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Abstract. We present the preliminary results of a Physics-Informed
Neural Network (PINN) for a Wigner-Fokker-Planck (WFP) equation
modeling open quantum systems such as electron transport in semicon-
ductors. The WFP equation is a mathematical model that considers
diffusion and friction introduced by the environment into an open quan-
tum (sub-)system, describing the problem via a continuous quantum
variable formulation. Recent developments in scientific machine learn-
ing have demonstrated that PINNs are useful in providing data-driven
solutions to partial differential equations (PDE) and for data-driven dis-
covery [20] in the estimation of model parameters, particularly when
constrained to small or noisy data. PINNs minimize a residual addi-
tional to the typical Neural Network approach related to the satisfaction
of a PDE that represents the “Physics” of the problem, along with the
traditional loss function that estimates the fit to the data. The former
residual implicitly trains the model to respect conservation principles
following from the PDE that models the Physics phenomena. Since op-
timization is not solely dependent on minimizing the fit to the training
data, such as in traditional machine learning models, it can perform ex-
ceedingly well for inverse problems to estimate model parameters, such as
the diffusion and friction parameters in the particular case of our Wigner-
Fokker-Planck model, when constrained to small data. This work used
the PINN methodology to solve a data-driven discovery problem for the
Wigner-Fokker-Planck equation. In particular, we solved an inverse prob-
lem with synthetic data obtained from a Monte Carlo forward solver of
the Wigner-Fokker-Planck equation to estimate the elements of our dif-
fusion matrix as parameters of the model representing noise introduced
by the environment into the open quantum system.

Keywords: Data-driven discovery of PDEs · Physics Informed Neural
Networks · Wigner function · Fokker–Planck · open quantum systems·
electron transport in semiconductor materials.
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1 Introduction

1.1 Physics Informed Neural Networks

Physics-informed neural networks are a new machine learning model that allows
the computation of data-driven solutions and the data-driven discovery of partial
differential equations (PDEs). The primary deviation from a traditional neural
network is the addition of a PDE-related residual in the loss function. The mini-
mization of this residual forces the network to produce a computational solution
closer to the true solution of the PDE related to the physics of the problem,
consequently enforcing the solution to respect implicitly (through penalization)
the conservation principles originating from the physical laws expressed in the
PDE as mentioned above [20]. Conventional deep learning models rely heavily
on the quality and amount of data, since even the best models fail to perform
well with insufficient data. This understanding has resulted in a data-centric ap-
proach focused on machine learning instead of a model-centric approach. This is
problematic in scientific machine learning, where data acquisition is commonly
prohibitive for physical systems and also measurement noise is potentially un-
avoidable [20]. Enforcing PINNs to respect the physics of the problem through
a PDE-related residual increases the robustness of the network, giving adequate
results when trained with noisy data or with a smaller amount of data [20],
making them advantageous for "machine-learning" physical systems.

We will consider as in [20] a parametrized PDE of the form

wt + L[w;λ] = 0, x ∈ Ω, t ∈ [0, T ], (1)

where w(t, x) is the unknown/latent/hidden solution, L(·, t) is an operator (pos-
sibly nonlinear) with a parameter λ, and Ω is a subset of RD constituting the
domain of the problem. PINNs can tackle two types of problems when one has
systems measurements with noise. The first is the so-called "data-driven solution
of PDEs" [20], where given some fixed known parameters λ, we approximate the
unknown solution w(t, x). The second is the "data-driven discovery of PDEs"
[20], where we find the model parameters λ that better fit the data for w(t, x).
These problems are traditionally referred to as forward and inverse modeling,
respectively, in the mathematical modeling community [23].

