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Abstract.  

This article presents an analysis of the application of machine learning algorithms 

for predicting the mechanical properties of austempered ductile iron (ADI) cast-

ings. As part of the study, predictive models were developed and optimized to 

forecast strength parameters based on chemical composition, thickness, and heat 

treatment process parameters. A detailed analysis of the impact of hyperparame-

ters on algorithm effectiveness was conducted, along with a comparison of dif-

ferent parameter space exploration methods.  

The study evaluated the performance of various machine learning algorithms, 

identifying Gradient Boosting as the most effective for predicting mechanical 

properties. An additional outcome of this research is the development of a web 

application integrating the predictive models, allowing users to analyze the ex-

pected properties of castings based on input data. 

This solution has potential applications in the foundry industry, enabling better 

control over production processes and reducing costs associated with experi-

mental selection of technological parameters. The results confirm that applying 

machine learning algorithms can significantly improve the prediction of ADI 

iron's mechanical properties, paving the way for further automation and optimi-

zation of metallurgical production processes. 
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1 Introduction 

The use of exploration and learning algorithms helps solve complex practical problems. 

The casting production process consists of multiple stages, and an optimal solution for 

one stage may not be optimal for the entire process. Process planning involves many 

factors, such as the diversity of ordered components, variations in metal processing, 

and machining. The use of artificial intelligence and machine learning algorithms ena-

bles the optimization of the entire process in terms of cost reduction, better time man-

agement, and resource allocation. 
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Process optimization is a key challenge in the era of Industry 4.0, where technology, 

automation, and data analysis play a crucial role in increasing efficiency and reducing 

company costs. The application of exploration and learning algorithms allows for min-

imizing human errors, generating automatic parameters and production schedules, de-

tecting and eliminating casting defects, and optimizing resource and material manage-

ment. Process optimization also contributes to reducing environmental impact by low-

ering energy and material consumption and minimizing the production of unnecessary 

components that fail to meet minimum requirements. Companies that embrace techno-

logical advancements become more competitive in the market and can better respond 

to customer demands. 

The continuous development of artificial intelligence tools enables their application 

in materials engineering, discovering new solutions and techniques that contribute to 

better resource utilization. Analyses of machine learning algorithms, including neural 

networks and reinforcement learning, facilitate automatic knowledge acquisition and 

process improvement based on available data and observations. By applying data anal-

ysis and exploration techniques, individual process stages can be examined compre-

hensively, leading to optimal solutions. 

The remainder of this article is organized as follows. Section 2 provides a review of 

the relevant literature related to machine learning applications in the foundry industry. 

Section 3 discusses the dataset, data processing methods, correlation analysis, and the 

machine learning algorithms applied in this study. Section 4 presents a series of exper-

iments, including baseline model performance, hyperparameter optimization using 

Grid Search and Bayesian Search, and the impact of data augmentation. The deploy-

ment of the developed models as a web application is also described. Finally, Section 

5 summarizes the findings and outlines future research directions. 

2 Literature review 

Process planning in metal processing is a key element of the metal industry's operations. 

Proper preparation of processes enables the maximization of production efficiency, re-

duction of downtime, minimization of energy losses, and lowering of manufacturing 

costs. The steel production process is characterized by high temperatures, strict inter-

dependence of various stages, significant material and energy consumption, the use of 

massive equipment, and complex operational control. Artificial intelligence methods 

have been adapted to optimize solutions in steel production [1, 2]. The authors of [1] 

focused on batch production planning, while in [2], the researchers addressed issues 

related to steel production planning and scheduling, emphasizing that solving these 

problems separately often leads to suboptimal results. Additionally, the specificity of 

conditions in individual production plants poses further challenges. Artificial intelli-

gence methods have also been applied to resource consumption prediction based on 

planned castings using a modifier in an automotive company [3], as well as in a labor-

atory setting based on weekly sample analysis plans [4]. Seeking to balance material 

properties and process efficiency, the authors of [5] utilized a Co-Evolutionary Algo-

rithm (CEA) to optimize the chemical composition design of amorphous alloys and 
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vacuum casting process parameters. Data analysis of die-cast aluminum [6] using the 

