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Abstract. This article presents a novel approach to forecasting energy
production using machine learning techniques with feature selection.
The study utilizes machine learning algorithms optimized using histor-
ical weather and real-time energy data. Feature selection is performed
through a mathematical framework based on correlation coe�cients and
mutual information, ensuring the use of only the most signi�cant pre-
dictors. SHAP (SHapley Additive exPlanations) is employed to analyze
the impact of selected features on prediction outcomes, enhancing model
transparency. Experimental results show high forecasting accuracy and
robustness, highlighting the role of meteorological variables in energy
production. This work advances predictive modeling for renewable en-
ergy systems and provides a comprehensive framework for identifying
key factors in�uencing PV energy production, supporting improved fore-
casting and decision-making in energy management.

Keywords: Photovoltaic Energy Forecasting · Machine Learning Mod-
els · Feature Selection · Feature Importance.

1 Introduction

Accurate forecasting of photovoltaic (PV) energy production is essential for ef-
�cient energy management, operational planning, and grid stability. With the
increasing adoption of renewable energy systems, reliable forecasting methods
are crucial to address the dynamic nature of weather conditions and the non-
linear relationships between environmental factors and energy output. Machine
learning techniques provide e�ective solutions by leveraging large datasets to
model these complexities, enabling better integration of renewable energy into
power grids and optimizing energy storage and distribution.

Recent studies emphasize the growing role of arti�cial intelligence in pho-
tovoltaic forecasting, highlighting the importance of model interpretability [15].
Explainable AI enhances both predictive performance and transparency, which
is essential in energy management where decisions must be traceable, robust,
and responsive to changing environmental conditions.
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This paper presents a machine learning system for PV energy forecasting that
leverages feature selection techniques to enhance predictive accuracy and model
e�ciency. The study utilizes a comprehensive dataset comprising historical PV
energy production data, enriched with high-resolution meteorological parameters
such as solar radiation, temperature, wind speed, and humidity. These datasets
were preprocessed and synchronized to ensure consistency, facilitating the iden-
ti�cation of the most impactful predictors.

The feature selection process focuses on identifying variables that maximize
predictive performance while reducing redundancy and computational complex-
ity. The proposed method considers both statistical relationships, such as corre-
lation coe�cients, and the contribution of individual features to model outputs.
Unlike traditional approaches, this methodology accounts for feature interac-
tions, ensuring a more informative and compact feature set that improves fore-
casting performance.

By performing feature importance analysis using SHapley Additive exPlana-
tions (see e.g. [12]) after the feature selection process, this study provides valu-
able insights into the contribution of selected predictors to model performance.
The results highlight key environmental factors a�ecting PV energy produc-
tion, supporting better decision-making in energy management. Additionally,
the �ndings demonstrate the e�ectiveness of the proposed system in enhanc-
ing forecasting accuracy while maintaining model e�ciency, contributing to the
broader adoption of renewable energy technologies in diverse operational scenar-
ios.

The paper is organized into 5 sections. Section 2 discusses related works. Sec-
tion 3 describes the methodology of the proposed algorithm. Section 4 presents
the simulation results. Finally, conclusions are drawn in Section 5.

2 Related works

Recent years have seen a surge in machine learning applications for predicting
solar energy production. Various approaches have been explored, with studies
comparing di�erent supervised learning algorithms, such as linear regression,
Support Vector Machines (SVM), and Random Forest, for photovoltaic output
forecasting [9]. Tree-based methods, particularly Random Forest, have demon-
strated superior accuracy compared to conventional techniques. Additionally,
feature selection has been identi�ed as a crucial factor, as excessive input vari-
ables can lead to over�tting and reduced generalization [16]. Techniques like
Pearson correlation [8] have been employed to determine the most in�uential
features, highlighting the importance of solar radiation, temperature, and wind
speed in forecast accuracy.

Hybrid models have also gained attention in solar energy forecasting [17]. One
approach integrates neural networks with multiscale correlation-based methods
to enhance short-term prediction stability, particularly under varying weather
conditions. Another study combined time-series algorithms with Random Forest
to leverage additional environmental data, such as air quality and weather met-
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rics, improving short-term forecast accuracy and capturing seasonal variations
[7]. These �ndings underscore the potential of incorporating diverse meteorolog-
ical and environmental factors to re�ne predictive performance.

