
Cluster-based Reduced-order Modelling and
Control for Chaotic Systems with Extreme Events

Yuxuan Yang1,2 and Nguyen Anh Khoa Doan1

1 Faculty of Aerospace Engineering, Delft University of Technology, 2629HS Delft,
The Netherlands

n.a.k.doan@tudelft.nl
2 College of Design and Engineering, National University of Singapore, Singapore

117575, Singapore

Abstract. Chaotic systems with extreme events present significant chal-
lenges in terms of prediction and control due to their complex nonlinear
dynamics and potential high dimensionality. We investigate here the use
of cluster-based reduced-order modelling (ROM) and control techniques
applied to such systems. In this approach, we first model the dynamics
of the system by identifying clusters of similar states and only model
the transition between clusters. Then, based on those identified clusters,
we define a per-cluster control parameter. This effectively neglects the
specific dynamics within a given cluster while retaining the main dy-
namics of the full-order model. The considered test case is the Moehlis-
Faisst-Eckhart (MFE) system which exhibits extreme events in the form
of quasi-relaminarization events. The influence of the number of clusters
and the order of modelling on the accuracy of the resulting reduced-order
cluster-based model is explored. A cluster-based control strategy is also
proposed and applied to the MFE system to prevent extreme events.
This strategy manages to achieve the objectives with a large reduction
in extreme events in the controlled MFE system, decreasing the amount
of time spent in extreme state by 90% and the mean kinetic energy by
20%. This work highlights the potential of cluster-based reduced-order
modelling and control.

Keywords: Chaotic System · Reduced-order Modelling · Extreme Events
· Clustering · System Control.

1 Introduction

Most physical systems of importance to our society, from climate systems to
biological ones, exhibit a chaotic dynamics that involves nonlinear interactions
between multiple spatio-temporal scales [21]. This makes their study and pre-
diction particularly challenging, a difficulty which is compounded by their high
dimensionality. In addition, many of these chaotic systems can also exhibit ex-
treme events, which are abrupt short-lasting changes in the systems’ state, often
accompanied by grave consequences. Examples of such chaotic systems include
extreme atmospheric events in our atmosphere or rogue waves in the ocean
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[22,23]. Therefore, there is a need to be able to predict and control these chaotic
systems and their extreme events.

Traditionally, the prediction of these systems is based on numerically solving
the equations governing their dynamics [19], using some form of spatio-temporal
discretization schemes. However, given their high dimensionality, this approach
requires large computational resources, impeding our ability to obtain quick
predictions. Additionally, developing control strategies based on the full order
model would become excessively challenging. Therefore, reduced-order modelling
(ROM) techniques have been developed in the past decades to obtain models
which can provide quick forecast of the essential evolution of the full chaotic
system and be used as a basis for the development of control strategies. More
recently, advances in machine learning have greatly contributed to improving
the accuracy of such ROMs [24].

Reduced-order modelling techniques can generally be divided into two cate-
gories. The first category requires the knowledge of the governing equations of
the system from which appropriate physics-based simplification can be made.
Alternatively, the simplification can be obtained by projecting a set of trun-
cated modes onto the governing equations, as is done in the proper orthogonal
decomposition (POD)-Galerkin approach [9].

More recently, neural networks have also been used for reduced-order mod-
elling [3]. Deep convolutional autoencoders involve neural networks that are used
to obtain a reduced representation of the high dimensional data onto a latent
space. These have shown a strong ability to reduce the spatial dimensions with
little error when applied to turbulent flows. In addition, echo state networks
have been used to learn the dynamics of the flow in that reduced space [17].
Nonetheless, these kinds of approaches may however not be easily applicable
to the prediction of extreme events in chaotic systems, and nor be used as a
basis for their control and prevention. This is because extreme events are short
in duration, occur infrequently, and thus, are challenging to capture using such
machine learning methods as they require large amount of data which may be a
limiting factor considering the rarity of extreme events [4].