In the Data-Driven Solution case, PINNs is focused on the forward modeling
of a PDE for a time evolution problem in the general form

wt + L[w] = 0, x ∈ Ω, t ∈ [0, T ]. (2)

Since all PDE parameters are assumed to be known in this case, λ is omitted.
w(t, x) is the unknown solution as above mentioned, L(·) is a (possibly nonlinear)
differential operator (for example, if it was linear, it could be a Sturm-Liouville
operator for boundary value problems), and Ω ⊂ RD is the domain. Our residual
f(t, x) will be the left-hand side of the equation (2),

f := wt + L[w]. (3)
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Using a neural network, we can approximate w(t, x), and then derive f(t, x)
by using the chain rule for the derivatives of composed functions via the well-
known process in Machine Learning of automatic differentiation as in [2]. This ap-
proximates f(t, x), constituting our Physics-Informed-Neural-Network or PINN.
Quoting [20], "This network can be derived by applying the chain rule for differ-
entiating compositions of functions using automatic differentiation [2], and has
the same parameters as the network representing [w(t, x)], albeit with different
activation functions due to the action of the differential operator" L.

In PINNs, one has a single neural network for w(t, x) and f(t, x) (where the
spatio-temporal derivatives are obtained through automatic differentiation) with
multiple loss terms [20], and the goal is to minimize the so-called mean squared
error loss function (encompassing the multiple loss terms), given by

MSE = MSEw +MSEf , with (4)

MSEw =
1

Nw

Nw∑
i=1

|w(tiw, xi
w)− wi|2, MSEf =

1

Nf

Nf∑
i=1

|f(tif , xi
f )|2, (5)

where {tiw, xi
w, w

i}Nw
i=1 represent the initial and boundary training data for w(t, x),

whereas {tif , xi
f}

Nf

i=1 are just collocation points of f(t, x). The addition of MSEf

to the loss function enforces the neural network approximation of the solution to
the PDE w(t, x) to also respect the Physics embedded by equation (2), training
the network to get closer to the PDE solution of the physical law, and conse-
quently learn the Physics of the model [20].

The Machine Learning model reported by Raissi et al. [20] has claimed to
observe empirical evidence that performing the minimization together with the
additional PDE residual, as aforementioned, behaves as a regularization mech-
anism, allowing a relatively simple architecture, such as a feed-forward neural
network, to perform well when trained with small amounts of potentially noisy
data. They also argue that this technique is appropriate since back-propagation is
currently the dominant approach for training deep learning models, where deriva-
tives are taken with respect to (w.r.t.) the model’s parameters (i.e., weights,
bias), where PINNs also use automatic differentiation to take derivatives w.r.t.
the input coordinates (both space and time) to construct the residual.

For the inverse modeling case of Data-Driven Discovery, the neural network is
trained to learn the model parameters, denoted by λ, given some sparse measured
solutions of the PDE as training data. Defining f(t, x) to be the left-hand-side
of equation (1) as below,

f := wt + L[w;λ], (6)

we also approximate the solution w(t, x) with a neural network and derive f(t, x)
using automatic differentiation, resulting in the PINN f(t, x). In the inverse
case, the parameters of L become parameters of the PINN for f(t, x) , which
the network is trained to learn. We can train the shared parameters and the
PINNs’ exclusive parameters with the same loss function defined in the forward
case (5), but now {tiw, xi

w, w
i}Nw

i=1 denotes the training data of w(t, x), which
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includes any potential initial and boundary conditions, and {tif , xi
f}

Nf

i=1 specifies
the collocation points, which are at the same location as the training data [20].

1.2 Literature Review

Regarding previous work on Physics-Informed Neural Networks, a brief liter-
ature review would need to start by mentioning the use of Machine Learning
in Computational Physics. Previous work in this regard used machine learn-
ing, though just as a black-box tool [25], in which a study of physics-informed
machine learning for predictive turbulence modeling was presented. Another ex-
ample of machine learning to predict physical systems is [26], in which Bayesian
deep convolutional encoder-decoder networks are used for surrogate modeling
and uncertainty quantification, which is particularly related to the PINNs de-
velopment since it considers similar approaches to the ones considered in deep
learning for image-to-image regression tasks. We would also like to mention the
work in [10] where differential equations with unknown constitutive relations are
solved as recurrent neural networks (in which time series measurements of state
variables are partially available, and recurrent neural networks are used to learn
the ODE reaction rate as Physics of the problem from the data), as well as [24],
where deep neural networks are used to learn surrogate models for numerical
simulators and uncertainty quantification in high dimensions.

