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Abstract. As modern IT infrastructures grow in complexity, root cause
analysis (RCA) is becoming increasingly crucial for Site Reliability En-
gineering (SRE). Traditional RCA relies heavily on human expertise,
making incident resolution time-consuming and error-prone. With the
rise of AIOps (Artificial Intelligence for IT Operations), Large Language
Models (LLMs) have emerged as potential tools for automating incident
detection and diagnosis.
This study evaluates the capability of GPT-4o, Gemini-1.5, and Mistral-
small in diagnosing system failures purely from observability metrics
within a chaos engineering framework. We simulate eight real-world fail-
ure scenarios in a controlled e-commerce environment and assess LLMs’
performance in zero-shot and few-shot settings compared with Site Re-
liability Engineers. While LLMs can identify common failure patterns,
their accuracy is highly dependent on prompt engineering. In zero-shot
settings, models achieve moderate accuracy (44–58%), often misattribut-
ing harmless load spikes as security threats. However, few-shot prompting
improves performance (60–74% accuracy), suggesting that LLMs require
structured guidance for reliable RCA.
Despite their potential, LLMs are not yet ready to replace human SREs,
who achieved over 80% accuracy due to hallucinations, misclassification
biases, and lack of explainability. The findings highlight that LLMs can
be co-pilots in incident response, but human oversight remains essential.
GitHub with code and dataset: https://github.com/szandala/llms-chaos-
engineering

Keywords: AIOps · DevOps · Large Language Models · Chaos Engi-
neering · Root Cause Analysis

1 Introduction

Site Reliability Engineers (SREs) are high-demand infrastructure design and
management specialists who ensure the continuous operation of global service
providers like Microsoft (Azure), Google (GCP), Amazon (AWS), and their cus-
tomer institutions, critical to modern society [15, 17]. A key responsibility is
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responding to alerts to minimise the blast radius of potential incidents and main-
taining service availability and reliability. Over 40% SREs report overwhelm and
weariness from the amount of on-call duties they provide, and over half of them
highlight it leads to the degradation of their work quality [6]. On average, ad-
dressing a single incident, including root cause analysis (RCA), remediation,
and follow-up activities like writing postmortems and fixing bugs, takes approx-
imately 6 hours [9]. RCA is a critical process in system reliability engineering [8],
often requiring expert knowledge to identify the failure’s underlying reasons [20].

Artificial intelligence (AI) is emerging in SRE in the form of AIOps (Artifi-
cial Intelligence for IT Operations) [14, 25], with Large Language Models (LLMs)
demonstrating significant capabilities in tasks such as coding [4, 31], static anal-
ysis [24], and IT infrastructure design [21].

These advancements raise an essential question: Can an LLM effectively re-
ceive an alert and diagnose the root cause of an incident within a complex sys-
tem?

This paper explores whether an LLM can autonomously process observabil-
ity data from chaos experiments to determine the root cause of incidents. Chaos
engineering provides a structured approach to resilience testing by deliberately
injecting failures into a system to observe its behaviour under adverse condi-
tions [19, 22, 7]. Specifically, we evaluate its effectiveness in diagnosing faults
within a controlled e-commerce environment consisting of three hosts running
a Django-based application, a Redis caching layer, and a PostgreSQL database
with a single replica.

The key research questions addressed in this study are:

RQ1 : Can an LLM correctly identify an incident (e.g., Redis failure, database
slowdown) based on metrics without additional fine-tuning?

RQ2 : How does its performance vary in zero-shot vs. few-shot settings? Does
providing an example in the prompt significantly improve the results?

RQ3 : What are the limitations and practical barriers to deploying LLMs for
automated incident analysis?