Despite recent advancements, challenges remain in optimizing the selection
and weighting of input variables. Many models aim to improve performance but
lack a systematic approach to feature importance analysis [13]. Recent works
have introduced hybrid models and advanced regression techniques to enhance
forecasting robustness [11], yet the identi�cation of the most relevant predictors
remains underutilized. Decision tree-based models and hybrid frameworks con-
tinue to play a dominant role, with increasing emphasis on integrating relevant
external variables, such as air quality indices and seasonal trends, to further
enhance solar energy forecasting reliability.

3 Methodology

The proposed methodology (see Fig. 1) for predicting photovoltaic energy pro-
duction follows a structured approach consisting of data preprocessing, feature
selection, model development, and model evaluation, with an additional focus
on feature importance analysis using SHapley Additive exPlanations (SHAP).
Feature importance analysis using SHAP is performed after the feature selec-
tion process to gain deeper insights into the contribution of selected predictors
to model performance.

The following subsections of the chapter provide detailed explanations of each
step of the algorithm.
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Fig. 1. General scheme of the proposed method.

3.1 Preprocessing

The preprocessing phase ensured data reliability for predictive modeling by
cleaning meteorological and PV data from sources like NASA POWER [10]
and World Weather Online [19]. Steps included duplicate removal, outlier de-
tection (Z-score), missing value imputation, one-hot encoding for categorical
variables, and normalization of continuous features. This produced a clean, bal-
anced dataset, improving model stability and accuracy.
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3.2 Feature Selection

The feature selection method used in this study is purposefully designed to
optimize variable choice. This enhances both prediction accuracy and model
explainability while reducing computational complexity. Feature selection algo-
rithm consists of the following steps: 1) Pearson correlation �ltering to remove
redundant features, 2) correlation-based clustering with representative selection,
3) tree-based Information Gain �ltering, 4) XGBoost-based ranking using �ve
models for robustness, 5) Recursive Feature Elimination to obtain the �nal sub-
set.

The �rst stage involves analyzing correlations between variables and elim-
inating those that are highly correlated. This process is formalized using the
Pearson correlation coe�cient matrix R, de�ned as:

rij =

∑n
k=1(xik − x̄i)(xjk − x̄j)√∑n

k=1(xik − x̄i)2
∑n

k=1(xjk − x̄j)2
, (1)

where rij is the correlation coe�cient between feature i and feature j, n is
the number of observations, and x̄i is the mean of the i-th feature. This step
is crucial as it ensures that highly correlated features (rij > θ , where θ is a
de�ned threshold, e.g., 0.8) are removed, minimizing redundancy and the risk
of multicollinearity. Highly correlated features can distort the model's ability to
accurately attribute importance to individual variables, as they e�ectively carry
overlapping information. This redundancy can lead to in�ated coe�cients in
linear models or diminished interpretability in machine learning models, making
it di�cult to discern the true contribution of each feature to the predictions.

After the initial �ltering based on correlation, a more advanced clustering
method is applied to group similar features. The goal is to form clusters G
such that each group contains features with similar correlation structures. A
representative feature xG is chosen from each cluster using the formula:

xG = arg min
xi∈G

∑
j∈G

rij , (2)

where rij is de�ned as the correlation coe�cient between feature i and j within
the same clusterG. This step retains only the most informative features, ensuring
that the retained subset captures all necessary information while minimizing di-
mensionality. Reducing the number of features is critical for improving model e�-
ciency and reducing computational complexity, particularly in high-dimensional
datasets. Minimizing features also helps to mitigate the risk of over�tting, where
the model becomes too tailored to the training data and performs poorly on un-
seen data. By focusing on the most relevant features, the methodology enhances
both the accuracy and interpretability of the predictive model.

