
First Experiences on Exploiting
Physics-Informed Neural Networks for

Approximating Solutions of a Biological model

Attilio Di Vicino1[0009−0009−8159−9118], Pasquale De
Luca1,2[0000−0001−7031−920X], and Livia Marcellino1,2[0000−0003−2319−8008]

1 Department of Science and Technology, Parthenope University of Naples, Centro
Direzionale C4, Naples, I-80143

attilio.divicino001@studenti.uniparthenope.it
2 UNESCO Chair “Environment, Resources and Sustainable Development”,

Department of Science and Technology, Parthenope University of Naples, Centro
Direzionale, Isola C4, (80143) Naples, Italy

{pasquale.deluca,livia.marcellino}@uniparthenope.it

Abstract. Recent advances in artificial intelligence have changed the abil-
ity to study and model complex biological phenomena. Physics-Informed
Neural Networks (PINNs) represent a novel approach that link deep learn-
ing techniques with fundamental physical principles in solving partial
differential equations. This work proposes an implementation of PINNs
for modeling tumor-induced angiogenesis through a system of coupled
reaction-diffusion equations that track the interplay between different
biological agents. We introduce a computational framework that combines
neural network architectures with physics-based constraints, using an
optimized loss function incorporating both empirical data and theoretical
principles via strategic collocation points. Experimental results validate
the reliability of our approach in predicting the intricate spatial and
temporal patterns of blood vessel formation, showing the potential of
PINNs as a robust computational tool for simulating complex biological
processes.

Keywords: Physics-Informed Neural Networks · Machine learning algo-
rithms · tumor angiogenesis · numerical computations

1 Introduction

Machine learning has emerged as a powerful tool for analyzing and understanding
complex systems across various scientific disciplines [1]. Among machine learning
approaches, deep learning has shown good capabilities in capturing intricate
patterns and relationships in data through its layered neural network architecture
[2]. This capability has led to innovation in many fields, from computer vision to
scientific computing [3]. Particularly, a promising contribute of deep learning is
given by data assimilation that is the process of combining mathematical models
with observational data to improve predictions. Traditional data assimilation
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techniques, while effective, often address computational challenges when dealing
with complex systems. Deep learning methods offer new scenarios for improving
these techniques [4–6]. These advances in machine learning and data assimilation
are particularly relevant for dynamical systems described by partial differential
equations (PDEs). In this work, we focus on a specific system of PDEs modeling
tumor-induced angiogenesis. The governing equations capture the complex spatial
and temporal dynamics of several components, including diffusion, chemical
signaling, and tissue degradation. In order to solve the system of PDEs, we employ
Physics-Informed Neural Networks (PINNs) [7]. This approach represent a novel
integration of deep learning with physical modeling, where the neural network
is trained not only on data but also constrained by the physical constraints
of the PDEs. The main contribution of this work include the development
of a PINN framework specifically adapted for coupled biological PDEs, the
implementation of appropriate boundary and initial conditions within the neural
network architecture. In PINNs, both sequential methods and parallel approaches
can be leveraged to accelerate and simplify the training and inference processes [8–
10]. The validation of the PINN solutions against established numerical methods
is shown in experimental results.

The remaining part of this paper is organized as follows: Section 2 presents
the mathematical background of both the biological model and PINN approach.
Section 3 shows our numerical results and validates our approach through com-
prehensive experiments. Finally, Section 4 concludes the paper.