We utilised GPT-4o (referred to as GPT), Gemini 1.5 Flash (referred to as
Gemini), and Mistral Small (referred to as Mistral) for the research as they are
among the most popular and widely used models available in free chat inter-
faces [13, 27]. These models have been extensively tested, ensuring their reli-
ability for various tasks. Additionally, they offer a good balance of speed and
accessibility, making them practical for large-scale evaluations. Their availability
as free, reasonably fast options allows for broader experimentation without sig-
nificant computational constraints, making them ideal candidates for the study.

This paper’s main contribution empirically demonstrates that Large Lan-
guage Models can accurately identify infrastructure incidents from raw metrics
without fine-tuning. It highlights the critical role of prompt engineering and
human oversight in ensuring reliable automated analysis. It contributes to the
broader discourse on LLM applicability in Site Reliability Engineering to make
complex infrastructure systems more tractable and diagnosable.
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2 State of the Art

2.1 LLMs in Coding

LLMs have shown remarkable capabilities in automatic code generation. OpenAI’s
Codex demonstrated that an LLM trained on billions of lines of code could pro-
duce functioning code from natural language prompts [11, 28]. Since then, numer-
ous code-focused LLMs have emerged, e.g. Meta’s Incoder, Amazon’s CodeWhis-
perer, BigCode’s SantaCoder/StarCoder, Salesforce’s CodeGen, to translate user
intent into code [32]. Song et al. [32] have proven that GPT-4 can correctly solve
around 88% of problems in the HumanEval coding benchmark [11], far surpass-
ing older models, like GPT-3 73% and open-source StarCoder 34% on the same
tasks.

Many failures originate from the model missing parts of the specification
in natural language, like skipping necessary conditions or overwhelming the
model with too extensive information. Early results indicate that with the proper
prompts, LLMs can identify and correct some mistakes, although reliable human-
like debugging remains an open challenge [36].

2.2 LLMs for DevOps

Infrastructure as Code (IaC) has become a cornerstone of modern DevOps, allow-
ing cloud infrastructure to be defined and managed through code (e.g. Terraform
scripts, Ansible playbooks) [18].

This has prompted interest in using LLMs to generate, evaluate and manage
infrastructure code automatically [34, 26, 23] LLMs can reliably evaluate DevOps
solutions for small-scale problems [35], comparing their assessments to those of
human experts in IT. The study finds that LLMs produce evaluations consis-
tent with human reviewers and thus can serve as an effective tool for assessing
infrastructure designs.

Srinivasan et al. [34] conducted a survey and experiments on LLM-generated
Terraform configurations. In their tests, OpenAI’s GPT-3.5 model was prompted
to generate configurations for 49 cloud resources. The results showed moderate
success: with a single attempt, GPT-3.5 produced exact-match correct configs
about 59% of the time. However, the 40% misaccuracy means many configura-
tions were wrong. The most prominent issue are still hallucinations – the models
invented resource types and attributes that do not exist or misnamed them [16,
29]. Unfortunatelly, humans are still humans and express tendency, often referred
to as automation bias, that lead operators to accept AI-generated outputs with-
out sufficient scrutiny, posing significant risks in safety-critical infrastructure
scenarios [10].

2.3 LLMs in Evaluation and Incident Analysis

SRE and DevOps teams deal with massive streams of logs and alerts, often
24/7 [33]; parsing these to identify anomalies or the root cause of an incident is
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time-consuming and error-prone. LLMs, with their strength in language under-
standing, are being explored as tools to automate the analysis of such unstruc-
tured operational data [2].

Several recent studies focus on using LLMs to parse event logs and detect
issues. For instance, Almodovar et al. [5] successfully fine-tuned a language model
based on BERT for log anomaly detection (LogFiT). A study by Akhtar et al. [2]
reports that with fine-tuning, LLM-based log analysis systems often reach F1-
scores in the 0.9–1.0 range on benchmark tasks, a significant improvement over
earlier statistical or ML approaches that were usually below 0.9.

