cubic meters per second,
are retrieved from river gauges, and stored at daily and hourly resolutions, en-
abling detailed analyses of river flow and hydrological processes. The dataset also
includes advanced basin delineations that allow inter-catchment analyses and
the study of hydrological connectivity. The main differences between these two
datasets are that the LamaH-CE structure follows the hydrological watersheds
hierarchy and provides river discharge observations at each river gauge location
(punctual), with hourly time resolution, while EFAS has a gridded structure
with 1 arcmin spatial resolution, and provides simulated river discharge values
at 6-hour time resolution. No direct link between the EFAS grid and the LamaH-
CE river discharge data is defined. Preprocessing of the two datasets is necessary
for comparing and jointly processing both data sets.

2.2 Data preprocessing

LamaH-CE observations, provided in single CSV files for each river gauge, have
been firstly aggregated into a unique matrix, in which each row contains all
the available river discharge records for a specific river gauge, and each column
contains all the values recorded at the corresponding time. EFAS data are instead
delivered in NetCDF4 file format, a multidimensional raster file, containing 1
year of simulations for each file. Before proceeding with data extraction and time
alignment of the EFAS data, a direct relation between river gauge observations
of the LamaH-CE and the cells of the EFAS simulations must be determined.

Spatial alignment Finding relationships between the two datasets implies es-
tablishing a link between cells of the EFAS raster and the locations of the river
gauges of the LamaH-CE. Only specific cells of the raster grid (i.e. the most
representatives of the observed flow) can be directly compared with the obser-
vations, thus, all the other cells that store river flow values far from the gauges,
will not be considered in this work. The resulting data structure has been conse-
quently designed to adopt only the LamaH-CE gauges (i.e. observation locations)
as spatial reference. Aligning the raster data from EFAS with the punctual val-
ues of the LamaH-CE dataset is not straightforward. The resolution of the EFAS
grid (1 arcmin), designed for large-scale modeling, does not allow to accurately
reproduce the actual river network, introducing several uncertainties when find-
ing the cell that corresponds to the gauge location at a river. Furthermore, the
actual river width in this region is less than 1 arcmin, and especially in plains it is
common to have more than one river covered by a single EFAS cell, complicating
the cell selection procedure. Moreover, due to the grid geometry, the river cells
do not exactly follow the river bends. Consequently, in many cases, the EFAS
cells do not overlap with the closest river gauge, even if they represent the flow
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that is measured by that sensor. This misalignment is also partially explainable
by the Digital Elevation Models (DEM) used to determine the river network in
the two datasets having different resolutions, thus resulting in slightly different
paths of the rivers. To overcome this problem, an automated hydrological ap-
proach has been adopted to determine the most suitable cells of the EFAS grid
to be associated with the corresponding river gauges. The adopted approach
derives from the hydrological definition of watersheds: they may have multiple
inlets but they have only a single outlet, and river gauges are installed in prox-
imity of the outlets to measure the streamflow from the watershed. Therefore,
the EFAS cell reporting the maximum streamflow within a given basin, is as-
sumed to be the most representative for the river gauge, and it is then selected to
be associated with the river gauge of that watershed. For each watershed in the
LamaH-CE dataset, an automatic procedure selected such cells associating them
with the respective river gauges. To avoid errors for small watersheds, LamaH-
CE watersheds have been aggregated to at least 100 km² catchment area, taking
hydrological connectivity into account. After the described processing, only a
few misalignment cases related to peculiar and uncommon catchment shapes,
have been manually fixed or removed.

The spatial alignment procedure result is a selection of EFAS cells for the
next extraction of river discharge values from the native NetCDF4 files, for
proceeding with the temporal alignment of the two datasets.

Temporal alignment The final data structure has been designed to adopt
the EFAS time resolution (6 hours) and format. EFAS time is in Unix format,
also referred to as Epoch time. The Unix time system, implemented as an integer
counter, is a standard format for timekeeping in databases. It ensures consistency
and comparability across datasets, making it appropriate for setting a unique
and comparable timestamp format between EFAS and LamaH-CE data. Conse-
quently, LamaH-CE timestamps were converted (from human-readable format)
to EFAS time format. EFAS streamflow data are only available as 6 hour av-
erage values, and we opted to keep this time resolution instead of the hourly
resolution of the LamaH-CE dataset, because disaggregating EFAS values to
hourly resolution would introduce additional uncertainty to our analyses. In the
present work, hourly LamaH-CE observations have been averaged over the past
6 hours, keeping the same daily time steps of the EFAS dataset (at 00:00, 06:00,
12:00, 18:00). Regarding the year coverage of the two datasets, a common time
window has been defined, and both datasets have been aligned to cover a 25
years interval.

