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Abstract. The exponential scaling of dataset volumes in contempo-
rary deep learning imposes great computational and storage burdens
across learning paradigms, which emphasizes the importance of intelli-
gent dataset compression methods. Dataset distillation(DD) emerges as
a promising solution for dataset size reduction. This study focus on the
distribution matching framework for DD, introducing a novel methodol-
ogy that quantifies the inter-distribution difference between source and
distilled datasets via optimal transport theory, where Wasserstein metric
W1 serves as the discrepancy measurement. We implement this metric via
the Kantorovich-Rubinstein(KR) dual supf∈Lip(Ω) EµT [f ]− EµS [f ]. Ac-
cording to Universal Approximation Theorem, a single-hidden-layer mul-
tilayer perceptron(MLP) with non-polynomial activation function can
approximate continuous functions with arbitrary precise, thus a single-
hidden-layer MLP is selected to approximate the function f in the ex-
pression of KR dual while maintaining its Lipschitz continuity through
a parameter truncation technique. Empirical evaluations demonstrate
that our approach achieves performance comparable to the mainstream
benchmarks. The empirical findings of this study validates the opera-
tional feasibility of employing Wasserstein distance and KR dual in DD
problem. Related code is available at https://github.com/muyangli17/
DD-with-KR-dual.

Keywords: dataset distillation · distribution matching · Optimal Trans-
port · Wasserstein distance · Kantorovich-Rubinstein Dual

1 Introduction

In recent years, the exponential growth of data required for deep learning has
directly resulted in increasing storage costs within data centers. From ImageNet
(14M samples) [3] to LAION-5B (5.8 billion samples) [17], the dataset scale has
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expanded by 410 times over past 13 years. This has pushed dataset compression
techniques to the forefront of academic research.

Dataset compression aims to identify a smaller data set S that can effectively
replace an original large-scale dataset T (∥S∥ ≪ ∥T ∥), where this replacement
specifically requires that models trained on S maintain comparable generaliza-
tion performance to their counterparts trained on T .

Current mainstream approaches of dataset lightweighting focus on two cat-
egories: coreset selection [6,9] and dataset distillation (DD) [20]. The former in-
volves identifying a representative subset of T , while the latter synthesizes new
artificial samples through feature recombination. The coreset selection prob-
lem, inherently NP-hard in nature, poses significant scalability challenges for
large-scale datasets [5], while its empirical performance typically underperforms
dataset distillation approaches under equivalent conditions[10]. Table 1 shows
the accuracy of the state-of-the-art coreset selection method and the dataset
distillation method on image classification problems. Concurrently, dataset dis-
tillation has emerged as a rapidly growing research frontier, garnering substantial
attention in recent years.

Table 1. Comparison of the accuracy of the state-of-the-art coreset selection method
and the dataset distillation method on image classification problems

Datsaset IPC coreset selection dataset distillation Whole

MNIST
1 89.2%±1.6 98.7%±0.7

99.6%±0.010 95.1%±0.9 99.3%±0.5

50 97.9%±0.2 99.4%±0.4

FashionMNIST
1 67.0%±1.9 88.5%±0.1

93.5%±0.110 71.1%±0.7 90.0%±0.7

50 71.9%±0.8 91.2%±0.3

SVCH
1 20.9%±1.3 87.3%±0.1

95.4%±0.110 50.5%±3.3 91.4%±0.2

50 72.6%±0.8 92.2%±0.1

CIFAR-10
1 21.5%±1.2 66.4%±0.4

84.8%±0.110 31.6%±0.7 72.0%±0.3

50 43.4%±1.0 75.0%±0.2

CIFAR-100
1 8.4%±0.3 40.0%±0.5

56.2%±0.310 17.3%±0.3 50.6%±0.2

50 33.7%±0.5 47.0%±0.2

Building upon optimal transport theory, we approximate the distributional
difference between source dataset T and synthetic dataset S through the Kantorovich-
Rubinstein duality formulation of Wasserstein distance, establishing a novel DD
method grounded in this geometric metric.
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The Wasserstein distance is given by:

Wp(µ, ν) = inf
γ∈Γ

(∫
x,y∼γ

γ(x, y)d(x, y)pdxdy

) 1
p

.