The retained features are then evaluated using tree-based models, which are
particularly e�ective for feature importance ranking. Tree-based algorithms cal-
culate feature importance based on how much a feature reduces an impurity
measure, such as entropy or Gini impurity, at each split. In the proposed method,
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Information Gain IG(xi) is employed as the criterion for evaluating feature im-
portance. It measures how much a variable xi contributes to reducing impurity
when making decisions in the tree and is de�ned as follows:

IG(xi) =
∑
t∈T

p(t) ·

H(t)−
∑

k∈children(t)

p(k | t)H(k)

 , (3)

where H(t) represents the impurity measure at node t, which can be entropy
or Gini impurity depending on the algorithm used, p(t) is the probability of
reaching node t, and p(k | t) is the probability of reaching child node k given
node t.

The calculation of Information Gain involves assessing how much splitting
the data based on a speci�c feature reduces the impurity at a node in a decision
tree. Impurity measures how "mixed" the data is, with lower impurity indicating
greater homogeneity concerning the target variable, such as energy production
levels or classi�cations.

At the start, the data at a parent node has some degree of impurity, meaning
the target values are a mix of di�erent outcomes. When the data is split into
child nodes using a particular feature, the impurity of each child node is calcu-
lated. The impurity of the overall split is determined as the weighted average of
the impurity of the child nodes, where larger child nodes have a proportionally
greater in�uence. Information Gain is then computed as the di�erence between
the impurity of the parent node and the weighted impurity of the child nodes.
A higher Information Gain indicates that the feature has e�ectively separated
the data, making it a more valuable attribute for constructing the decision tree.

Removing highly correlated features helps ensure that the model isn't in-
�uenced by redundant information, which can in�ate the importance of certain
features or make the model less interpretable. This process also reduces com-
plexity, improves computational e�ciency, and enhances the reliability of the
predictions.

To further enhance this process, XGBoost (Extreme Gradient Boosting) (see
e.g. [2]) was employed. XGBoost is known for its e�ciency and scalability, mak-
ing it particularly suitable for large datasets with complex interactions. It builds
an ensemble of weak prediction models, such as decision trees, to achieve strong
predictive performance. In this study, XGBoost ranks features by calculating
their F-scores, which measure how frequently and e�ectively a feature reduces
prediction error across all trees in the ensemble. By using XGBoost, the model
ensures that only the most impactful features are retained, improving both pre-
diction accuracy and model explainability.

XGBoost's ability to handle non-linear relationships and its built-in regular-
ization mechanism make it particularly useful for avoiding over�tting, ensuring
that the model remains generalizable to new data. The combination of tree-based
algorithms and XGBoost creates a powerful framework for feature selection, op-
timizing both predictive performance and computational e�ciency.
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To further re�ne the selected subset, a Recursive Feature Elimination (RFE)
(see e.g. [14]) method is applied. During each iteration, the least important
feature xmin is removed based on its contribution to impurity reduction:

xmin = arg min
xi∈S

IG(xi), (4)

where S is the set of currently selected features. The iteration continues until
only the most critical predictors remain. This process ensures that the �nal
subset is highly optimized for prediction while minimizing the risk of over�tting.

In the process of feature selection, approximations play a crucial role in
maintaining computational feasibility. The use of Pearson correlation analysis
to eliminate highly correlated features is based on the assumption that linear
relationships su�ciently capture redundancies between variables, even though
some non-linear dependencies might remain. Similarly, the clustering of features
to form groups with similar correlation structures and the subsequent selection
of a single representative feature from each cluster is an approximation. This
step simpli�es the dataset while preserving its most critical information. These
approximations, while not exhaustive, ensure that the feature selection process
remains e�cient and practical for large datasets, enabling subsequent model
development to focus on the most impactful predictors.

3.3 Model Development and Evaluation Metrics

After selecting the optimal features, machine learning models - K-Nearest Neigh-
bors (KNN) (see e.g. [18]), Decision Trees (see e.g. [4]), and Random Forest
(see e.g. [7]) - were developed to predict energy production, leveraging their
distinct capabilities. KNN is e�ective at capturing localized patterns and non-
linear relationships by relying on proximity-based predictions, though it may
face scalability challenges with large datasets. Decision Trees provide an inter-
pretable, rule-based structure that highlights key decision paths and e�ectively
handles both numerical and categorical data, requiring careful tuning to avoid
over�tting. Random Forest enhances prediction robustness by combining multi-
ple decision trees trained on random subsets of data, o�ering improved accuracy
and resistance to noise while ranking feature importance. The evaluation of these
models provided valuable insights into their strengths and applicability to energy
production forecasting.