After the described procedures, data from the two original datasets are linked,
allowing both an observed and a simulated river discharge to be associated with
each time step and location, therefore enabling the next steps of the study.

Data selection and variables A subset region of the LamaH-CE dataset of
58 river gauges, located over approximately 30000 km2 in eastern Austria, has
been selected as test case for this study. In the following sections, the simulated
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river discharge values from EFAS are identified as the state field Xi (raw EFAS
data over the study area - grid of 128 x 128 cells), and the vectors xi contain the
EFAS cell values associated to the LamaH-CE gauges (after spatial alignment:
58 cells) for each time step i. River flow observations for each gauge from the
LamaH-CE dataset are identified by the vectors yi, (58 gauges) for each time
step i.

3 Method

This section provides a detailed description of the latent 3D-Var method we
proposed, which is combined with machine learning models.

Firstly, a compression model is introduced to compress the state field Xi into
the latent space. The structure employed for this purpose is a CAE, shown in
Eq. 1,

X̂i = D(E(Xi))

x̃i = E(Xi), (1)

where Xi ∈ R128×128 represents the state field at the ith time step, E : R128×128 →
R128×1 represents the encoder of the CAE, D : R128×1 → R128×128 represents
the decoder of the CAE, X̂i ∈ R128×128 represents the reconstructed state field
at the ith time step and x̃i ∈ R128×1 represents the state vector in the latent
space at the ith time step. The dimension of Xi is 128×128, while the dimension
of x̃i is 128 × 1, indicating that x̃i has a significantly smaller size compared to
Xi. The process of training the CAE model is to minimize the distance between
the state field and the reconstructed state field, ensuring that the compression
process retains as much relevant information as possible, shown in Eq. 2.

L = ||Xi − X̂i||2 (2)

where L represents the loss function. The advantage of the CAE structure lies in
its convolutional layers, which have the capability to extract spatial features and
capture the nonlinear correlations within the state field. Additionally, the CAE
effectively removes noisy information from the state field [27, 40], enhancing the
quality of the compressed representation. After the model is trained, the state
field is passed through the encoder to obtain the state vector in the latent space,
which is then used in the subsequent processes for forecasting and assimilation.

Secondly, to improve forecasting efficiency, a machine learning surrogate
model is designed to accelerate the forecasting process. The surrogate model is
based on the LSTM network, a variant of recurrent neural network. The unique
gating mechanism of LSTM allows it to effectively handle long-term dependen-
cies in time series data, making it well-suited for river discharge forecasting.
In this experiment, the 4-to-4 LSTM forecasting is performed within the latent
space, shown in Eq. 3,
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̂̃xi+4:i+7 = MLSTM (x̃i:i+3), (3)

where ̂̃xi represents the forecasted vector in the latent space at the ith time step,
MLSTM represents the LSTM model. The process of training the LSTM model
is to minimize the distance between the forecasting and the simulation, shown
in Eq. 4.

L = ||̂̃xi+4:i+7 − x̃i+4:i+7||2 (4)

The trained LSTM serves as the offline model in the subsequent 3D-Var
process, allowing for a reduction in computational costs by eliminating the need
to update parameters during the real-time forecasting.

Thirdly, to enhance the accuracy of LSTM forecasting and improve the effi-
ciency of the 3D-Var process, a latent 3D-Var framework is developed to refine
the LSTM outputs. The cost function of latent 3D-Var is shown in Eq. 5,

J(x̃i:i+3) =
1

2
(x̃i:i+3 − x̃b

i:i+3)
T B̃−1(x̃i:i+3 − x̃b

i:i+3)

+
1

2
(H(x̃i:i+3)− yi:i+3)