Here µ and ν are two distributions, Γ is the collection of all binary distribution
with marginal distribution µ and ν respectively.

For p = 1 case of Wasserstein distance, W1 distance can be written as
Kantorovich-Rubinstein dual form[18]:

W1 = sup
f∈Lip(Ω)

(Eµ(f)− Eν(f)) .

According to Universal Approximation Theorem[2], MLPs can approximate
any continuous function on a compact set. This inspires us to parameterize a
Lipschitz function f with a MLP(see section 3 for details). Compared to tradi-
tional linear programming solutions, the Kantorovich-Rubinstein dual(KRdual)
form constructs functions in the Lipschitz function space through deep neural
networks and weight truncation methods. The Wasserstein distance calculation
based on deep neural networks can be seamlessly embedded into the original
dataset distillation deep learning framework, and end-to-end training is realized
through the automatic differentiation mechanism, supporting multi-GPU data
parallelism, which is an advantage that traditional linear programming solutions
and Sinkhorn approximations cannot achieve. Although the computational com-
plexity of Wasserstein distance is relatively high, the actual training time is still
within an acceptable range through GPU parallel algorithms and a relatively
simple MLP structure. The flowchart of the method proposed in this paper is
shown in Figure 1.

Experiments show that method proposed in this paper achieves the compa-
rable accuracy as the mainstream DD method on multiple datasets for image
classification problems. The full code can be found at: https://github.com/
muyangli17/DD-with-KR-dual, and the specific training hyperparameters are
detailed in section 4.

The remainder of this paper is organized as follows: In section 2, we will
briefly review several mainstream research frameworks in the field of DD. In
section 3, we will detail our specific method. The relevant experimental results
and discussions will be presented in section 4. Finally, in section 5, we will briefly
summarize our work.

2 Related work

2.1 Dataset distillation

The primary methods for DD currently include meta-learning approaches, pa-
rameter matching methods, and distribution matching methods[15].

For the meta-learning approach, according to the different inner model, meth-
ods are mainly divided into two categories: the backpropagation through time
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Step 2: Searching Lipschitz function fStep 2: Searching Lipschitz function fStep 1: Extracting featuresStep 1: Extracting features
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Fig. 1. Main flow of our method

(BPTT) and the kernal-based optimization. BPTT contains the vanilla DD[20]
and RaT-BPTT[4] method that uses a small neural network as a classifier to
realize the inner loop. The kernal-based optimization[13,14] methods use kernel
ridge regression as the inner loop to realize the classification.

For the parameter matching approach, DC[25] focus on the matching of
gradient and MTT[1] focus on the matching of training trajectories.

The distribution matching approach synthesizes the distilled dataset S by
aligning the distributions between the original dataset T and S, the approach
under which the methodology proposed in this paper falls.

2.2 Distribution matching

Based on the optimization of the Maximum Mean Difference (MMD), the vanilla
distribution matching approach(DM) synthesizes the distilled dataset S by min-
imizing the MSE between the mean of the distribution of the data representation
in the source dataset T and S[24].

Most of the improvements to the vanilla DM have focused on increasing
the total amount of features that can be aligned. These include increasing the
richness of feature extractors in the IDM[26] and increasing the number of
alignable feature layers in CAFE[19].

In addition to the refinement of the vanilla DM method, the M3D starts
directly from the definition of MMD and maps the distribution to its corre-
sponding reproducing kernel hilbert space (RKHS) by appling the reproducing
kernel. Aligning the two distributions efficiently by measuring the distance in
the Hilbert space[22].
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3 Methodology

According to Figure 1, our method contains two stages: feature extraction and
wasserstein distance computation.

3.1 Extracting feature

In the feature extraction stage, previous work has pointed out that randomly ini-
tialized neural networks can generate high-quality representations for images[16].
Therefore, this paper selects a randomly initialized convolutional neural network
as the feature extractor to map image data into a 2048-dimensional vector space.
Let the original dataset and the synthetic dataset follow the distributions µT
and µS , respectively, then the vectors {xi} and {yi} mapped from the original
dataset and the synthetic dataset into the representation space can be regarded
as a sample from µT and µS .