An alternative data-driven approach is called Cluster-based modelling, first
developed by Kaiser et al. [11]. In contrast to the previous approaches, it aims
to reduce the complexity of the system dynamics by only considering transitions
through set of flow states identified with clustering techniques. These clusters
are typically associated with coherent structures and, therefore provide an ap-
proach in identifying relevant states that the flow takes during its evolution [7].
This represents an advantage of cluster-based modelling compared to other deep
learning approaches as they identify "clusters of flow states" that can be di-
rectly targeted for control instead of relying on a full-order representation of the
flow in which to devise control. Originally, this approach, called cluster-based
Markov modelling (CMM), only models the transitions between clusters in a sta-
tistical sense, but recent advances like the cluster-based network model (CNM)
[12] have refined such an approach by incorporating time-resolved data and mod-
elling the underlying dynamics via a directed network. Extensions include tCNM
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[10], optimizing centroids for better performance, and HiCNM [5], which ana-
lyzes multi-frequency and multi-attractor behavior. In addition, cluster-based
reduced order modelling has been extended for control applications, where the
control strategies is defined per-cluster, as in [15,25]. This cluster-based approach
appears promising for the reduced-order modelling and control of extreme events
considering it is based on identifying clusters of states, which may be able to
segregate between extreme and normal flow states.

In this work, we investigate this approach by using cluster-based reduced
order modelling approaches for the statistical prediction and control of extreme
events in chaotic systems. This is applied to the Moehlis-Faisst-Eckhart (MFE)
system, which is a model of a turbulent shear flows where extreme events take
the form of quasi-relaminarisation events [14].

The paper is structured as follows. First, the main features of the MFE
system are briefly described. Then, the methodology for modelling and con-
trol is presented, detailing its various steps, including clustering, cluster-based
Markov model, cluster-based network model, and cluster-based control. Section
4 presents the results of applying these methods to the MFE system. The paper
is concluded with a summary of the main findings and directions for future work.

2 MFE system

The Moehlis-Faisst-Eckhart (MFE) system is a low-dimensional model for tur-
bulent shear flows [14]. The MFE system models a sinusoidal shear flow in a
domain Lx × Ly × Lz (with Ly = 2) where the fluid flows between two free-slip
walls at y = −1 and y = 1 and is subjected to a sinusoidal body force. The MFE
system models this flow using nine modes whose amplitudes, ai, are governed
by ordinary differential equations provided hereunder in Eqs. (1) to (9). These
modes describe the basic mean velocity profile and its modification, downstream
vortices, streaks, and instabilities of streaks, with other modes being a conse-
quence of their nonlinear interactions. The velocity field can be recovered from
the modal amplitude as u(x, t) =

∑9
k=1 ai(t)ui(x) where ui(x) are the spatial

modes whose expressions can be found in [14].
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In the above, Re is the Reynolds numbers and the other parameters are defined
as provided in Eqs. (10) and (11).
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√
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For our considered case, the size of the domain is set to Lx = 4π, Lz = 2π and
the Reynolds number is set to 800 to ensure a complete turbulent system, as done
in [20]. The MFE system was simulated using the Runge-Kutta 4 method, for a
duration of 50000 time units, using a timestep ∆t = 0.25. The evolution of the
nine modal coefficients is shown in Fig. 1 where their chaotic evolution can clearly
be seen. The associated time evolution of the kinetic energy k = 1

2

∑9
i=1 a

2
i and

dissipation rate ϵ =
∫
V
|∇ × u|2dV , with V being the volume of the domain,

are shown in Fig. 2. In this figure, extreme events can be readily observed,
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Fig. 1. Time series of the nine modal coefficients, (a) a1 to (i) a9 of the MFE system.

(a) (b)
(c)

Extreme
event

Extreme
eventExtreme

event

Fig. 2. Time evolution of (a) ϵ and (b) k in the MFE system and (c) its representation
in the k-ϵ space. Some extreme events are highlighted using red arrow and boxes.

corresponding to the sudden spikes in kinetic energy and dissipation rate. These
two quantities will be used as indicators of extreme events.

Projecting the MFE system onto the k−ϵ phase space reveals extreme events
as excursions far from the origin with high kinetic energy and dissipation rates, as
shown in Fig. 2c. In this space, the control objective will be defined as preventing
evolutions of the system that evolve towards that high kinetic energy/high dis-
sipation region, effectively maintaining the system closer to the low energy/low
dissipation region. This will be elaborated in Sec. 4.2.