This indicates that when fine-tuned, LLMs can reliably distinguish normal
vs. abnormal events and classify the type of incident occurring. Moreover, ac-
cording to Shen et al. [30], fine-tuning can sometimes be replaced with few-shot
prompting. They observed an off-the-shelf model with a few examples in prompt
performed comparably with a model that was fine-tuned on historical data.

Ahmed et al. [1] presented one of the first large-scale studies on using LLMs
for cloud incident RCA. They evaluated GPT-3 family models on 40,000+ real
incidents from Microsoft’s production systems, testing whether the models could
identify the likely root cause and suggest mitigation steps. The models were
tried in zero-shot mode, as well as fine-tuned on a subset of incidents. The
findings were encouraging because the LLMs often generated reasonable causes
and helpful remediation advice.

By analysing trends in logs and metrics, an LLM might forecast incidents
before they happen [37]. For example, HuntGPT [3] integrates an anomaly de-
tection system with an explainable AI module and an LLM, aiming to detect
and explain incidents in one loop.

2.4 Identified Research Gaps

While research on LLMs in software engineering has progressed swiftly, notable
gaps and open challenges remain. One prominent gap is in root cause analysis
for infrastructure incidents: despite initial studies, this topic is still in its infancy.
We now have a handful of papers showing it is possible to get decent answers
from LLMs about why an incident occurred, but they often require fine-tuning
for specific problems (RQ1).

Another gap lies in generalisation and context awareness. Current LLM solu-
tions for incident analysis are specific to the environment they were designed for.
The goal would be to devise a fast, inexpensive method to improve the model’s
analysis, preferably using prompt engineering (RQ2).

Finally, a critical gap lies in trust, safety, and ethics of applying LLMs in
infrastructure contexts. Many authors note the risk of hallucinations and errors
leading to misguided actions. Therefore it is vital to evaluate how far from the
real problem the model drifts (RQ3).
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Fig. 1. Diagram of testing environment infrastructure.

3 Methods

3.1 Infrastructure Setup

To evaluate the feasibility of an automated root cause analysis using LLMs, a
small e-commerce application was launched on virtual machines (VMs) (Fig-
ure 1). The main application tier consists of three VMs (each with 2 vCPUs
and 4 GB RAM), fronted by a load balancer. These instances run a Django
application that handles both the web-based front-end and the internal API.

A PostgreSQL database was installed on two VMs (each 2 vCPUs, 4 GB
RAM), storing approximately 200 GB of synthetic data. Synchronous replication
was enabled, ensuring that one VM operated as the primary database server
while the second acted as a live replica. In the event of a failure on the primary
node, traffic would automatically be re-routed to the replica, enabling a fault-
tolerant environment representative of production-level deployments.

A Redis server was provisioned on a single VM (2 vCPUs, 2 GB RAM)
in master mode. Redis was utilised for caching frequently accessed data (e.g.,
product listings and user session tokens). An upper memory limit has been set
and enforced with a volatile-lru eviction policy, removing the least recently used
keys with a set expiration.

Although more powerful machines could have been employed, smaller VM
configurations facilitated more frequent occurrences of specific stress conditions
(e.g., server overload), thus yielding richer data on performance degradation.
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3.2 Monitoring and Alerting

All VMs—application, database, and cache—were instrumented to collect a stan-
dard set of performance and reliability metrics (summarised in Table 1). These
metrics included CPU/memory utilisation of all components, error rates, cache-
specific metrics and database latency metrics. The metrics were sampled at 30-
second intervals. Whenever any metric exceeded its defined critical threshold, an
alert aggredated the previous five minutes of metric data and forwarded it for
further investigation.