Support Vector Regression (SVR) algorithm for predicting material properties—in-

cluding yield strength (YS), ultimate tensile strength (UTS), and elongation (EL)—

demonstrated the relevance of such research due to the model's high predictive accu-

racy. In [7], an adaptive neuro-fuzzy inference system (ANFIS) was applied to predict 

the mechanical properties of A357 aluminum castings, produced using the low-pressure 

permanent mold casting method. The ANFIS model was employed to analyze the im-

pact of chemical composition (elements such as Si, Mg, Fe, Ti, and Cu) on UTS, YS, 

and elongation (ε). The ANFIS model achieved high accuracy (>85%) in identifying 

key variables affecting casting quality and in predicting material properties. The pre-

diction of mechanical properties was also addressed by a research team studying auto-

motive cast parts [8]. Algorithms such as Random Forest (RF), K-Nearest Neighbor 

(KNN), and Extreme Gradient Boosting (XGBOOST) were used to predict UTS and 

YS. The studies highlight the potential of exploration and learning algorithms in im-

proving casting process design, reducing the number of destructive tests, and increasing 

production efficiency. Therefore, integrated systems for process design and material 

preparation represent a crucial step in the advancement of materials engineering. 

3 Materials and methods 

3.1 Dataset 

The input data consists of 513 records containing information on ADI cast iron, though 

some records lack complete data. Each record includes details on the chemical compo-

sition of the cast iron, heat treatment process parameters, product thickness in millime-

ters, and mechanical properties. The parameters related to chemical composition, heat 

treatment, and product thickness are fully recorded. However, the mechanical proper-

ties dataset is incomplete -  (Fig. 1) illustrates the distribution of non-empty parameters. 

The data set is uneven and has significant gaps with the following available values:  

Ultimate tensile strength (UTS) – 386 recorded values, Yield strength (YS) – 279 rec-

orded values, Elongation (EL) – 360 recorded values, Brinell hardness (HB) – 309 rec-

orded values, Impact toughness (measured on unnotched samples) – 314 recorded val-

ues. The dataset is a combination of multiple databases, analyzing alloys with varied 

chemical compositions. Due to the diverse data sources, the input parameters often ex-

hibit significant variability. For example, the extreme values of magnesium or phos-

phorus content in the chemical composition are twenty times higher than their average 

values, whereas nickel and copper content percentages do not show significant devia-

tions from the mean. Regarding heat treatment parameters, which include austenitiza-

tion and austempering, austempering time and temperature do not have significantly 

outlying values, whereas austenitization time and temperature do. The average product 

thickness is approximately 30 mm, but outliers reaching up to 100 mm are present. 

Most physical parameter values do not deviate significantly from their average values, 

except for impact toughness and Brinell hardness, which exhibit larger deviations. 
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Fig. 1. Proportional Distribution of Physical Parameter Data 

3.2 Data Correlation  

The correlation matrix (Fig. 2) illustrates the relationships between various process var-

iables and mechanical properties of the material. Correlations are expressed on a scale 

from -1 (strongly negative correlation) to 1 (strongly positive correlation), with a value 

of 0 indicating no correlation. 

The content of individual chemical elements can significantly affect the mechanical 

properties of the alloy. Carbon content shows a negligible correlation with tensile 

strength and elongation, while higher carbon levels slightly decrease yield strength and 

increase hardness and impact toughness. Silicon influences yield strength similarly, but 

elongation increases with higher silicon content, while hardness decreases; other pa-

rameters do not show significant relationships. Manganese content generally has no 

effect on impact toughness and lowers other strength parameters. A notable decrease in 

tensile strength occurs with an increase in magnesium percentage, which also nega-

tively impacts other properties. Higher copper and nickel content leads to increased 

elongation and slightly reduces impact toughness and tensile strength. Molybdenum 

decreases tensile strength and, to a lesser extent, yield strength. Phosphorus has a pos-

itive correlation with tensile strength, elongation, and impact toughness, without sig-

nificantly affecting yield strength or hardness. The correlations of other elements (S, 

Ti, Cr, Sn, Al) are minor, indicating their minimal influence on mechanical properties. 