3 Methodology

From the data obtained by simulating the MFE system, clustering using k-
means++ is applied in the phase space composed by the nine modal coefficients,
a1 to a9. The clustered system is then modeled using two methods: Cluster-based
Markov Modelling (CMM) [11] and Cluster-based Network Modelling (CNM)
[12]. Additionally, the impact of modelling parameters on CNM results is ana-
lyzed. Furthermore, a cluster-based control algorithm is developed based on the
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cluster-based model to achieve a controlled chaotic system where extreme events
are prevented. Each step is now described in details.

3.1 Clustering

First, the k-means++ clustering algorithm [13] is used in this study to cluster
the snapshots in the phase space. The k-means algorithm is an unsupervised
classification algorithm where samples (or snapshots) are partitioned into a pre-
scribed Ncl number of clusters. Every cluster, denoted as Ck, is characterized
by its centroid, ck, computed as the mean over all samples within that cluster.
These centroids will serve to simplify the dynamics in the phase space, as the
dynamics and evolution within a cluster will be neglected and the model will
solely focus on the transition between clusters.

The k-means algorithm can sometimes converge to a local optimum, making
initialization crucial. K-means++ improves this by spreading initial centroids,
reducing convergence time despite higher initial computational cost [1].

To select an appropriate number of clusters, Ncl, we use the elbow method
based on the within-cluster sum of square (WCSS, noted Jm) [8], defined in Eq.
(12). Practically, as the number of clusters Ncl increases, Jm decreases as a result
of a decrease in the variance within a larger number of clusters, with an initial
steep decrease in Jm for small initial increment in Ncl. However, as Ncl further
increases, this decrease slows down as each increment in the number of clusters
results in smaller decrease in within-cluster variance, as will be shown in Fig.
4. This results in a so-called elbow curve when plotting Jm as a function fo Ncl

which allows to pick Ncl.

Jm(Ncl) =
1

N

Ncl∑
k=1

∑
s∈Ck

∥s− ck∥2 (12)

In Eq. (12), N represents the total number of samples in the dataset.

3.2 Cluster-based Reduced-order Modelling

Two different cluster-based reduced-order modelling techniques are considered
in this study: Cluster-based Markov Modelling (CMM) [11] and Cluster-based
Network Modelling (CNM) [12]. Both are now briefly explained.

Cluster-based Markov model simplifies the evolution of the dynamical sys-
tem into transitions between each cluster that follows a Markov process. The
transitions are elucidated as a cluster transition matrix (CTM), which serves as
the propagator in terms of probability.

Since we assume that the dynamical system is a Markov process, the state
in the next time step is only dependent on the state at the current time step.
Firstly, the state at a given time t is defined as a vector, p(t), that represents
the probability of the snapshots to fall in each cluster:

p(t) = [p1, ..., pNcl
]T . (13)
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The CTM is then noted as P where its element Pij represents the probability
of transitioning from cluster Ci to Cj in one forward time-step. The elements of
the resulting CTM can thus be estimated as

Pij =
Nij

Ni
, (14)

where Nij is the number of snapshots that move from cluster Ci to cluster Cj ,
and Ni is the number of snapshots in cluster Ci. With this CTM, the dynamic
property can be identified. The probability of state at time step n + 1 is then
equal to the state at time step n times the CTM P.

pn+1 = pnP, n = 0, 1, 2... (15)

The long-term behavior can then be analyzed by iteratively multiplying by the
CTM. The asymptotic probability distribution is therefore obtained as

p∞ := lim
n→∞

Pnp0. (16)

In contrast to the method above that relies on transition probabilities, cluster-
based network (CNM) model resolves the deterministic transition time and al-
lows the model to predict the state as a function of time [12]. Discarding the
critical transition time step in CMM, CNM defines two important time parame-
ters: the residence time in a cluster and the transition time between two clusters.
First, the residence time in a given cluster, after the n-th transitions between
clusters, is defined as

τn = tn+1 − tn. (17)

In the above, tn represents the time instant in which the system has entered
the considered cluster, the subscript n indicating that it is the n-th transition
from a cluster to another the system has seen so far. tn+1 then indicates the exit
time when the system exits that considered cluster (and therefore enters another
cluster). This is illustrated in Fig. 3.