Table 1. Metrics and their threshold used in the experiment

Metrics Alert Threshold Short Description
djangoCpu(0,1,2) >80% CPU usage for each of the Django instances
djangoMem(0,1,2) >80% Memory usage for each of the Django instances
http4xxRate >1% Ratio of HTTP 4xx errors to total requests
http5xxRate >0.5% Ratio of HTTP 5xx errors to total requests
p95LatencyMs >300 ms 95th percentile of request latency
p99LatencyMs >500 ms 99th percentile of request latency
redisCpu >80% CPU usage on the Redis server
redisMem >80% Memory usage on the Redis server
redisHitRate <75% Ratio of Redis queries served from cache
redisEvictedKeys >50 Redis keys evicted due to memory constraints
dbCpuMaster >80% CPU usage on the primary PostgreSQL server
dbMemMaster >80% Memory usage on the primary PostgreSQL server
dbCpuReplica >80% CPU usage on the replica PostgreSQL server
dbMemReplica >80% Memory usage on the replica PostgreSQL server
dbReplicationLag >150 ms Delay in synchronising from master to replica

3.3 Chaos Engineering Scenarios

To gather data for RCA, a series of eight fault scenarios was devised inspired by
chaos engineering principles:

1. Sudden Failure of a Single Django Instance: One VM in the applica-
tion tier is abruptly terminated, simulating an unplanned outage. The load
balancer must redistribute requests among the remaining two instances.

2. Cache Outage: Redis goes offline or becomes unresponsive, preventing
session and hot-data caching. The system experiences increased latency as
queries must be served directly from the database.

3. Primary Database Failure: The primary PostgreSQL node fails, trigger-
ing a failover to the synchronous replica. This scenario tests the system’s
ability to handle rapid role promotion and re-routing of database connec-
tions.

4. High-Volume Data Upload: One Django instance pushes a large data
update (e.g. product catalogue), potentially saturating both database I/O
and application CPU usage.
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5. Network Throttling: Artificially imposed network delay or packet loss
affects traffic among the VMs, replicating real-world connectivity issues.

6. Bugged Deployment Causing Memory Leak: A new release of the
Django application contains a severe memory leak. Over time, memory util-
isation sharply increases, ultimately impacting response times and possibly
causing the affected VM to crash.

7. Bugged Deployment Causing URLs Misconfiguration: An incorrect
routing configuration directs requests to non-existent endpoints, raising er-
rors of the 4xx class (e.g., 404) and reducing successful requests significantly.

8. A Surge of Traffic: A spike of simulated user traffic increases the load
on the entire stack. This is not strictly an incident but tests how well the
infrastructure scales under peak demand without failing.

Rather than focusing solely on assessing availability or reliability, the scenar-
ios were deliberately chosen to gather diverse metric patterns for subsequent
analysis by an LLM-based workflow. The study was limited to eight single-fault
scenarios. They cover the most frequent failures seen in production - compute,
cache, database, network, and two typical bad-deploy patterns - yet remain mu-
tually distinguishable in their metric footprints. This set gives both humans and
LLMs a realistic but non-overlapping taxonomy to reason about.

Overall, this methodology provided a realistic, small-scale e-commerce envi-
ronment and a controlled injection of diverse fault scenarios, generating a robust
data set for investigating how automated, metric-based analyses can pinpoint the
underlying causes of operational incidents.

4 Results

A total of 50 alerts were generated during the experiments, each triggered by one
of eight chaos engineering actions. For every alert, a single snapshot containing
the previous five minutes of metric data was presented to participants, either
human SRE Team or large language models, to identify the root cause in one
sentence.

4.1 Zero-Shot Performance

In the zero-shot setup, humans and LLMs were merely informed of the overall
infrastructure.