TR−1(H(x̃i:i+3)− yi:i+3), (5)

where x̃b
i ∈ R128×1 represents the background vector in the latent space at

the ith time step, B̃ ∈ R128×128 represents the background error covariance
matrix in the latent space [6], yi ∈ R58×1 represents the observation at the
ith time step, H : R128×1 → R58×1 represents the observation operator which
is composed of a decoder and a location selection operator and R ∈ R58×1

represents the observation error covariance matrix [25]. We estimate these two
covariance matrices on the training and validation datasets. The background
error covariance matrix in the latent space is derived from the forecasting error
of the LSTM model. The observation error covariance matrix is estimated as
the covariance matrix of the observations, and we approximate this matrix by
retaining only the diagonal elements, resulting in a diagonal covariance matrix.
In the implementation of latent 3D-Var, the four time steps forecasted by the
LSTM (referred to as background vectors in DA) are used as inputs to the latent
3D-Var. Additionally, four corresponding observations at the same time steps are
incorporated for assimilation. Then the assimilation process obtains the analysis
vector by minimizing the cost function J , shown in Eq. 6.

x̃a
i:i+3 = argmin(J(x̃i:i+3))) (6)

where x̃a
i ∈ R128×1 represents the analysis vector in the latent space at the ith

time step. Finally, the analysis vector is passed through the decoder to generate
the analysis field at the ith time step xa

i ∈ R128×128.
The training and assimilation processes are conducted on an Intel Core i9-

14900HX CPU and a NVIDIA GeForce RTX 4070 GPU. During the training
process, the first 70% of the data from the datasets is used as the training set,
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the next 10% is allocated for validation, and the remaining 20% is reserved
as the test set to evaluate the performance of the model and the latent 3D-
Var framework. The loss function used for both the CAE and LSTM models is
Mean Squared Error (MSE), and the optimization is performed using the Adam
optimizer.

4 Results

This section evaluates the performance of the proposed latent 3D-Var compared
wth the LSTM model.

4.1 Numerical result

The first evaluation metric used is MSE, shown in Eq. 7,

MSE =
1

n

n∑
i=1

(xi − yi)
2, (7)

where xi ∈ R58×1 represents the forecasting or assimilation result at the ith
time step. A lower MSE indicates that the forecasted values are closer to the
observations, which is crucial for providing accurate flood forecasting. The ob-
served data is derived from the Lamah-CE dataset, meaning the calculations are
restricted to the values of elements in the state field that correspond to observa-
tion points. As shown in the Fig. 1, we have selected three weeks of results here,
with 28 result points for each week (four result points per day).

In Fig. 1, the blue line represents the MSE between latent 3D-Var and the
observations, and the red line represents the MSE between LSTM and the obser-
vations. The dot lines indicate the time steps at which the 3D-Var assimilation is
performed. It is evident that after performing 3D-Var, the MSE of latent 3D-Var
are significantly lower than those of LSTM. Numerically, the MSE of latent 3D-
Var is 53.6% lower than that of LSTM on average, with the maximum reduction
over 90%. Thus, the results demonstrate that latent 3D-Var can significantly
correct LSTM forecasting, thereby enhancing the accuracy of flood forecasting.

The second evaluation metric used is the Standard Deviation (STD), which
reflects the distribution of the residuals, shown in Eq. 8.

STD =

√√√√ 1

n

n∑
i=1

(ei − ē)2, (8)

where ei represents the error between the forecasting or assimilation result at
the ith time step and the observations and ē represents the mean value of the
error. In the context of flood forecasting, a lower STD signifies that the results
are more reliable and stable, which is crucial for informed decision-making in
flood risk management. The result of STD is shown in Fig. 2.
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Fig. 1. The MSE of latent 3D-Var and LSTM for randomly selected weeks (The blue
line represents the MSE between latent 3D-Var and the observations, and the red line
represents the MSE between LSTM and the observations. The dot lines indicate the
time steps at which the 3D-Var assimilation is performed.)

Fig. 2. The STD of latent 3D-Var and LSTM for randomly selected weeks (The blue
line represents the STD between latent 3D-Var and the observations, and the red line
represents the STD between LSTM and the observations. The dot lines indicate the
time steps at which the 3D-Var assimilation is performed.)

In Fig. 2, the STD of latent 3D-Var is significantly reduced, with values con-
sistently lower than those of LSTM after the initial four time steps. On average,
the reduction is 27.2%, with a maximum reduction of 59.6%. These results indi-
cate that the STD of the latent 3D-Var corrected outputs is considerably lower
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than that of the LSTM results. This suggests that the latent 3D-Var method
produces more stable and reliable forecasting, making it a more suitable basis
for decision-making in the flood forecasting and warning.