However, the work in [20] has been greatly seminal, since it revisited the ac-
tivation and loss functions, but for the differential operator, removing the black-
box approach by understanding the automatic differentiation in deep learning.
This work uses automatic differentiation, as in deep learning, to "Physics in-
form" neural networks by differentiation w.r.t. the spatiotemporal coordinates.
This creates some regularization and allows the use of a simple feed-forward
neural network architecture and training with small data (the latter being quite
important for Physics phenomena, in which the amount of data acquired is much
smaller than for image recognition or data collection from mobile phones).

There has been work to understand why these kinds of machine-learning-
based methodologies work, such as the work in "Why does deep & cheap learn-
ing work so well?" [15], which anticipated some preliminaries of the development
of PINNs by exploring how physical properties such as symmetry, locality, etc.,
imply exceptionally simple neural networks. PINNs also partially build upon the
work in [19] that combines a partial first principles model incorporating available
prior knowledge about modeled processes with a neural network estimating un-
measured process parameters difficult to model from first principles, obtaining
better properties than "black-box" neural network models, as well as the work
in [14] on artificial neural networks for solving ordinary and partial differential
equations (writing the trial solution as a term satisfying the initial and bound-
ary conditions without adjustable parameters plus another term not affecting
the initial/boundary conditions), and the work in [12] on a covariant hierar-
chical neural network architecture for learning atomic potentials (in which the
atomic potential energy surfaces are learned to be used in molecular dynamics
simulations), as well as the work in [13] on the generalization of equivariance and
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convolution in neural networks to the action of compact groups (beyond only
equivariance to translations in image recognition). There is also important work
in [11] on the wavelet scattering regression of quantum chemical energies (where
multiscale invariant dictionaries are introduced to estimate quantum chemical
energies of organic molecules from training databases), and in [17] on the under-
standing of deep convolutional networks (which is a work of great relevance to
PINNs and Machine Learning in general since it intends to set the foundations
of deep convolutional networks with tools similar on how Physics deals with high
dimensional problems in Statistical Mechanics).

Regarding the particular use of Machine Learning for open quantum systems,
previous work on this line has been developed in [18] on deep reinforcement learn-
ing for quantum state preparation with weak nonlinear measurements . There is
also work in [5] on the machine learning based noise characterization and cor-
rection on neutral atoms NISQ devices, as well as work in [1] on the quantum
Fokker-Planck master equation for continuous feedback control. There is also
work in [7] on solving inverse stochastic problems from discrete particle observa-
tions using the Fokker-Planck Equation and Physics-informed Neural Networks.
There is work in [16] on solving multiscale steady radiative transfer equations us-
ing neural networks with uniform stability. However, to our knowledge, nobody
has applied Physics-Informed Neural Networks to study of open quantum sys-
tems yet, particularly the Wigner-Fokker-Planck model of open quantum systems
such as electron transport in semiconductors. This is our paper’s contribution.

1.3 Wigner-Fokker-Planck Equation

We aim to solve an inverse modeling problem for the Wigner-Fokker-Planck
(WFP) model for open quantum systems, under a harmonic potential, with a
Physics Informed Neural Network. Equations of this type need efficient com-
puting methods for its forward and inverse modeling, which we wish to study
using this technique for the latter case. Open quantum systems are quantum
subsystems that interact with their environment (through energy exchanges,
for example) [21]. WFP is a kinetic quantum model in continuous variables
(position-momentum based) for open quantum systems. It finds particular ap-
plications in electronic charge transport in semiconductor materials and devices
[9], quantum optics, and quantum information science and engineering (QISE),
for example. WFP describes the time evolution of a so-called quasi-probability
Wigner function w(x, k, t), which is obtained by applying a Wigner transform [6]
to the density matrix ρ(x, y, t) [9], where x, y are position variables and p = ℏk
is the proportionality relation between the momentum p and the wave vector k.