2 Mathematical Background and Model Description

In this section, we present a description of the mathematical model governing
tumor-induced angiogenesis and introduce our computational approach using
Physics-Informed Neural Networks [1, 3]. The model captures the complex in-
teractions between various biological components involved in the angiogenic
process. Let Ω = [0, Lf ] be the spatial domain representing the tissue region
where angiogenesis occurs, and let T = [0, Tf ] be the temporal domain of interest.
We consider a coupled system of reaction-diffusion partial differential equations
that model the evolution of m = 4 key variables: C(x, t) representing the den-
sity of endothelial cells, P (x, t) denoting the concentration of proteases, I(x, t)
describing the density of inhibitors, and F (x, t) representing the density of the
extracellular matrix [12]. The governing system of PDEs is given by:

∂tC = dC∂xxC + ∂x(fI∂xI)− ∂x(fF∂xF )− ∂x(fT∂xT ) + k1C(1− C)

∂tP = dP∂xxP − k3PI + k4TC + k5T − k6P

∂tI = dI∂xxI − k3PI

∂tF = −k2PF (x, t) ∈ Ω × T ,

(1)

subject to Neumann boundary conditions, reflecting the no-flux at the domain
boundaries:

∂xu(0, t) = ∂xu(Lf , t) = 0, ∀t ∈ T , u ∈ {C,P, I, F}, (2)
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and following initial conditions:

C(x, 0) =

{
C0, 0 ≤ x ≤ a

0, a < x ≤ Lf

P (x, 0) = ξ1, I(x, 0) = ξ2, F (x, 0) = ξ3

(3)

where ξi represent small random perturbations that account for biological vari-
ability and a defines the initial width of the endothelial cell distribution. The
first equation describes the evolution of endothelial cells, incorporating diffu-
sion (dC∂xxC), chemotaxis toward inhibitors (∂x(fI∂xI)), haptotaxis in response
to the extracellular matrix (∂x(fF∂xF )), response to tumor angiogenic factors
(∂x(fT∂xT )), and logistic growth (k1C(1− C)). The protease equation includes
diffusion, degradation through interaction with inhibitors (−k3PI), production
by endothelial cells in response to tumor factors (k4TC), direct production due to
tumor factors (k5T ), and natural decay (−k6P ). The inhibitor equation accounts
for diffusion and consumption through interaction with proteases, while the
extracellular matrix equation represents its degradation by proteases, as analyzed
in [13]. The taxis coefficients, that modulate cell movement, are defined as:

fF = α1C (haptotaxis),
fI = α2C (chemotaxis),

fT =
α3C

1 + α4T
(tumor angiogenic factor response).

The tumor angiogenic factor distribution is modeled as a static spatial profile:

T (x) = exp(−ϵ−1(Lf − x)2)

representing a diffusive profile emanating from the tumor location. The physical
and mass properties of the system are discussed in [14].

2.1 Physics-Informed Neural Network Framework

In order to numerically solve the system (1), we employ a Physics-Informed
Neural Network approach [15, 16]. The mathematical formulation of a deep
neural network structure defined by means of its components, mapping from the
space-time domain Ω × T to the solution space Rm through the transformation
Nθ : Ω × T → Rm, where (x, t) 7→ u(x, t) = (C(x, t), P (x, t), I(x, t), F (x, t))T .
The architecture includes an input layer with n0 = 2 neurons corresponding
to the space-time coordinates x0 = [x, t]T , followed by multiple hidden layers
with nl neurons each, and concluding with an output layer of nL = m = 4
neurons representing the solution components. The full network architecture can
be defined as:

Nθ(x, t) = WLσ(WL−1σ(. . . σ(W1[x, t]
T + b1) . . .) + bL−1) + bL. (4)
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The Eq. (4) implements the network propagation through the following layer-
wise computations:

x1 = σ(W1x0 + b1), xl = σ(Wlxl−1 + bl), xL = WLxL−1 + bL = Nθ(x, t)
(5)

where the first equation represents the input layer transformation, the middle
term describes the hidden layers propagation for l = 2, . . . , L − 1, and the
last one provides the final output layer computation that produces the neural
network output Nθ(x, t). The weight matrices and bias vectors have dimensions
Wl ∈ Rnl+1×nl and bl ∈ Rnl+1 respectively. We define the total loss functional
as:

J (θ) =

∫
Ω×T

∥L[Nθ]∥2L2 dx dt︸ ︷︷ ︸
PDE Loss

+ λ1

∫
T

(
∥∂Nθ

∂x
(0, t)∥2L2 + ∥∂Nθ

∂x
(Lf , t)∥2L2

)
dt︸ ︷︷ ︸

Boundary Condition Loss

+ λ2

∫
Ω

∥Nθ(x, 0)− u0(x)∥2L2dx .︸ ︷︷ ︸
Initial Condition Loss

(6)

The Eq. (6) is governed by: the nonlinear differential operator

L : H1(Ω × T ) → L2(Ω × T ),

which incorporates the physical laws; Neumann boundary conditions defined
on ∂Ω = {0, Lf}; and initial conditions u0(x) ∈ H1(Ω). The hyperparameters
λ1, λ2 ∈ R+ balance these interacting objectives in the L2(Ω) topology, ensuring
well-posedness of the variational formulation through appropriate Sobolev space
regularization [7]. For simplicity, we discretize the loss functional using collo-
cation points. Let {(xi, ti)}Ni=1 ⊂ Ω × T be a set of interior collocation points,
{(0, tbj), (Lf , t

b
j)}

Nb
j=1 be boundary points, and {xk}N0

k=1 ⊂ Ω be initial points. The
discrete counterpart of (6) yields to:

Jh(θ) =

N∑
i=1

wi∥L[Nθ](xi, ti)∥2L2

+ λ1

Nb∑
j=1

(
∥∂Nθ

∂x
(0, tbj)∥2L2 + ∥∂Nθ

∂x
(Lf , t

b
j)∥2L2

)

+ λ2

N0∑
k=1

∥Nθ(xk, 0)− u0(xk)∥2L2 ,

(7)

where wi are quadrature weights. The required derivatives are computed
using automatic differentiation, which provides exact derivative calculations
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through the neural network. The training process involves minimizing the discrete
loss function using stochastic gradient descent, specifically the Adam optimizer
with an adaptive learning rate strategy. Let us define the optimal solution
u∗ = (C∗, P ∗, I∗, F ∗)T as the vector-valued function that satisfies PDEs system
(1) with the given initial and boundary conditions, obtained through the PINN
optimization process. More formally:

Definition 1 (Optimal Solution). Let V = {u ∈ [H1(Ω × T )]m : ∂xu|∂Ω =
0, ∥u∥H1 < ∞} be the space of admissible solutions. The optimal solution u∗ is
defined as:

u∗ = argmin
u∈V

Jh(u)

where Jh(u) is the discrete functional:

Jh(u) =

N∑
j=1

∥L[u]∥2L2(Ωj×Tj)
+ BCh[u] + ICh[u]

with discretized boundary and initial conditions terms:

BCh[u] = ∥∂xu(0, ·)∥2L2(Th)
+ ∥∂xu(Lf , ·)∥2L2(Th)

ICh[u] = ∥u(·, 0)− u0∥2L2(Ωh)
.

where Ωh = {xi}Nx
i=1 and Th = {tj}Nt

j=1 represent the spatial and time discretization
points respectively, with Nx and Nt denoting the number of collocation points in
each domain.

The complete PINN-based solution process for the angiogenesis model (1) is
compactly re-written as follows:

u∗ = argmin
θ∈Θ

Jh(θ)

= Nθ∗(x, t) :


θ∗ = argminθ∈Θ

{
∥L[u]∥2L2(Ω×T ) +BC[u] + IC[u]

}
subject to:
L[u] = 0 in Ω × T
∂xu = 0 on ∂Ω × T
u(x, 0) = u0(x) in Ω

where θ∗ are the optimal network parameters deriving from the minimization
of the discrete loss functional Jh. This formulation provides an effective framework
for approximating the solution of the PDE system, as will be shown by numerical
experiments in Section 3. The previous procedures of the framework can be
summarized in the following Algorithm:
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Algorithm 1 PINN-based Solution for Angiogenesis Model
1: Input: Domain parameters Ω, T , model parameters {di, ki, αi}
2: Numerical Model:
3: Select collocation points {(xi, ti)}Ni=1, {(0, tbj), (Lf , t

b
j)}

Nb
j=1, {xk}N0

k=1

4: Define neural architecture Nθ and loss function Jh

5: Training Process:
6: Initialize θ(0) randomly
7: while not converged do
8: Compute PDE residuals L[Nθ]
9: Evaluate boundary and initial conditions