3.2 Constructing loss function based on Wasserstein distance

Given distributions µT and µS , a transportation from µT to µS is defined as a
binary probability distribution γ(x, y) satisfying∫

y

γ(x, y) = µT ,

∫
x

γ(x, y) = µS

The definition of Wasserstein distance can be expressed as follow:

Wp(µT , µS) = inf
γ∈Γ

(∫
x,y∼γ

γ(x, y)d(x, y)pdxdy

) 1
p

(1)

Here Γ is the set of all transportation from µT to µS . d(x, y) describes the cost
of transporting unit mass from x to y.

We select Wasserstein distance under p = 1 between distributions µT and
µS as the loss function ,i.e.

L = Wp(µT , µS) (2)

The KR dual of W1 is

KR dual = sup
f∈Lip(Ω)

EµT [f ]− EµS [f ] (3)

Here Lip(Ω) is the space of all Lipschitz continue function.
It can be proved that the KR dual is a strong dual form of W1. Therefore,

minimizing W1 is equivalent to maximizing its KR dual form. Thus the loss
function can be expressed as:

L = sup
f∈Lip(Ω)

EµT [f ]− EµS [f ] (4)
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3.3 Calculating the KR dual

According to the Universal Approximation Theorem[2], a two-layer fully con-
nected neural network is capable of approximating any continuous function al-
most everywhere. Thus, to solve the maximized KR dual form, we consider
using a two-layer fully connected neural network to fit the Lipschitz function f
in Equation 4.

Given the intractability of distributions µT and µS , we consider the original
distribution as a weighted sum of Dirac delta functions, that is µT =

∑
i αiδxi ,

µS =
∑

i βiδyi
.

δ(x) is the Dirac delta function satisfying:∫
R
δ(x)dx = 1

δ(x) = 0,∀x ̸= 0

(5)

and delta function with position parameter δx0
= δ(x− x0)

In the absence of prior knowledge regarding µT and µS , we treat µT and µS
as the equally weighted summation of delta functions, i.e. µT = 1

|nT |
∑

i δxi and
µS = 1

|nS |
∑

i δyi

Here denominator nT /S is the size of each batch in training procedure. Specif-
ically, nT is the BatchSize for origianl dataset T and nS is 1

ipc , where ipc (image
per class) is the number of images per class in the synthetic dataset. Based on
the preceding analysis, EµT /S [f ] has form:

EµT /S [f ] =
∑

X∼µT /S

µT /S(X)f(X) =
1

|nT /S |
∑
xi

f(xi) (6)

Thus, the KR dual form can be written as:

EµT [f ]− EµS [f ] =
1

|nT |
∑

f(yi)−
1

|nS |
∑

f(xi) (7)

3.4 Ensuring the Lipschitz continuity of f

In Equation4, f is restricted in Lipschitz space. It is not difficult to see from
Equation 3 that if the gradient of f is unbounded, the KR dual does not converge.

In this paper, we use the weight truncation method to ensure a Lipschitz f .
That is, after each iteration of updating f , the parameters in f is limited to
[−b, b], which ensures that the Lipschitz constant is globally consistent through-
out the training procedure (see lemma1).

The pseudocode of this method is shown in algorithm1
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Algorithm 1 Main Algorithm
Input: Original dataset T , Initialized distilled dataset S,

randomly initialized neural network ψ,
differentiable augmentation A,
class number C, truncation threshold b,
training epoch K1 for updating S, learning rate η1 for updating S,
training epoch K2 for calculating KR dual, learning rate η2 for calculating KR
dual.

Output: S
1: for i = 1, 2, · · · ,K1 do
2: for c = 1, 2, · · · , C do
3: # Extracting features
4: Sample mini-batch BT

c from T with class c
5: Select Sc from S with class c
6: Extracting feature {xi} = ψ(BT

c ), {yi} = ψ(Sc)
7:
8: # Computing KR dual
9: Initialize fθ

10: for j = 1, 2, · · · ,K2 do
11: Calculate EµT [f ]− EµS [f ] =

1
|nT |

∑
f(yi)− 1

|nS |
∑
f(xi)