The Wigner-Fokker-Planck equation is given by

wt + k · ∇xw +Θℏ[V ](w) = Qℏ,FP (w), (7)

where Qℏ,FP (w) is the Quantum Fokker-Planck operator, which models the
averaged environmental interactions with the system, and Θℏ[V ](w) is the inte-
gral pseudo-differential operator that takes into account the non-local action of
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the potential V [21]. Though formally speaking the potential would include both
the self-consistent part of the electrons interacting among themselves and an ap-
plied external bias, for this benchmark study we will assume the total potential
is known, and that this total potential is harmonic, so that we can compare
against the benchmark steady-state analytical solution for the harmonic case
obtained in [22]. The Quantum Fokker-Planck operator is local and represents
diffusion and friction (under Markovian approximations for the noise), given by

Qℏ,FP (w) = 2γ∇k · (kw) +Dqq∇2
xw + 2

Dpq

m
∇x · ∇kw +

Dpp

m2
∇2

kw, (8)

where the following parameters,

γ =
λ

2m
, Dqq =

λℏ2

12m2KbT
, Dpq =

λΩℏ2

12πmkbT
, Dpp = λkbT (9)

are such that γ is a friction coefficient, and the diffusion matrix is

D =

(
Dqq Dqp

Dpq Dpp

)
, Dpq = Dqp. (10)

ℏ is Planck’s constant, m is the mass of the particle, kb is Boltzmann’s con-
stant, T is temperature, λ is the coupling constant, and Ω is the cutoff frequency.
The constants above satisfy the Lindblad condition DqqDpp − D2

pq ≥ ℏ2γ2/4,
and Ω ≤ kbT/ℏ, which guarantee the quantum mechanically correct evolution of
the system (as in the respective density matrix being completely positive trace-
preserving, referred to as CPTP). Under the classical limit ℏ/S∗ → 0, with S∗ a
characteristic action unit of the system, the WFP will converge to the classical
Fokker-Planck dynamics [9]. We choose units so that the following normalization
holds: ℏ = λ = m = Kb = T = 1, and together with Ω = 0, the parameters
simplify to Dpq = 0 , Dqq = Dpp = 1, λ = 1

2 .
The pseudo-differential integral operator for a given potential V acting over

w is defined as

Θℏ[V ]{w} =

∫
R2n

[
V (x+ ℏη

2m )− V (x− ℏη
2m )

]
w(x, p, t)eiη·(k−p)dηdp

−iℏ(2π)n
. (11)

Because this is indeed an integral operator, this makes it the most computation-
ally expensive term in a numerical simulation of WFP. However, if we assume
the confining potential V to be harmonic, as in the quadratic form below,

V (x) =
ω2
0

2
|x|2 + a · x+ b, a ∈ Rd, b ∈ R, ω0 ≥ 0, (12)

then the pseudo-differential operator simplifies to [22]

Θ[V ]{w} = −ω2
0x · ∇kw. (13)
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This results in the Wigner-Fokker-Planck equation simplifying to the convection-
diffusion equation below,

wt + k · ∇xw − ω2
0x · ∇kw = Qℏ,FP (w), (14)

x ∈ Rd, k ∈ Rd, t ∈ R+, w(t = 0, x, k) = w0(x, k).

This can be written more compactly as

wt +∇(x,k) · (P (x, k)w) = ∇(x,k) · (D∇(x,k)w), w(0, x, k) = w0(x, k), (15)

with w0(x, k) the initial condition of the Wigner function at time t = 0 (for
example, a harmonic ground state), where

D :=

(
DqqId DpqId
DpqId DppId

)
, P (x, k) :=

(
k

−ω2
0x− 2γk

)
. (16)

We will study this simplified case of the Wigner-Fokker-Planck equation un-
der a known harmonic potential since there is a known analytical steady-state
solution for it, found by Sparber et al. on [22]. The above makes the problem
perfect as a benchmark for any computational solver of the WFP equation, since
the computational simulations at long times can be compared to the analytical
steady state solution known to this problem. Additionally, our research group
has developed a Monte-Carlo forward solver for WFP under this benchmark case
[8], which we used to produce synthetic training data for the Wigner Function
w(k, x, t) in our PINNs methodology for inverse problems, as we will explain in
detail in the next section.