4.2 Visualization result

To visualize the results of latent 3D-Var and LSTM, the absolute error at four
different moments of a single day (randomly chosen) is spatially plotted in Fig. 3,
with lighter colored circles (river gauges locations) signifying better forecasting.
LSTM results, reported in the upper row, in general show larger errors than la-
tent 3D-Var, with error spikes on individual gauges, and approximately twice the
variance of the latent 3D-Var forecasting. Therefore, not only the latent 3D-Var
is performing better than LSTM in forecasting river flow, but also its perfor-
mances show less variability and are thus more homogeneous across different
areas and watersheds.

4.3 Execution time

Additionally, the execution time required for latent 3D-Var to correct the four
time steps (one day), using a NVIDIA GeForce RTX 4070 GPU, is approximately
60 seconds to cover 58 river gauges. This time is significantly faster compared
to conventional 3D-Var methods, greatly enhancing computational speed. Fur-
thermore, this processing time is well-suited for the needs of flood forecasting.

5 Conclusion

In this paper, we propose a latent 3D-Var method combined with machine learn-
ing to address the challenges of achieving fast and accurate flood forecasting.
The designed CAE model efficiently compresses the state field and reduces its
dimensionality, thereby decreasing the computational load of both the forecast-
ing model and the 3D-Var process. Additionally, the CAE acts as a denoising
mechanism, minimizing error accumulation during the forward process. Simul-
taneously, the methods employs LSTM as the surrogate model, significantly
improving computational efficiency compared to traditional hydrological mod-
els. The observations are then assimilated with the LSTM forecasting to yield
more accurate results. The results demonstrate that this method greatly speeds
up the process and reduces errors. More importantly, for the task of flood fore-
casting, the results of latent 3D-Var are much closer to the real values, while
also being more reliable and stable. At the same time, latent 3D-Var has a very
short running time of approximately one minute, making it well-suited to meet
the needs of flood forecasting. In hydrological terms, the dataset subset (58 sen-
sors – 26 years) used in this study is relatively small but deemed sufficient for
developing a new machine learning-integrated 3D-Var model for river discharge
forecasting. However, comprehensive validation is required following this initial
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Fig. 3. In this figure a spatial evaluation of absolute error in river discharge forecast-
ing across a test area is shown. River gauges in the study area are represented by the
colored circles. On x-axes and y-axes are reported the geographic coordinates of the
extent of the represented area. The upper row of images reports LSTM forecasting
errors, while the lower row shows 3D-Var forecasting errors, which demonstrates signif-
icantly improved accuracy compared to LSTM. Each column corresponds to different
time steps (00:00, 06:00, 12:00, and 18:00) on November 15, 2016. The upper color scale
at the bottom indicates the magnitude of absolute error, with lower values (lighter col-
ors) signifying better forecasting. 3D-Var consistently exhibits lower error, confirming
its superior performance in river discharge forecasting. Satellite images from "© Esri,
Maxar, Earthstar Geographics, and the GIS User Community" [19] are displayed in
the background. The river network is classified according to the Strahler stream order,
which assigns higher values to rivers with more tributaries. The dark blue river repre-
sents a section of the Danube.

step. Future studies could incorporate longer time series and larger areas to ex-
pand the model’s learning base [37, 9, 26], enhance hydrological understanding,
and improve the usability of the results. Also, to deepen the understanding of
the forecasting capabilities, metrics like the Nash-Sutcliffe Efficiency (NSE) [38]
and the Kling-Gupta Efficiency (KGE) [21], which are commonly used metrics
to assess the performance of hydrological models, can be adopted to better align
the results to the hydrological science. Additionally, extreme events, whether
driven by climate change or unique to specific sub-regions climate, present chal-
lenges. The 6-hour time step adopted in our work is considered as standard for
large spatial scale simulations, and it’s particularly suitable for large river basins
with long rainfall-runoff response time. Unfortunately, this time resolution is less
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suitable for intense but short flooding events, which in the smaller watersheds
can cause many damages and severely endanger the population. Conversely, it
can be used for detailed analyses of extreme drought events in long-range fore-
casts, which evolve over extended time scales. For example, it can be leveraged to
enhance the forecasting of reservoirs storage level, contributing to an improved
and more reliable water resource management. Consequently, this broadens the
applicability of the obtained results to the analysis of multiple natural hazards.
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