12: Update θ = θ − (−η2∇θ(EµT [f ]− EµS [f ])) # Maximum EµT [f ]− EµS [f ]
13:
14: # Truncating parameters
15: if θ > b then
16: θ = b
17: end if
18: if θ < −b then
19: θ = −b
20: end if
21: end for
22:
23: # Updating distillated dataset S
24: Calculate L = EµT [f ]− EµS [f ] with fully trained f
25: Update S = S − η1∇SL
26: end for
27: end for
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4 Experiments

4.1 Experiments setup

Datasets We evaluate our method on five datasets: MNIST[8], FashionMNIST[21],
SVHN[12], CIFAR-10 and CIFAR-100[7]. These datasets are all designed for im-
age classification tasks. The MNIST dataset comprises 60,000 28× 28 grayscale
images across 10 classes, while FashionMNIST contains 70,000 28× 28 grayscale
images in 10 categories. The SVHN dataset consists of 60,000 32×32 RGB images
spanning 10 classes. The CIFAR-10 and CIFAR-100 benchmarks both include
50,000 32×32 RGB images, with CIFAR-10 containing 10 object categories and
CIFAR-100 having 100 distinct classes.

Experiments setup We initially synthesized the distilled dataset S following the
specifications in algorithm 1, utilizing the training set of the original dataset S
and the hyper-parameter ipc. Subsequently, a neural network was trained on S,
evaluated on the test set of T , and the corresponding performance metrics were
reported.

For feature extraction, we employed a convolutional neural network (CNN)
without its last classifier layer. To assess the effectiveness of S, a CNN was
implemented as the evaluation network.

All experimental trials were executed exclusively on NVIDIA RTX3090 GPUs,
with fixed random seeds explicitly specified in the accompanying codebase to en-
sure full reproducibility of reported results.

Hyper-parameters Our method has three hyper-parameters: learning rate η1 for
synthesizing distillaed dataset S, learning rate η2 and training epoch K2 for
training potential function f in computing KR dual of Wasserstein distance. All
experiments are conducted under η1 = 1.0, η2 = 1e − 3 and K2 = 100. Our
empirical observations confirm that the training of function f achieves sufficient
convergence under the hyperparameter configuration η2 = 1e− 3 and K2 = 100,
as illustrated in Figure 2. Thus we mainly focus on η1 for this work. Across all
experimental configurations, η1 is fixed at 1.0, maintaining alignment with the
parameter initialization strategy employed in vanilla Distribution Matching[24].

4.2 Comparison with other methods

We compared our approach to the four mainstream ones: Random selection from
coreset selection, DC[25], DSA[23], CAFE[19] and DM[24]. As demonstrated
in Table2, our approach achieves comparable result with several mainstream
benchmark methods.

As demonstrated in Table 2, the distilled dataset synthesized through our
methodology achieves classification accuracy comparable to mainstream baseline
approaches when training image classifiers. This effectively demonstrates the
feasibility of constructing a distillation dataset via calculating the Wasserstein
distance by KR duality from the perspective of optimal transportation.

A comparison of the relevant data is shown in Figure3-7
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Fig. 2. The effectiveness of the neural network in converging to the solution governed
by Equation 3 with η2 = 1e− 3 and K2 = 100

Table 2. Comparison between our method with others’