Under a particular choice of values for our parameters, the diffusion matrix
and the transport vector P (x, k) (which also includes the friction term) become

D :=

(
Id 0
0 Id

)
, P (x, k) :=

(
k

−x− k

)
. (17)

This is the particular problem we will study in our inverse modeling study
through PINNs for WFP, which we describe in the following sections.

2 Methodology

For the Wigner-Fokker-Planck equation, we are interested in the inverse problem
case of finding the diffusion matrix elements, knowing beforehand that their true
value is Dpq = 0 = Dqp, Dqq = 1 = Dpp and confirming the PINNs method
will recover values close to the true ones as a benchmark problem. We can
define f(x, k, t) as the left-hand-side of equation (15), which will be our residual
corresponding to the PDE representing the Physics of the model,

f := wt +∇(x,k) · (P (x, k)w)−∇(x,k) · (D∇(x,k)w). (18)

We approximate the Wigner function w(x, k, t) by a single output neural
network and derive f(x, k, t) using automatic differentiation, resulting in the
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PINN f(x, k, t). The parameters Dpp, Dqq, and Dpq turn into exclusive param-
eters of the Physics-Informed Neural Network f(x, k, t), which the network will
estimate. The diffusion parameters of the Wigner-Fokker-Planck equation, as
well as the parameters of the neural networks [w(x, k, t)], [f(x, k, t)], are learned
by minimizing the following mean squared loss,

MSE = MSEw +MSEf , where (19)

MSEw =
1

Nw

Nw∑
i=1

|w(xi, ki, ti)− wi|2, MSEf =
1

Nf

Nf∑
i=1

|f(xi, ki, ti)|2. (20)

To solve for the steady-state solution of WFP under a harmonic potential,
we have generated a synthetic training dataset from our Monte Carlo forward
solver [8] with the same normalization in 1D in x and 1D in p (Figs. 1-2).

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Initial Condition

Fig. 1. Wigner-Fokker-Planck Initial Condition: Harmonic Groundstate, represented
as a point distribution by sampling the respective Gaussian Wigner function [8].

The models were also trained with randomly sampled data, with half the
models having 1% uncorrelated Gaussian noise applied to the training data to
test its performance, given noisy measurements. Our data contains 2640 points
in phase space and 500 temporal points to the steady-state solution, resulting in
a total dataset of size NT = 1, 320, 000. To also test how well the model performs
with small data, we trained the model with only 6600 randomly sampled points,
NTrain = 6600, corresponding to only 0.5% of the total available data. We use
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Fig. 2. Wigner-Fokker-Planck Numerical Steady State Solution obtained by a Monte
Carlo based Euler-Maruyama method [8].

the same architecture as the Navier-Stokes PINN in [20], which has 8 hidden
layers and 20 neurons per layer with hyperbolic tangent activation functions.
However, the WFP PINN has a 3D input of [x, k, t] and a 1-dimensional output
[w(x, k, t)].