In summary, magnesium (Mg) and molybdenum (Mo) have the most significant 
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negative impact on tensile strength and yield strength. Silicon (Si), copper (Cu), nickel 

(Ni), and phosphorus (P) positively affect ductility (A5). Carbon (C) has the strongest 

effect on increasing hardness. Impact toughness increases with higher carbon (C) and 

phosphorus (P) content but decreases with higher copper (Cu) content. 

Heat treatment also affects material properties. Austenitization temperature and time 

show varied correlations with mechanical properties. Temperature has a positive corre-

lation with tensile strength, yield strength, and hardness, but a negative correlation with 

elongation and impact toughness. Time has a positive correlation with elongation but 

minimal effect on other mechanical parameters. The austempering process has a greater 

influence on mechanical parameters. Temperature shows a strong negative correlation 

with yield strength (-0.65), tensile strength (-0.5), and hardness (-0.79), indicating a 

significant reduction in strength with increasing temperature. Time has weak correla-

tions with mechanical properties, suggesting that its impact is less significant compared 

to other parameters. 

 

 

Fig. 2. Correlation Matrix 

The mechanical properties of cast iron generally exhibit strong correlations with one 

another. Tensile strength and yield strength have a very strong positive correlation 

(0.89), indicating that an increase in one property is typically accompanied by an in-

crease in the other. Elongation is strongly negatively correlated with tensile strength  
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(-0.42) and yield strength (-0.57), suggesting that materials with higher strength gener-

ally exhibit lower elongation. Brinell hardness shows a significant positive correlation 

with tensile strength (0.42) and yield strength (0.53), while it negatively correlates with 

elongation (-0.54). Among all mechanical properties, impact toughness is the least cor-

related with the others, with the lowest correlation observed with tensile strength 

(-0.37). 

3.3 Data Completion and Augmentation  

Due to the relatively high correlation coefficients between various mechanical param-

eters and the presence of missing values in the dataset, it is possible to impute missing 

values based on the correlated parameters available in the dataset. However, this ap-

proach carries the risk of introducing erroneous relationships between attributes. Cre-

ating a predictive model based on data that has been partially generated by other pre-

dictive models may lead to a situation where it is unclear whether the model is truly 

solving the intended problem. 

For this reason, the study opted to use data augmentation techniques to expand the 

dataset. Data augmentation involves artificially increasing the training dataset by gen-

erating new, modified examples from existing data. The goal is to improve model per-

formance by providing a larger number of diverse samples, which can help prevent 

overfitting and enhance the model’s generalization ability. 

3.4 Machine Learning Algorithms Used  

Machine learning is widely used to solve prediction problems. This paper analyses the 

applicability of various machine learning algorithms for predicting the mechanical 

properties of ADI cast iron. To compare the performance of various artificial intelli-

gence models, the following algorithms were evaluated: 

- Linear Regression [9, 10]: A relatively simple and interpretable machine learning 

algorithm used in tasks involving the prediction of numerical values based on input 

data. It allows the modelling of linear relationships between independent and dependent 

variables. It assumes the existence of a linear relationship between independent varia-

bles and dependent variables.  

- Decision Trees [11–13]: An easy to interpret and visualize machine learning algo-

rithm for solving classification and regression problems. A hierarchical graphical rep-

resentation in which each node represents the results of a test on a variable and each 

branch reflects the result of that test. The algorithm selects one of the independent var-

iables that has the greatest influence on the partitioning of the data. 