To assess the e�ectiveness of each model, standard error metrics are used.
These include Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Percentage Error (MAPE), and the coe�cient of determination
(R2) (see e.g. [3]).

3.4 Feature Importance Analysis

Feature importance analysis focuses on understanding the impact of individual
features on the predictive accuracy of a model. This is particularly crucial in ap-
plications such as energy forecasting, where the reliability of predictions directly
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in�uences decision-making. By quantifying the contribution of each feature, fea-
ture importance analysis enhances transparency and supports the interpretabil-
ity of machine learning models.

To achieve this, SHapley Additive exPlanations (SHAP) are employed as
a robust method for assessing feature in�uence. SHAP values are grounded in
cooperative game theory, providing a mathematically rigorous approach to dis-
tributing the contribution of each feature in a model's prediction. The SHapley
value for a feature i is computed as:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)] , (5)

where S is any subset of features not containing i, N is the set of all features,
f(S ∪ {i}) is the prediction with feature i, and f(S) is the prediction without
feature i.

In the context of the developed models, SHAP values are used to evaluate how
each feature contributes to the �nal predictions. This analysis includes generating
summary plots and dependence plots. The summary plot aggregates the SHAP
values of all features across all observations, showing both the magnitude and
direction of each feature's contribution. Formally, the SHAP summary plot (SSP)
is represented as:

SSP = {(ϕi1, xi1), (ϕi2, xi2), . . . , (ϕin, xin)}, (6)

where ϕij is the SHAP value for feature i and observation j, and xij is the
corresponding feature value.

Dependence plots are used to visualize the interaction between two features.
For a given feature i, the dependence plot (SDP) is de�ned as:

SDP = {(xij , ϕij) | j = 1, . . . , n}. (7)

This allows us to interpret not only the individual impact of each feature but
also their interactions, highlighting regions of the feature space where certain
variables have ampli�ed or diminished e�ects on the prediction.

By incorporating these SHAP-based visualizations and metrics, the method-
ology provides a comprehensive understanding of the model's behavior, enabling
users to identify critical features, mitigate biases, and re�ne models for improved
predictive performance.

3.5 Dataset

The experiments utilized historical data on electricity production from photo-
voltaic panels installed at the University of Main. This dataset spanned four
years (2018-2021) and included detailed weather information obtained from two
sources: NASA POWER (see [10]) and World Weather Online (see [19]). The
data from the University of Main provided actual energy production values, al-
lowing for accurate forecasting under various weather conditions. All data used
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in the experiments were preprocessed (see Section 3.1). A custom dataset was
used instead of benchmark datasets to ensure alignment with real-world condi-
tions, as it combines actual photovoltaic production data with localized weather
information relevant for future applications in Poland.

Among the weather variables were features such as solar radiation intensity
(IDIFF), albedo (IALB), atmospheric transmissivity (KT), UV index (IUV), aver-
age temperature (Tavg), humidity (Hrel), visibility (V ), and wind speed (vwind).
Table 1 provides a comprehensive overview of all features and their explanations.
Each feature contributes to the analysis of energy production and the associated
meteorological conditions.

4 Results

This section outlines the experimental procedure conducted to evaluate the ef-
fectiveness of the proposed photovoltaic energy production prediction system. It
covers the datasets used, experiment con�guration, results achieved by individ-
ual models, and analysis of the obtained results using evaluation metrics.

4.1 Experiment Con�guration

We conducted experiments on a dataset split into a training set (80%), containing
historical data from 2018 to 2021, and a testing set (20%). To mitigate over�tting,
we applied 5-fold cross-validation. All models were trained on the same data and
then evaluated on the testing set.

The models from Section 3.3 were con�gured as follows: 1) K-Nearest Neigh-
bors - we set the number of neighbors to k = 5 and used the Euclidean distance
measure; 2) Decision Tree - we set a maximum tree depth of 10 and required a
minimum of 5 samples per leaf; 3) Random Forest - we used 100 trees, each with
a maximum depth of 10. For each split, 80% of the input features were randomly
selected.

All simulations were performed in a custom test environment implemented
in Python.

4.2 Data Processing and Feature Selection

Historical data on energy production and weather conditions were divided into
training and testing sets.