Dataset IPC Random DC DSA CAFE DM Ours Whole

MNIST
1 64.9%±3.5 91.7%±0.5 88.7%±0.6 93.1%±0.3 89.7%±0.6 88.1%±0.6

99.6%±0.010 95.1%±0.9 97.4%±0.2 97.8%±0.1 97.2%±0.2 97.5%±0.1 96.8%±0.1

50 97.9%±0.2 98.8%±0.2 99.2%±0.1 98.6%±0.2 98.6%±0.1 98.4%±0.1

F-MNIST
1 51.4%±3.8 70.5%±0.6 70.6%±0.6 77.1%±0.9 70.7%±0.6 72.2%±0.6

93.5%±0.110 73.8%±0.7 82.3%±0.4 84.6%±0.3 83.0%±0.4 83.5%±0.3 83.3%±0.3

50 82.5%±0.7 83.6%±0.4 88.7%±0.2 84.8%±0.4 88.1%±0.6 88.6%±0.1

SVHN
1 14.6%±1.6 31.2%±1.4 27.5%±1.4 42.6%±3.3 30.3%±0.1 21.6%±1.1

95.4%±0.110 35.1%±4.1 76.1%±0.6 79.2%±0.5 75.9%±0.6 73.5%±0.5 72.7%±0.3

50 70.9%±0.9 82.3%±0.3 84.4%±0.4 81.3%±0.3 82.0%±0.2 80.4%±0.1

CIFAR-10
1 14.4%±2.0 28.3%±0.5 28.8%±0.7 30.3%±1.1 26.0%±0.8 26.2%±0.6

84.8%±0.110 26.0%±1.2 44.9%±0.5 52.1%±0.5 46.3%±0.6 48.9%±0.6 48.5%±0.5

50 43.4%±1.0 53.9%±0.5 60.6%±0.5 55.5%±0.6 63.0%±0.4 60.9%±0.2

CIFAR-100
1 4.2%±0.3 12.8%±0.3 13.9%±0.3 12.9%±0.3 11.4%±0.3 11.3%±0.2

56.2%±0.310 14.6%±0.5 25.2%±0.3 32.3%±0.3 27.8%±0.3 29.7%±0.1 29.0%±0.3

50 30.0%±0.4 53.9%±0.5 42.8%±0.4 37.9%±0.3 43.6%±0.4 40.3%±0.4
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Fig. 3. Comparison between benchmarks on MNIST

Fig. 4. Comparison between benchmarks on FashionMNIST
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Fig. 5. Comparison between benchmarks on SVHN

Fig. 6. Comparison between benchmarks on CIFAR-10
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Fig. 7. Comparison between benchmarks on CIFAR-100

5 Conclusion

This paper presents a novel dataset distillation method grounded in optimal
transport theory, wherein we formulate the dataset condensation process through
Wasserstein metric optimization. The proposed methodology employs deep neu-
ral network and parameter truncation to approximate Lipschitz-continuous func-
tions that compute the Wasserstein distance between source and synthesized
datasets via Kantorovich-Rubinstein duality, establishing this metric as the opti-
mization objective. Empirical validation with multiple benchmarks method con-
firms the efficiency of our approach.

Notwithstanding the current computational inefficiency of our neural network-
based Wasserstein approximator compared to conventional linear programming-
based solver[11], the parallelization capabilities of deep neural networks partially
mitigate this limitation through parallel processing. Future research directions
will focus on algorithmic acceleration techniques and enhanced performance re-
finement.

Appendix A. Proof of Lemma 1

Lemma 1 (Lipschitz constant of full-connected neural network with
bounded parameters). Let f(x) = W [2]σ(W [1]x + b[1]) + b[2] be a fully-
connected network with one hidden layer where:

– σ : Rd → Rd is an element-wise K-Lipschitz activation function
– Weight matrices W [s] ∈ Rmi×ni satisfy |W [s]

ij | ≤ c for s = 1, 2

– Biases satisfy |b[s]| ≤ c for s = 1, 2
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Then f is Lipschitz continuous with constant:

L ≤ Kc2
√
m1n1m2n2

where X is the input domain.

Proof. Denote z = W [1]x+ b[1], a = σ(z).
For two different input x1, x2,

f(xi) = W [2]ai + b[2]

ai = σ(zi)

zi = W [1]xi + b[1]

Take common 2-norm ∥ · ∥2 as metric for input x and output f(x). Since
Frobenius norm ∥ · ∥F is compatible, we can obtain

∥f(x1)− f(x2)∥F = ∥W [2](a1 − a2)∥F (8)

≤ ∥W [2]∥F ∥a1 − a2∥F (9)

= ∥W [2]∥F ∥(σ(z1)− σ(z2)∥F (10)

≤ K∥W [2]∥F ∥z1 − z2∥F (11)

≤ K∥W [2]∥F ∥W [1](x1 − x2)∥F (12)

= K∥W [2]∥F ∥W [1]∥F ∥(x1 − x2)∥F (13)

Thus the Lipschitz constant of f is no more than K∥W [2]∥F ∥W [1]∥F .
Since |W [s]

ij | is bounded by b, ∥W [s]
ij ∥F =

√∑
i,j w

2
ij ≤

√
mnc2 = c

√
mn, thus

the Lipschitz constant of f is given by K∥W [2]∥F ∥W [1]∥F = Kb2
√
m1n1m2n2
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