- Random Forest [14–16]: Also known as Bagged Decision Trees, it is based on 

creating a model consisting of multiple decision trees to achieve better performance 

and generalization. It is used for both classification and regression problems. It is based 

on creating multiple decision trees trained on random data with repetition. Each tree 

receives a different data set and a random subset of independent variables, increasing 

diversity and reducing the risk of overfitting. 
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- Boosting Algorithms [17–20]: A technique used in machine learning to reduce 

prediction errors by combining weaker models into one. It focuses on reducing system-

atic errors and improving efficiency. There are many implementations of boosting, in-

cluding: 

• Adaptive boosting (AdaBoost): One of the earliest boosting methods. Initially, it 

assigns the same weight to each set, which are then adjusted. It assigns greater 

weight to misclassified observations in order to improve them in the next itera-

tion. 

• Gradient boosting (GB) - A sequential algorithm that optimizes loss functions 

by sequentially generating base models so that the current one is more effective 

than the previous one. 

• Extreme gradient boosting (XGBoost) - An improved version of GB in terms 

of speed and scalability, using multithreading and distributed computing. 

- Support Vector Regression (SVR) [21, 22]: A machine learning technique that 

uses the SVM (Support Vector Machines) algorithm to solve regression problems. It is 

used to predict numerical values by modeling the relationship between independent and 

dependent variables. In contrast to the SVM, which seeks to maximize the margin be-

tween data points, this approach aims to minimize regression error. The utilization of 

kernel functions enables the transformation of input data into higher-dimensional 

spaces. 

- K-Nearest Neighbors (KNN) [23, 24]: A machine learning algorithm is used in 

both classification and regression. It works on the assumption that objects with similar 

characteristics are adjacent to each other in feature space. The distances between the 

sample and all samples in the dataset are calculated. The K value determines how many 

nearest neighbors will be considered when predicting classes or values for a new sam-

ple. 

3.5 Selected Model Evaluation Metrics  

During the study on the performance of machine learning models, only the R² and 

RMSE metrics were chosen, as they are the most intuitive to interpret. Additionally, 

cross-validation was applied during model training to identify potential overfitting and 

obtain more realistic results. 

R² Score (Coefficient of Determination): This regression metric indicates how well 

the model fits the data. It represents the proportion of data variability explained by the 

model. The R² score ranges from 0 to 1, where 1 means the model perfectly fits the data 

(all points lie on the regression line), while 0 indicates that the model does not explain 

any data variability and its predictions are equivalent to a simple average. 

RMSE (Root Mean Squared Error): This metric measures the average size of the 

error predicted by the model compared to actual values. RMSE is expressed in the same 

unit as the data, making it easy to interpret. A lower RMSE value indicates better model 

performance, as it signifies smaller prediction errors. 

Cross-validation is a technique used to assess the performance of machine learning 

models by splitting the dataset into multiple subsets. The model is trained on a portion 
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of the data and tested on the remaining part. This process is repeated for different data 

splits, and the final results are averaged, providing a more stable and reliable model 

evaluation. 

 

3.6 Hyperparameter Search Algorithms  

One of the ways to improve model performance is hyperparameter optimization, which 

is the process of adjusting their values to achieve the best configuration for a specific 

task. Hyperparameters are model parameters that are not learned during training but 

must be specified before the learning process begins. Hyperparameter optimization is a 

crucial step in creating an effective machine learning model, as it can significantly im-

pact its performance. The goal of this process is to find settings that minimize the model 

error or improve other performance metrics. A decision was made to apply the Grid 

Search and Bayesian Search strategies during the research. This decision was based on 

the fact that both approaches allow for systematic searching of the hyperparameter 

space, which is essential to finding the best model settings. [25, 26] 

4 Application  

Due to the number of algorithms being analyzed, the number of mechanical parameters 

to be determined, and the methodology of the solutions, the study was divided into 

several research scenarios. All the experiments in this work were conducted on a ma-

chine with an Intel Core i7-4790K 4 x 4.00GHz processor and 16 GB of physical RAM. 

4.1 Study of Models with Default Parameters, Without Data 

Augmentation and Hyperparameter Tuning 

The goal of this experiment was to assess the model performance using default param-

eters in order to establish a baseline for comparisons in later analyses. Table 1 summa-

rizes the algorithms that best adapted to the training and test sets, as well as the algo-

rithms that adapted the least for the specific mechanical parameters. 