The prompt was: Given a 5-minute snapshot of metrics for our small e-
commerce application—which includes 3 VMs running a Django app, a Redis
cache on a separate VM (non-critical), and a PostgreSQL database with a mas-
ter and a replica for fallback, please diagnose in one sentence the root cause of
the alert triggered by metric A (threshold set to ’a’). Note that incidents are
synthetic infrastructure or application problems introduced by Chaos Engineer-
ing.
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Table 2. Zero-shot predictions for
root cases for SRE Team

Predicted
1 2 3 4 5 6 7 8 other

A
ct

ua
l

1 6 - - - - - - - -
2 - 4 2 - - - - - -
3 - 2 4 - - - - - -
4 - 1 - 1 3 - - 1 -
5 - - - - 4 - - 2 2
6 - - - - 1 5 - - -
7 - - - - - - 5 - 1
8 - - - - 4 - - 2 -

Table 3. Few-shot predictions for
root cases for SRE Team

Predicted
1 2 3 4 5 6 7 8

A
ct

ua
l

1 6 - - - - - - -
2 - 4 2 - - - - -
3 - 1 5 - - - - -
4 - 1 - 3 1 - - 1
5 - - - - 7 - - 1
6 - - - - - 6 - -
7 - - - - - - 6 -
8 - - - - 2 - - 4

Table 4. Zero-shot predictions for
root cases for GPT-4o

Predicted
1 2 3 4 5 6 7 8 other

A
ct

ua
l

1 5 - - - 1 - - - -
2 - 3 2 - 1 - - - -
3 - 3 3 - - - - - -
4 - 1 - 1 3 - - - 1
5 - 2 - - 5 - - - 1
6 2 - - - - 4 - - -
7 - - - - 1 - 5 - -
8 - 1 - - 2 1 - - 2

Table 5. Few-shot predictions for
root cases for GPT-4

Predicted
1 2 3 4 5 6 7 8

Actual

1 6 - - - - - - -
2 - 3 2 - 1 - - -
3 - 3 3 - - - - -
4 - 1 - 2 2 - - 1
5 - - - - 4 - - 4
6 - - - - - 6 - -
7 - - - - 1 - 5 -
8 - - - - 2 - - 4

Humans achieved the result of 62% accuracy (Table 2). SREs were able to
derive patterns indicative of specific faults under conditions the data was pro-
vided in linear chart form. Noteworthy, only humans correctly suspected a non-
harmful-incident event - an increased legitimate traffic, simulating promotion,
rather than categorising it as a security-related Distributed Denial of Service
(DDoS) or network-based failure.

LLMs achieved significantly lower results. GPT-4 achieved 0.52, Gemini 0.58,
and Mistral 0.44 (Tables 4,6,8). The root causes suggested by these models were
classified post hoc into one of the eight known scenarios or "other" if it did not
fit pre-defined ones. While GPT-4 consistently avoided security explanations
(e.g., DDoS attacks) due to explicit mention in the prompt, Gemini and Mistral
occasionally hypothesised DDoS incidents, highlighting the models’ tendency to
overattribute problems to network-security threats.

4.2 Few-Shot Performance

In the few-shot phase, SREs and LLMs participants received the same promptm
but extended with a closed list of the eight known chaos engineering scenarios,
mitigating free-form speculation:
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Table 6. Zero-shot predictions for
root cases for Gemini

Predicted
1 2 3 4 5 6 7 8 other

A
ct

ua
l

1 5 - - - 1 - - - -
2 - 3 2 - 1 - - - -
3 - 2 4 - - - - - -
4 - 1 - 2 2 - - 1 -
5 - 1 1 - 4 - - 1 1
6 - - - - - 6 - - -
7 - - - - 1 - 5 - -
8 - 1 - - 2 - - - 3

Table 7. Few-shot predictions for
root cases for Gemini

Predicted
1 2 3 4 5 6 7 8

A
ct

ua
l

1 6 - - - - - - -
2 - 4 1 - 1 - - -
3 - 2 4 - - - - -
4 - 1 - 2 2 - - 1
5 - 1 - - 6 - - 1
6 - - - - - 6 - -
7 - - - - 1 - 5 -
8 - - - - 2 - - 4