3 Results

3.1 Wigner-Fokker-Planck Equation

We use as an initial condition for the WFP equation the harmonic ground state
(as in Fig. 1), given by the following Wigner function (in units such that ℏ = 1
and then 2/h = 1/π),

w(x, k, t)|t=0 = w0(x, k) =
1

π
exp(−[(x/L)2 + (kL)2]) (21)

where L = 1 is the characteristic unit of length for the system. Since our forward
solver for the WFP equation relies on a Monte Carlo-based Euler-Maruyama
method rather than a finite element/difference method, no boundary conditions
are needed. The initial condition is in the form of a point distribution obtained by
sampling from a Gaussian distribution in position-momentum phase space (x, k)
related to the harmonic groundstate in the Wigner form abovementioned in
(21), so the sampling will be concentrated around the maximum of the Gaussian

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97564-6_22

https://dx.doi.org/10.1007/978-3-031-97564-6_22
https://dx.doi.org/10.1007/978-3-031-97564-6_22
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distribution for the harmonic ground-state (which is the origin), and will have a
very low probability of sampling beyond 3 standard deviations after the origin
in either the position or momentum variable. In the forward solver, we just let
each one of the points sampled in the initial condition to advect under noise
according to the quantum diffusive transport of WFP via the Euler-Maruyama
method, so we do not predetermine the domain in phase space in which the
sampled points will move over the forward solution of the problem numerically.
We used Nsamples = 104 sampled initial points for our forward solver, which were
afterwards evolved according to our Monte Carlo solver for our WFP quantum
diffusive transport model. We chose Nf = Ntrain = 6600, since the number of
points sampled from the entire data set for training was Ntrain = 6600, and
we estimated Nw = 13 for the initial condition (no boundary conditions are
imposed, therefore, there are no boundary points for Nw). For the WFP PINN,
we ran each model 110 times. For one set of models, we applied 1% uncorrelated
Gaussian noise to the training data, representing measurement noise.

Table 1. Summary of Different Models’ Performance for WFP. Average of 140 Trials
Reported. All were trained on NVIDIA Tesla V100 from the Arc UTSA HPC facilities.

Quantity of interest Error for
noiseless training

Error for noisy
training

Relative error in L2-norm
for Wigner function

0.0021 0.0023

Dpq absolute error 0.0038 0.0037
Dpp relative error 1.509 % 1.512 %
Dqq relative error 0.0629 % 0.0623 %

Both functionals MSEw = Jd and MSEf = Jf are equally prioritized in the
loss function (20). Therefore, quantitatively, once their values are of the same
magnitude, we expect them to be equally minimized during the training, which
is the observed behavior.

We present in Fig. 3 a plot of the Jf vs. Jd functionals over the iteration, as
well as a plot of the. Loss function Jf +Jd versus the Iteration number (for both
figures, the broken red line indicates where the L-BFGS-B algorithm begins). We
also present in Fig. 4 a plot of the neural network prediction for the steady state
compared against the exact steady state, for which their similarity illustrates the
successful learning of the WFP model by PINNs. In Fig. 5 we present a plot of the
neural network prediction L1 error norm, comparing the difference between the
predicted steady state versus the exact steady state. The low magnitude of the
values compared with the ones in Fig. 4 shows the small error norm obtained.
We present in Fig. 6 as well a plot of the neural network predictions for the
diffusion matrix elements over different iterations, which shows the convergence
of the diffusion matrix elements towards the expected values of 0 or 1.
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Fig. 3. Top: Jf vs. Jd functionals. Bottom: Loss function Jf + Jd versus Iteration
number. The broken line in red indicates where the L-BFGS-B algorithm begins.

5 0 5
x

5

0

5

k

Predicted Steady State

0.00

0.02

0.04

0.06

0.08

5 0 5
x

5

0

5

k
Exact Steady State

0.00

0.02

0.04

0.06

0.08

Fig. 4. Plot of the neural network prediction for the steady state compared against
the exact steady state. Their similarity illustrates the successful learning of the WFP
model by PINNs.
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Fig. 5. Plot of the neural network prediction L1 error norm, comparing the difference
between the predicted steady state versus the exact steady state. The low magnitude
of the values compared with the ones in Fig. 4 shows the small error norm obtained.
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Fig. 6. Plot of the neural network predictions for the diffusion matrix elements over
different iterations. The plot shows the convergence of the diffusion matrix elements to
the expected values of 0, 1, depending on the respective element.