 
Table 1 Experiment Results for Models with Default Parameters  

Result Tensile Strength Yield Strength Elongation Brinell Hardness Impact Toughness 

Best Fit to the 
Training Set 

Decision Tree Re-
gressor 

Decision Tree Re-
gressor oraz Extra 

Tree Regressor 

Decision Tree Re-
gressor oraz Extra 

Tree Regressor 

Decision Tree Re-
gressor oraz Extra 

Tree Regressor 

Decision Tree Re-
gressor oraz Extra 

Tree Regressor 

Best Fit to the 
Training Set 
with 5-Fold 

Cross-Valida-
tion 

Extra Trees Regres-
sor 

Extra Trees Re-
gressor 

Extra Trees Re-
gressor 

XGBRegressor 
Extra Trees Re-

gressor 

Best Fit to the 
Test Set 

Extra Trees Regres-
sor 

XGBRegressor XGBRegressor 
Gradient Boosting 

Regressor 
XGBRegressor 

Worst Fitting 
Model 

SVR SVR SVR SVR SVR 
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During the analysis of the basic experiment results, it was observed that decision tree-

based algorithms tend to overfit. This is particularly evident in the case of the Decision-

TreeRegressor and ExtraTreeRegressor models, which in most cases achieved a 100% 

fit to the training set. However, when verifying the results on the test set, these same 

models performed significantly worse. The worst-performing model was the SVR, 

which is most likely due to the default value of the "C" parameter set to 1. Such a low 

value causes the model to be highly tolerant of prediction errors and attempts to find a 

solution close to linear regression, which does not favor accurate predictions for non-

linear data. 

4.2 Study of Models Using Hyperparameter Tuning - Grid Search 

The goal of this experiment was to examine the impact of specific hyperparameter val-

ues on the performance of predictive models. The shortest average training time for a 

given model was achieved by the DecisionTreeRegressor, ExtraTreeRegressor, and 

KNeighborsRegressor algorithms. On the other hand, the most time-consuming models 

were the RandomForestRegressor, AdaBoostRegressor, and ExtraTreesRegressor al-

gorithms. The GradientBoostingRegressor algorithm achieved top results for each of 

the mechanical parameters, except for impact toughness. For impact toughness, the 

most efficient model was the ExtraTreesRegressor. Among the top models were also 

XGBRegressor, XGBRFRegressor, and RandomForestRegressor—all of which 

achieved results around 0.8 R². The other models performed significantly worse. Table 

2 presents a summary of the algorithms with hyperparameter tuning that achieved the 

highest average and maximum R² scores, as well as the worst average and maximum 

values. 

 
Table 2 Results of the studied machine learning models for mechanical parameters with hy-

perparameter tuning 

Result Tensile Strength Yield Strength Elongation 
Brinell Hard-

ness 
Impact Tough-

ness 

Highest Aver-
age R² Score 

Gradient Boost-
ing Regressor 

Gradient Boost-
ing Regressor 

Gradient Boost-
ing Regressor 

AdaBoost Re-
gressor 

Gradient Boost-
ing Regressor 

Best Maximum 
R² Score 

Gradient Boost-
ing Regressor 

Gradient Boost-
ing Regressor 

Gradient Boost-
ing Regressor 

Gradient Boost-
ing Regressor 

Extra Trees Re-
gressor 

Lowest Average 
R² Score 

Linear Regres-
sion 

Linear Regres-
sion 

SVR 
Linear Regres-

sion 
Linear Regres-

sion 

Worst Maxi-
mum R² Score 

Linear Regres-
sion 

SVR 
Linear Regres-

sion 
Linear Regres-

sion 
Linear Regres-

sion 

 

The analyses indicate that the most effective and stable model is usually the Gradi-

entBoostingRegressor, which in most cases showed the highest average accuracy and 

the best maximum results. On the other hand, the worst results were obtained by the 

linear regression algorithm, whose performance did not improve in any case and, in 

most tests, did not exceed R² = 0.6. 
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4.3 Study of Models with Data Augmentation 

The goal of this experiment was to examine the impact of various data augmentation 

techniques on the overall performance of individual models. This experiment used set-

tings similar to those in section 4.2. The following changes were made to the dataset:  

- The Fe parameter was introduced — the iron content calculated based on the total 

content of other elements subtracted from 100%. 