Fig. 3. Sketch of times and periods employed in the cluster-based network model [12].

Let j and i be the indices of the clusters after tn and tn+1 respectively. Then
the transition time from j to i is defined as half of the residence times in each
cluster:

τij =
τn + τn+1

2
. (18)
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The direct transition time Tij from cluster j to cluster i is defined as the average
of all values of τij observed in the considered dataset:

Tij = ⟨τij⟩. (19)

In CNM, the cluster transition matrix is also further transformed to account
for multiple previous states, quantified by the model order L. This order rep-
resents the number of clusters visited before the current state to be considered
in the transition dynamics. This leads to a more complex CTM with more rows
than columns, where the "from states" are sequences of L clusters influencing
the transition, and the calculation follows a similar process to that in Eq. (14).

For each cluster transition, the next cluster is selected based on the CTM
probability, and the direct transition time is added to the total time, with states
linearly interpolated between the centroids during this period. The prediction
for t ∈ [tn, tn+1] is then given by

u(t) = αn(t)ckn + [1− αn(t)] ckn+1 , αn =
tn+1 − t

tn+1 − tn
. (20)

where ckn and ckn+1 represent the centroids of the cluster that the system enters
at time t = tn and t = tn+1, respectively.

3.3 Cluster-based Control (CBC) Algorithm

The specific control actuation for the MFE will be inspired by what has been
done in past literature where the control method was based on a modification of
the Reynolds number in time, dependent on the flow state as in [18]. Physically,
such a control actuation would correspond to a modification of the magnitude
of the volume forcing term in this shear flow modelled by the MFE system.
In this work, we will set up the actuation as a coefficient, b, in front of the
Reynolds number in the governing equations presented in Sec. 2. The value of
this coefficient b will depend on the system state in the phase space and the
control parameters, bk which are defined per cluster Ck, i.e.: b(t) = F(a(t); bk).

Specifically, following the method proposed in [15], the coefficient b is defined
here as a proportional feedback dependent on the current state in the feature
space, a(t), and is defined as:

b (a(t); bk) =

∑Ncl

k=1 bke
−∥a(t)−ck∥2/Ji∑Ncl

k=1 e
−∥a(t)−ck∥2/Ji

, (21)

where Ji denotes the inter-clusters variance defined as:

Ji =
1

N

Ncl∑
k=1

Nk∥ck − c̄∥2, (22)

with c̄ = 1
N

∑Ncl

k=1 Nkck and N being the total number of samples in the dataset,
and Nk the number of samples in cluster Ck. The value of bk is constant per each
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cluster Ck, with values clipped to a maximum of 5. The objective of the control
strategy is to find optimal values of bk in Eq. (21), given an adequately defined
objective function, J .

To solve this nonlinear multivariate optimization problem, following [15,25],
the simplex search method described by Nelder and Mead [16] is chosen given its
effectiveness in optimizing smooth functions without requiring gradient calcula-
tions. This method relies on a linear combination of Nc + 1 set of parameters,
called vertices, in a Nc dimensional optimization space. In our case, Nc corre-
sponds to the number of cluster Ncl and a vertex would therefore represent a set
of bk values for control. The vertices form a simplex (in the control space) that is
reflected and stretched following the local gradients with four operations: reflec-
tion, expansion, contraction and shrink. These operations generate, respectively
1, 1, 1, and Nc new vertices. In [16], the four operations are applied sequen-
tially following a deterministic procedure based on the performance of the newly
generated vertices. After each operation, the new vertices replace the least per-
forming ones in the simplex if they perform better (i.e. if the new vertices have a
better score as measured by the objective function J ). The process is repeated
until a stopping criterion is reached. Once the amplitudes bk are determined,
the controller can guide the system to achieve the control objective. Interested
readers are referred to [16,25] for additional details.

4 Results

In this section, we discuss first the accuracy of the different cluster-based re-
duced order modelling techniques (CMM and CNM) in function of the number
of clusters Ncl and the order of the model L for the CNM. Subsequently, we an-
alyze the effectiveness of the cluster-based control in mitigating the occurrence
of extreme events.