To identify the most relevant input variables, an automated feature selection
method was applied (see Section 3.2). It removed redundant or highly corre-
lated variables (r > 0.8) and retained those with the greatest impact on model
performance, improving stability and explainability.

XGBoost was then used to train �ve models under varying conditions. This
ensemble approach captured diverse patterns in the data, enhancing general-
ization and reducing over�tting. Each model ranked features using the F-score
metric (Fig. 2).
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Table 1. Features used in the simulations (weather features and the amount of pro-
duced energy).

Feature

Symbol

Feature Name Unit

Tmax The highest temperature ◦C

Tmin The lowest temperature ◦C

Tavg The mean temperature ◦C

Stotal The total snowfall cm

Hsun The total number of sunlight hours h

IUV Strength of sunburn-producing ultraviolet radiation unitless

Imoon The percentage of the Moon's visible disk illuminated %

vwind The speed of the wind km/h

0wind The meteorological wind direction ◦

Hrel The amount of water vapor present in air %

V The maximum distance one can see km

P The force exerted by the atmosphere at a point on
the earth's surface

hPa

RTOA The total solar irradiance incident on a horizontal
plane at the top of the atmosphere

W/m2

IDNI Direct solar irradiance on a horizontal plane aligned
perpendicularly to the sun

W/m2

ISRF The all-sky rate of re�ectivity of the earth's surface W/m2

IDIFF The di�use solar irradiance incident on a horizontal
plane at the surface of the earth

W/m2

Pcorr The bias-corrected average of total surface precipita-
tion in water mass

mm

KT A fraction representing clearness of the atmosphere unitless

Eprod The amount of energy produced by the solar plant kWh

In model 1, KT (clearness index) and RTOA (solar irradiance at the top of
atmosphere) were the top predictors, with Hsun and IDIFF also contributing
signi�cantly. This con�rmed the importance of atmospheric conditions in PV
energy production.

For models 2-5, KT , IDIFF and Hsun consistently remained the top-ranked
features, emphasizing their fundamental role across all models. However, there
were notable di�erences in the ranking of other features. In model 2, IUV (ul-
traviolet radiation) became more prominent, indicating the importance of ul-
traviolet radiation under certain weather conditions. Model 3 introduced Hrel

(water vapor present in air) as a important feature. In model 4, IUV maintained
moderate importance, suggesting that ultraviolet radiation again might have
secondary e�ects on energy production. Meanwhile, model 5 focused primarily
on atmospheric transmissivity, solar irradiance and sunlight hours, with fewer
additional variables contributing signi�cantly. Despite these di�erences, the con-
sistent ranking of KT , IDIFF and Hsun across all models con�rmed their pivotal
in�uence on the prediction of photovoltaic energy production.
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After ranking, Recursive Feature Elimination (RFE) was applied to itera-
tively remove less important features. This resulted in a compact, optimized
feature set of four variables (Table 2).

The �nal selection balanced prediction accuracy, interpretability, and e�-
ciency. Although up to 10 features were initially identi�ed, only four were re-
tained based on correlation �ltering and F-score rankings.
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Fig. 2. Top features selected by: a) XGBoost Model 1, b) XGBoost Model 2, c) XG-
Boost Model 3, d) XGBoost Model 4, e) XGBoost Model 5.

Table 2. Final set of features selected by the RFE algorithm.

Feature

Symbol

Feature Name Meaning for

Models

Hsun The total number of sunlight hours Medium

IUV Strength of sunburn-producing ultraviolet radia-
tion

High

IDIFF Di�use solar irradiance incident on a horizontal
plane at the surface of the earth

High

KT A fraction representing clearness of the atmo-
sphere

Medium

4.3 Evaluation of the Algorithm

Each model was optimized using cross-validation techniques, and the �nal pa-
rameters were selected based on the results of the RMSE, MAPE, and R² met-
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rics. The models' performances were compared, and the results are summarized
in Table 3.

Table 3. Results of predictive models.