4 Discussion

For the WFP PINN, we produce small errors, of the order 1% when estimating
the diffusion parameters, while only training on 0.5% of available data. These
results are of similar order to the ones found by Raissi et al. [20] for the inverse
modeling of a Navier-Stokes problem where the viscosity coefficient was found.
The above indicates that the PINN methodology is promising for future applica-
tions and development, for example, in the case of Quantum Information Science
and Engineering, for state preparation via Lindbladians. In state preparation via
Lindbladians, one can engineer the noise to conduct the state to a given desired
form for sufficiently long times in certain cases. In the case of materials sci-
ence problems, such as electron transport in semiconductor devices, the use of
PINNs for the WFP equation could characterize the quantum diffusion matrix
and friction coefficients representing the scattering processes that electron ma-
terials undergo when traveling across semiconductors. For example, in silicon,
the most common scattering mechanisms are electron-phonon collisions, so the
solution of this inverse problem for WFP in PINNs would determine the pa-
rameters representing the quantum scattering of electrons undergoing transport
across semiconductor materials such as silicon, germanium, etc. PINNs could
also be used for more complex non-harmonic potentials where there is no ana-
lytic solution, as for the real case of the electric potential made of self-consistent
electron interactions and applied external biases (in which case, this potential
has to be obtained by solving a Poisson equation coupled to WFP). Real-world
lab data could be used and it would be necessary to study the non-harmonic
case. We believe that the same performance of our Physics-Informed Neural
Network can be accomplished for anharmonic potentials because the conceptual
idea will be the same: provided we have data from a forward solver of the WFP
equation for a given potential (harmonic or not, even if on the latter case we
don’t know the analytical formula for the steady state solution), since the prob-
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lem in the forward solver is inherently of a convective-diffusive nature as in the
Wigner-Fokker-Planck equation, the inverse modeling procedure carried through
PINNs will be able to identify parameters such as the diffusion matrix and the
friction coefficient because the Physics-Informed-Neural-Network has the same
Physics that the forward model from which the data comes from, regardless
of the potential being harmonic, anharmonic, or even more complex as having
a self-consistent part obtained from a Poisson equation, as for more complex
WFP-Poisson systems coupling these two equations for the problem of electron
transport in semiconductors at a quantum scale.

5 Conclusion and Future Work

In the WFP case, the errors for the diffusion parameters Dpq and Dqq reported
in Table 1 are smaller for the models trained with data that had noise applied
to it. Though this could seem in principle unexpected given the prominent mar-
gins between the errors for models trained with noise and without it reported
in [20], we would like to mention that noise can also have a stabilizing effect
on neural network training and can also help prevent overfitting as discussed in
[3, 4]. For example, we add Gaussian noise to the input variables and also for
training. On the other hand, the used 1% noise is minimal and could be consid-
ered small for traditional feed-forward neural networks. PINNs are considered
more noise resilient because of the PDE residual embedded in their optimiza-
tion process. Future work could include studying how the accuracy degrades as
noise increases, which could validate the noise resilience claimed for the studied
PINN. Future work on the computational math side could also include hyperpa-
rameter tuning for the activation functions, parameters for the architecture, and
potentially how much to scale the residuals corresponding to the data and PDE
in a multi-objective optimization manner. Currently, they are equally weighted,
but this can be adjusted through a multi-objective optimization methodology as
aforementioned, where the functional optimized is made of a convex combina-
tion of both data and Physics-related functionals, with the convex combination
parameter ρ ∈ (0, 1) defining the weights given to each of the two functionals
respectively. Pareto curves could be produced in that case for the set of mul-
tiple convex combinations of the data and Physics-related functionals to find
the optimal values of ρ that minimize the total loss without overfitting. Future
work on the materials science side could be related on trying to use real data
from current-voltage characteristics (I−V curves) to fit the respective quantum
diffusion matrix and friction coefficient characterizing different semiconductor
devices by performing steady-state simulations of the WFP-Poisson system and
finding the parameter values whose observables and expectation averages fit the
behavior of the I−V curves available in the literature for the respective materials
and devices under consideration.
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