10: Update θ via Adam optimizer with adaptive weights
11: end while
12: Output: Trained network Nθ∗ approximating solution u

3 Results and discussion

In this section we show several experiments that confirm the reliability of proposed
approach. We performed the tests on a super-computer machine, offered by
CINECA [17], with following technical specifications: 1 CPU Intel Xeon 8358
32 cores, 2.6 GHz (8 × 64) GB RAM , NVIDIA A100-SXM-64GB. The results
are achieved by a mean on 10 executions of the Algorithm 1. We consider the
spatial domain Ω = [0, 1] and temporal domain T = [0, 50]. In order to avoid
numerical instabilities and, according to [14], the model parameters are set as
follows: diffusion coefficients: dC = dP = dI = 10−3, reaction rates: ki = 0.1 for
i = 1, . . . , 6, and, taxis coefficients: αi = 0.1 for i = 1, . . . , 4. The implementation
of Algorithm 1 has been performed by using PyTorch1.

Test 1. Numerical validation. In order to evaluate the accuracy of our
PINN solutions, we compare them with reference solutions (uFE) obtained using
a schema, defined in [14], at specific time points t ∈ {5, 10, 15, 25, 50}. Table 1
shows the relative L2 errors computed as:

E(t) =
∥Nθ∗(·, t)− uFE(·, t)∥L2(Ω)

∥uFE(·, t)∥L2(Ω)
. (8)

The relative L2 errors in Table 1 highlight distinct patterns across components

Table 1. Relative L2 errors at different time points

Component t = 5 t = 10 t = 15 t = 25 t = 50

C 3.82e-3 5.67e-3 8.91e-3 1.24e-2 1.89e-2
P 2.13e-3 2.89e-3 3.45e-3 4.12e-3 5.34e-3
I 2.45e-3 2.98e-3 3.56e-3 4.23e-3 5.12e-3
F 1.92e-3 2.34e-3 2.87e-3 3.45e-3 4.23e-3

and time points. The component (C) shows the highest errors due to its complex
1 https://pytorch.org
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nonlinear dynamics. The protease concentration, (P ), and inhibitor density (I)
demonstrate more stable behavior. The extracellular matrix density (F ) exhibits
the most stable error progression. The hierarchical error pattern (C > P ≈ I > F )
correlates with each component of equation complexity, while maintaining overall
accuracy below 2% throughout the simulation, validating the robustness of our
PINN approach.

Test 2. Computational performance analysis. We conducted a compari-
son between CPU and GPU execution times.

Table 2. Computational performance comparison between CPU and GPU implementa-
tions

Dataset size CPU Time (s) GPU Time (s)
5625 27.71 10.70
10000 52.64 10.96
15625 75.34 17.69

Table 2 presents the execution times for both CPU and GPU implementations
across different dataset sizes. The results exhibit interesting patterns in the
computational performance. The significant performance gain appears with larger
datasets, where the GPU implementation achieves a remarkable 9.80× speedup
over the CPU counterpart.

4 Conclusions

In this work, we have presented a Physics-Informed Neural Network approach
for solving a complex biological system modeling tumor-induced angiogenesis.
The presented framework integrates deep learning capabilities with physical
constraints through an optimized loss function that incorporates PDE residuals,
boundary, and initial conditions. The numerical validation demonstrated the
reliability of our approach, with relative L2 errors consistently below 2% across
all system components, even for extended time horizons. The computational
performance analysis revealed significant speedup (up to 9.80×) when utilizing
GPU acceleration, particularly beneficial for larger datasets. Future developments
could include extending this framework to handle multi-scale environmental
processes, incorporating data assimilation techniques for real-time environmental
monitoring, and adapting the architecture for coupled atmosphere-ocean systems.
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