Table 8. Zero-shot predictions for
root cases for Mistral

Predicted
1 2 3 4 5 6 7 8 other

A
ct

ua
l

1 3 1 - - 2 - - - -
2 - 3 2 - 1 - - - -
3 - 2 3 - - - - - 1
4 - 1 - 1 3 - - 1 -
5 - 2 1 - 4 - - 1 -
6 - - - - 1 5 - - -
7 - - - - 1 - 3 - 2
8 - 1 - - 5 - - - -

Table 9. Few-shot predictions for
root cases for Mistral

Predicted
1 2 3 4 5 6 7 8

A
ct

ua
l

1 5 - - - 1 - - -
2 - 3 2 - 1 - - -
3 1 3 2 - - - - -
4 - 1 - 2 2 - - 1
5 1 1 - - 4 - - 2
6 1 - - - - 5 - -
7 - - - - 1 - 5 -
8 - - - - 2 - - 4

(...previous prompt...) Knowing these are possible classes of root causes:
#1. Simulation of a worker node failure: Sudden shutdown of a VM running
Django.
#2. Redis (Master) failure: Unexpected shutdown of the node hosting the Redis
instance.
#3. Database failure (PostgreSQL): Shutdown of the master database server.
#4. Mass data update, e.g., products also performed by the one Django applica-
tion.
#5. Injection of network slowdown or packet loss (network chaos using tc (traffic
control)).
#6. Deploying a new version of the application with memory leak.
#7. Deploying a new version of the application with a bug causing redirection to
an incorrect URL.
#8. Traffic surge (promotion) on the portal (not an incident, but degrades per-
formance).
Please assign a single RCA label to each incident.

This adjustment improved overall accuracy, allowing SREs to correctly iden-
tify 82% root causes (Table 3).
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Humans exhibited more nuanced reasoning, especially in differentiating net-
work degradation from increased load, by observing whether database replication
lag had risen significantly. They correctly concluded that replication lag would
remain stable even under higher user traffic but spike during genuine network
slowdowns.

LLMs achieved higher results yet still underperformed humans. GPT-4 at-
tained 0.66, Gemini 0.74, and Mistral 0.60 (Tables 5,7,9). All models performed
better than in the zero-shot setting, presumably due to explicit constraints that
guided them away from irrelevant categories like security breaches or introducing
the concept of standard traffic spikes. Nonetheless, they maintained a relatively
high tendency to blame general network issues compared to humans, underscor-
ing the challenge of purely metric-based differentiation in machine-generated
analyses.

Overall, while human SREs outperformed the tested LLMs in identifying
correct root causes, LLMs still proven to be valuable analysts. Despite few-
shot prompting improved model accuracy, discrepancies remained, notably in
distinguishing harmless load increases from real system impairments.

5 Discussion

The overall results indicate that LLMs can successfully detect and attribute
many common failures purely through the lens of time-series data. On the other
hand, the degree of accuracy was heavily contingent on factors such as prompt
design and the availability of scenario clues.

Prompt engineering emerged as the critical element for LLMs’ performance.
In the zero-shot context—where the model was tasked to diagnose a problem
without any additional guidance—the models (GPT, Gemini, and Mistral) pro-
duced substantially lower accuracy than scenarios in which they received more
verbose prompts.

This pattern underscores the variability and fragility of LLM-based incident
diagnostics. A more verbose prompt substantially improved the performance of
all three models, effectively guiding their decision boundaries closer to reality.
On the other hand, if the prompt was too detailed, the model was more prone
to limit reasoning and forcibly avoided out-of-the-box ideas that may have been
valuable additions.

A noteworthy observation was that LLMs tended to default to negative or
failure-centric diagnoses, even in scenarios that represented harmless increases
in traffic. As a result, innocent events, such as legitimate promotional spikes,
were branded as attacks or network faults. This indicates a bias induced by the
prompt—when asked to identify an "incident", the model assumes there must be
something "broken". For real-world deployments, it is crucial to remember that
not all metric anomalies correspond to genuine faults. Ensuring the prompt does
not inadvertently narrow the model’s perspective could reduce false positives.