Model RMSE MAPE R²

Results for selected features

K-Nearest Neighbors 140.56 14.50% 0.85

Decision Tree 120.45 12.34% 0.89

Random Forest 105.30 10.78% 0.92

Results for all features

K-Nearest Neighbors 52837.74 100.57% 0.85

Decision Tree 81776.65 86.54% 0.64

Random Forest 48414.28 77.32% 0.87

The results indicate that the Random Forest model consistently outper-
forms the other models across both scenarios�using selected features and us-
ing all features. With the selected features, Random Forest achieves the low-
est RMSE (105.30) and MAPE (10.78%) while obtaining the highest R² score
(0.92), demonstrating its ability to generalize well and deliver accurate predic-
tions. When all features are used, Random Forest still performs better than the
other models, but its RMSE and MAPE values increase signi�cantly (48414.28
and 77.32%, respectively), likely due to the inclusion of irrelevant or redundant
features.

However, it should be noted that direct comparisons with other authors'
methods are challenging due to the speci�city of the datasets used in this study
and the lack of publicly available data for replication and simulation. Neverthe-
less, we compare our results (RMSE = 105.30, MAPE = 10.78%, R2 = 0.92)
with the best-performing models (in the context of R2) reported in [1] and [6].
In [6], which employs the Random Forest algorithm, the reported metrics are
RMSE = 252.11, MAPE = 10.07%, and R2 = 0.72. In contrast, [1] uses the Ex-
tra Trees method and achieves RMSE = 41.92, MAPE = 0.08%, and R2 = 0.91.
In this study, we prioritize R2 as a key performance indicator, as it quanti�es
the proportion of variance in the target variable explained by the model. This
is particularly important in photovoltaic energy forecasting, where capturing
variability caused by dynamic environmental conditions is critical for producing
reliable predictions.

Overall, these results highlight the importance of feature selection in improv-
ing model performance. Random Forest, in particular, demonstrates robustness
and accuracy, making it the most suitable model for this task.

4.4 Importance of features

To analyze the impact of individual features on prediction outcomes, the SHAP
tool was utilized, providing detailed insights into feature importance for the
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Table 4. SHAP values for K-Nearest Neighbors, Decision Tree and Random Forest
models.

K-Nearest Neighbors model

Ksun KT IDIFF IUV
2.037 × 10−10 2.037 × 10−10 2.037 × 10−10 2.037 × 10−10

1.048 × 10−10 1.048 × 10−10 1.048 × 10−10 1.048 × 10−10

0.000 0.000 0.000 0.000

1.048 × 10−10 1.048 × 10−10 1.048 × 10−10 1.048 × 10−10

1.543 × 10−10 1.543 × 10−10 1.543 × 10−10 1.543 × 10−10

-3.027 × 10−10 -3.027 × 10−10 -3.027 × 10−10 -3.027 × 10−10

-1.281 × 10−10 -1.281 × 10−10 -1.281 × 10−10 -1.281 × 10−10

4.191 × 10−10 4.191 × 10−10 4.191 × 10−10 4.191 × 10−10

-2.561 × 10−10 -2.561 × 10−10 -2.561 × 10−10 -2.561 × 10−10

1.048 × 10−10 1.048 × 10−10 1.048 × 10−10 1.048 × 10−10

Decision Tree model

Hsun KT IDIFF IUV
380.920 1183.189 -3626.670 -90.425

160.514 104.241 -179.825 -12.420

433.181 1502.080 -2575.660 -21.308

380.920 1183.189 -3626.670 -90.425

160.514 104.241 -179.825 -12.420

433.181 1502.080 -2575.660 -21.308

433.181 1502.080 -2575.660 -21.308

380.920 1164.897 -3590.084 -90.425

380.920 1183.189 -3626.670 -90.425

433.181 1502.080 -2575.660 -21.308

Random Forest model

Hsun KT IDIFF IUV
208.762 504.179 -878.081 14.684

-440.186 -531.175 798.061 558.297

258.659 794.225 -478.862 733.082

-573.083 -105.456 318.214 235.924

535.856 -1295.585 526.573 239.871

274.316 23.506 808.128 221.667

-260.073 -817.188 -48.584 150.036

135.853 -329.904 894.965 201.821

321.430 484.074 -870.427 14.911

248.315 49.301 799.588 221.409

K-Nearest Neighbors, Decision Tree, and Random Forest models. The SHAP
summary plots (see Fig. 3) highlight IDIFF and KT as the most in�uential fea-
tures across all models, with Hsun and IUV having more minor roles. The Deci-
sion Tree and Random Forest models demonstrated greater sensitivity to these
key features, exhibiting a wider range of SHAP values, whereas the K-Nearest
Neighbors model showed smaller SHAP values, re�ecting a more balanced but
less feature-speci�c prediction pattern.
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Fig. 3. SHAP summary plots for: a) K-Nearest Neighbors Model, b) Decision Tree
Model, c) Random Forest Model.