4.1 Cluster-based ROM Results

First, as discussed in Sec. 3.1, an optimal number of clusters Ncl is determined
for the MFE system. The evolution of the within-cluster sum of squares, Jm, with
Ncl is shown in Fig. 4. It can be observed that the reduction in Jm becomes much
less pronounced after Ncl exceeds 80, indicating diminishing returns when con-
sidering more clusters. Therefore, the optimal number of clusters Ncl is selected
at 80 in what follows (unless mentioned otherwise), which balances model com-
plexity and accuracy. This number of clusters Ncl will also be used for further
cluster-based control in Sec. 4.2. It should be noted that although the modelling
and clustering cost increases with the number of clusters, the computing time
never exceeded a few minutes on our workstation equipped with an Intel Xeon
W7-2475X CPU.

Starting with CMM-based model, the associated cluster transition matrix, as
defined in Eq. 14, is shown in Fig. 5a using a logarithmic scale, with darker shades
representing higher values. The logarithmic scale is used due to the dominance
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Fig. 4. Evolution of Jm with changes in Ncl in the clustering of the MFE system.

of the diagonal terms as between two consecutive timesteps the system is very
likely to stay within the same cluster. This also highlights a potential drawback
of the CMM method, as predictions based on the CTM may often result in the
system getting stuck in the same cluster.

(b)(a)

Fig. 5. (a) Transition probability matrix (in log-scale) of the MFE system obtained
after clustering. (b) PDF of the system to be in a given cluster obtained from the
training data (black) and by the CMM (red).

Fig. 5b compares the actual distribution of the MFE system across clusters
(black bars) with the distribution obtained by using the CMM model to make
a long-term prediction of 10000 time units (red bars). The strong agreement
between the two confirms the statistical accuracy of the CMM model, validating
the clustering process.

In the context of the CNM method, two main parameters are studied here
to analyze their effects on the model: the order of the model L and the number
of clusters Ncl, which are evaluated from a statistical perspective by analyzing
the predicted distribution of the modes.

The distribution of a1, a2 and a3 for fixed order of model and different number
of clusters can be found in Fig. 6. These are obtained by using the CNM model to
make a long-term prediction of the evolution of the MFE system, from which the
probability density function (pdf) of the various modal coefficients are estimated.
For Ncl = 40, compared to the real distribution, noticeable peaks can be observed
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in the predicted ones (orange curves). These corresponds to the centroids of the
clusters which are over-represented. Furthermore, the predicted distributions
are more narrow indicating that the CNM model lacks the ability to accurately
capture the tail statistical distribution of the system’s states from a continuous
perspective. This is intrinsically linked to the small number of clusters used and
the fact that the CNM interpolates the system state between the centroids of
the clusters therefore not navigating the entire phase space. With the increase
of Ncl, the agreement between the orange and blue curves improves as a result
of the finer description of the phase space through more clusters, as can be
observed when comparing Fig. 6a to Fig. 6b and c, which corresponds to cases
with Ncl = 80 and 160 respectively.

(a) (b) (c)

Fig. 6. Distribution of ai for CNM with (a) Ncl = 40 and L = 3, (b) Ncl = 80 and
L = 3 and (c) Ncl = 160 and L = 3 (blue: true distribution, orange: CNM).

The effect of the variation of the model order L is shown in Fig. 7, where
L = 3, 20 and 40 are considered. It is observed that there is no noticeable im-
provement in the predicted distribution of the modes ai, indicating that knowing
just in which clusters the system was in just a few preceding transition is suffi-
cient in enabling the prediction of which cluster the system will enter.

Finally, Fig. 8 shows time series of the MFE system predicted by the CNM
with Ncl = 80 and L = 20. Comparing Fig. 8 to Fig. 1, it can be observed that
the CNM reproduces qualitatively well the evolution of the MFE system beyond
the evidence provided in the distributions predicted by the CNM in Fig. 7. It
should be noted that no comparison is done with the CMM approach as CMM
only models the transition between cluster from a statistical view and does not
provide a time-prediction of the evolution of the system during those transitions.
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(a) (b) (c)

Fig. 7. Distribution of ai for CNM with (a) Ncl = 80 and L = 3, (b) Ncl = 80 and
L = 20, and (c) Ncl = 80 and L = 40 (blue: true distribution, orange: CNM).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 8. Evolution of the MFE modal coefficients (a) a1 to (i) a9 predicted by the CNM
with Ncl = 80 and L = 20.