Interestingly, Gemini consistently outperformed other models. One hypoth-
esis is that Google may be internally fine-tuning Gemini with infrastructure-
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related data, especially given its public positioning as an assistant for Google
Cloud Platform configuration [12]. If a model’s pre-training and fine-tuning data
are skewed towards cloud-based incidents and provisioning, it logically follows
that it would exhibit superior performance in diagnosing these scenarios.

Beyond sheer accuracy, there are ethical considerations when deploying LLMs
in mission-critical domains, such as incident response. Hallucinations and mis-
diagnoses can mislead engineers, causing them to waste valuable time. Misclas-
sification of harmless events could also create unnecessary panic, triggering un-
needed mitigations or escalations. The "automation bias", where humans over-
rely on AI outputs, is already a known pitfall in safety-critical contexts. Hence,
while LLM-driven triaging might offer valuable speed and scalability, human
oversight will likely remain mandatory until we achieve a more robust and ex-
plainable solution.

Additionally, the deployment of LLMs in operational environments can raise
questions about data privacy, as logs and metrics may contain sensitive details
about system internals or customer transactions. Ensuring compliance with data
protection regulations or corporate security policies is paramount. Even if the
LLM is hosted entirely on-premises, the risk of inadvertent data leaks or unau-
thorised insights must be evaluated. Infrastructure-focused domain fine-tuning,
while beneficial for performance, could also expose an organisation to model drift
if the LLM’s knowledge is not continuously updated, or if it learns outdated or
insecure best practices.

5.1 Future Directions

Based on the findings, several future works can be suggested:

– The design of prompts that dynamically adjust the hypothesis space to in-
clude both positive and negative causes of metric changes (e.g., legitimate
spikes vs. malicious surges) may reduce mislabelling errors.

– Combining real incident data with synthetic scenarios, like chaos engineering,
could help expand the model’s understanding of edge cases.

– Even if the model performs well in tests, it may still pose a risk for pro-
duction applications. It is vital to ensure the explainability of each sugges-
tion/decision provided by the model.

– Possible countermeasures for hallucination may be by Chain of Thought,
where LLM is asked to explain step-by-step its conclusions. This approach
will be studied in future work.

In conclusion, the study highlights the potential of using LLMs for root cause
analysis in infrastructure incidents, albeit with caution. Prompt engineering
emerges as a crucial prerequisite for safe and effective adoption. In their current
form, LLMs function best as co-pilots—collaborating with, rather than supplant-
ing, skilled SREs. Any practical implementation should blend these AI-driven
insights with domain expertise and critical discernment, which only human op-
erators can provide.
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6 Conclusions

This study demonstrates that Large Language Models can, to some degree, de-
tect infrastructure faults purely from system metrics without requiring prior
fine-tuning (RQ1). However, their effectiveness strongly depends on prompt en-
gineering, with zero-shot modes exhibiting frequent misdiagnoses and more de-
tailed few-shot prompts leading to markedly higher accuracy (RQ2). Despite
these encouraging results, the limitations of current LLM-based incident analy-
sis highlight the need for more robust, explainable AI mechanisms; until then,
human Site Reliability Engineers remain essential for interpreting system state,
validating diagnoses, and overseeing remediation (RQ3).

In practical terms, these findings reveal that while LLMs can serve as pow-
erful co-pilots in root cause analysis, they are not yet ready to assume the full
responsibility for production environments. The risks of hallucinations, misdi-
rected suspicion (e.g., attributing routine traffic surges to malicious activity),
lack of broader context and transparent justifications all highlight the impor-
tance of maintaining human oversight.

Equally, the substantial improvement observed under few-shot prompts un-
derscores the role of domain-specific guidance in boosting the accuracy of LLMs.
As the field evolves, subsequent work should integrate adaptive prompt struc-
tures and develop LLM explainability features so operational teams can more
confidently rely on AI-assisted diagnostics without sacrificing safety or clarity.
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