The SHAP summary plots visualize feature importance across the dataset.
The x-axis shows each feature's contribution to the prediction (positive or nega-
tive), while the y-axis ranks features by overall importance. Each dot represents
a sample, with color indicating the feature's value (blue = low, red = high),
helping to reveal how feature magnitude in�uences model output.

For example, IDIFF (di�use irradiance) and KT (clearness index) typically
show higher SHAP values when their raw values are high (Fig. 3b�c), con�rm-
ing their strong positive impact on photovoltaic energy production. This pattern
suggests that clearer atmospheric conditions and higher levels of scattered sun-
light both favor energy generation, though in di�erent ways. Importantly, these
SHAP visualizations help uncover nonlinear interactions and context-dependent
e�ects that traditional feature importance methods may overlook.

The SHAP values for the K-Nearest Neighbors model are very small�on
the order of 10−10 or e�ectively zero (e.g., 2.037 × 10−10, 0.000 × 100; see
Table 4) - indicating that KNN does not assign signi�cant predictive weight
to any individual feature, including Hsun, KT , IDIFF , and IUV . In contrast,
the Decision Tree model exhibits large and highly variable SHAP values: KT

and Hsun register high positive contributions (e.g., 1183.189, 1502.080 for KT ;
380.920, 433.181 for Hsun), while IDIFF shows strong negative in�uence (e.g.,
−3626.670, −2575.660), suggesting that increased di�use irradiance lowers pre-
dicted output. The Random Forest model demonstrates a more moderated but
still substantial range of SHAP values, with KT and IDIFF again as dominant
predictors. For example, Hsun shows both positive and negative contributions
(e.g., 208.762, −440.186), re�ecting its context-dependent role. The wide vari-
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ance in KT 's SHAP values highlights its �exible in�uence under di�erent atmo-
spheric conditions, while IDIFF maintains a consistently strong negative impact
when values are high.

In summary, SHAP analysis provides valuable insight into both the impor-
tance and the conditional e�ects of key features. KNN o�ers limited interpretabil-
ity due to negligible SHAP values, the Decision Tree model is highly sensitive to
speci�c variables, and Random Forest delivers a more stable yet informative fea-
ture interpretation - particularly for KT and IDIFF - enhancing understanding
of the factors driving photovoltaic energy predictions.

5 Conclusions

This paper presents a machine learning-based system for photovoltaic (PV)
energy forecasting, integrating feature selection techniques and explainability
methods to enhance prediction accuracy and model interpretability. The pro-
posed methodology leverages Recursive Feature Elimination (RFE) and SHapley
Additive exPlanations (SHAP) to re�ne the feature set and analyze the contri-
bution of selected predictors. The experimental results demonstrate that an op-
timized feature set signi�cantly improves model performance while maintaining
computational e�ciency.

The evaluation of various machine learning models, including K-Nearest
Neighbors, Decision Trees, and Random Forest, highlights the high predictive
capability of tree-based algorithms, particularly Random Forest, which achieved
the lowest RMSE and highest R2. Feature importance analysis con�rmed that
atmospheric transmissivity (KT ), di�use solar irradiance (IDIFF), and sunlight
hours (Hsun) play a dominant role in PV energy production forecasting. The use
of SHAP values provided valuable insights into how these factors in�uence model
predictions, enhancing the transparency and interpretability of the forecasting
system.

Future work will focus on developing a system to identify optimal locations
for photovoltaic farms using heatmap-based feature importance analysis. By in-
corporating key environmental, seasonal, and temporal variables, the system
will support precise long-term forecasting. The �exible framework will also al-
low integration of alternative algorithms, such as neural networks and gradient
boosting, to enhance predictive performance.
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