4.2 Cluster-based Control Results

As the objective of our control test is to mitigate the occurrence of extreme
events, we define the objective function as the minimization of the time-averaged
dissipation rate of the flow during its controlled evolution:

J (t) =
1

tc

∫ tc

0

ϵ(t)dt. (23)
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In Eq. (23), tc represents the time over which the MFE is simulated for a given set
of control parameters bk and from which the cost function is estimated. It should
be noted that having a cost function purely based on the energy dissipation rate
should also act in preventing the possibility of high kinetic energy states, as it
is those specific states that then yield high energy dissipation rate values.

Using the downhill simplex method described in [16], the cluster-specific con-
trol parameters bk are determined, with a test duration of tc = 20LT (Lyapunov
time), where the Lyapunov time, LT is defined as in [2] and has a value of ∼ 40.98
for the MFE system [6]. Solving this optimization problem took approximately
6 hours using a workstation equipped with an Intel Xeon W7-2475X CPU.

The evolutions of the uncontrolled and controlled MFE systems projected
in the k-ϵ plane are shown in Fig. 9a, demonstrating the control algorithm’s
effectiveness in reducing extreme events. The controlled system mostly evolves
in the low-k and low-ϵ region and there are no large "loops" towards the high
k/high ϵ region. This is also confirmed by the distribution of k shown in Fig. 9b
for the uncontrolled and controlled MFE systems. It can be seen that the tail of
the pdf of k is greatly reduced in the controlled case confirming further that the
control approach achieved a reduction in extreme events in the MFE system.

(a) (b)

Fig. 9. (a) k-ϵ plot for dissipation rate control. (b) Probability density function of the
uncontrolled and controlled MFE system.

We further analyze this effectiveness in time and statistically. First, we define
the system to be in an extreme state if its kinetic energy, k, is above 0.1. This
threshold value is chosen as most extreme events exhibit peaks beyond this
value, as can be seen in Fig. 2. Second, we compute the percentage of time
the uncontrolled and controlled systems spend in such a state (of k > 0.1).
From this approach, the uncontrolled system is estimated to spend 2.96% of
its evolution in an extreme state while the controlled one only spends 0.29%
demonstrating the ability in the identified control in decreasing the occurrence
of extreme events. Finally, the time-averaged kinetic energy of the uncontrolled
and controlled systems are 0.0332 and 0.0263 respectively, further showing that
the control approach effectively maintains the system in a k state preventing
extreme events.
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5 Conclusion

In this work, we investigated the use of cluster-based reduced-order modelling
and control for chaotic systems that exhibit extreme events. Two kinds of cluster-
based ROM techniques were applied on the MFE system, and satisfactory mod-
elling accuracy were obtained with both methods. The influence of key param-
eters on the cluster-based reduced-order modelling was evaluated from a sta-
tistical perspective. Compared to earlier work [11], a quantitative approach to
determine the optimal number of clusters Ncl was used, ensuring a balance be-
tween model accuracy and computational efficiency. The control results of the
MFE system validate the effectiveness of the cluster-based control algorithm.
By minimizing the mean dissipation rate, the approach significantly reduces ex-
treme events and keeps both kinetic energy and dissipation rate at lower levels.
Quantitative results show a substantial decrease in mean kinetic energy and a
significant reduction in extreme events. These findings underscore the potential
of cluster-based control methods in controlling chaotic systems, especially when
analytical models are difficult to obtain.

Future research will focus on addressing the main limitation of this approach
which lies in extending it to higher dimensional flow where obtaining an ap-
propriate state space in which to perform the clustering is crucial. This will
be done by using deep learning-based reduced-order representation techniques
such as deep autoencoder. Additionally, determining the optimal model order
for cluster-based modelling and control, either through governing equations or
data-driven machine learning techniques, represents another important avenue
for further exploration.
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