- Dimensionality reduction was performed — data regarding the content of elements 

such as "S", "P", "V", "Cr", "Ti", "Sn", and "Al" were excluded from the analysis. 

- The ausferritization time was represented as the logarithm of the time in seconds 

(this approach was inspired by the article [27]). 

 
Table 3 Results of the studied machine learning models for mechanical parameters with hy-

perparameter tuning and data augmentation 

Result Tensile Strength Yield Strength Elongation Brinell Hardness 
Impact Tough-

ness 

Highest Av-
erage R² 

Score 

Gradient Boost-
ing Regressor 

AdaBoost Re-
gressor 

Gradient Boost-
ing Regressor 

AdaBoost Re-
gressor 

Gradient Boost-
ing Regressor 

Best Maxi-
mum R² 

Score 

Gradient Boost-
ing Regressor 

XGBRegressor 
Gradient Boost-

ing Regressor 
ExtraTrees Re-

gressor 
Gradient Boost-

ing Regressor 

Lowest Av-
erage R² 

Score 

Linear Regres-
sion 

Linear Regres-
sion 

SVR 
Linear Regres-

sion 
Linear Regres-

sion 

Worst Maxi-
mum R² 

Score 

Linear Regres-
sion 

Linear Regres-
sion 

Linear Regres-
sion 

KNeighbors Re-
gressor 

Linear Regres-
sion 

 

The GradientBoostingRegressor algorithm achieved top results for three of the mechan-

ical parameters. Among the best models were also AdaBoostRegressor, XGBRegres-

sor, and ExtraTreesRegressor. The remaining models performed significantly worse. 

Table 2 presents a summary of the algorithms with hyperparameter tuning that achieved 

the highest average and maximum R² scores, as well as the worst average and maximum 

values. 

The conducted data augmentation did not yield the expected results, and in many 

cases, it had a negative impact on the performance of more advanced models. In a few 

instances, the maximum R² coefficient improved for simpler algorithms, such as SVR, 

where for the K parameter, the value increased to 0.64 compared to the previous study, 

where it was only 0.53. Such a slight improvement in the model's response to changes 

in the data could be due to the fact that the models were overfitting due to the insuffi-

cient amount of data. 
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4.4 Study of Bayesian Optimization - Bayesian Search 

The goal of this experiment was to find the most optimal hyperparameters for the Gra-

dientBoostingRegressor model, given the best overall results from Table 2 and Table 

3. The optimization is initiated by the function _train_models, in which the objective 

function is specified and used by the gp_minimize method from the skopt library [28], 

implementing optimization based on a Bayesian approach. Table 4 presents the top 

three optimization results for each mechanical parameter using Bayesian Search. For 

tensile strength, the model obtained through Bayesian Search is 3 percentage points 

better than the best result using Grid Search. For yield strength, the model's perfor-

mance improved by 1 percentage point. For the elongation parameter, the optimization 

was ineffective, as the results decreased by 3 percentage points compared to the best 

model found using Grid Search. For the HB parameter, Bayesian optimization gener-

ated the best predictive model observed during the conducted research. For the K pa-

rameter, a decrease of about 1 percentage point was also noted. 

 
Table 4 Top Three Bayesian Optimization Results for Mechanical Parameters 

Parameter 
n_estima-

tors 

Max 

depth 

Min 

sam-

ples 
split 

Min sam-

ples leaf 

Max 

features 

Learning 

rate 
RMSE R2 

Tensile 

Strength 

263 2.0 6 1 sqrt 0,19747 97,1913 0,82125 

440 2.0 5 2 sqrt 0,15191 94,24301 0,81911 

500 2.0 10 1 sqrt 0,17631 99,71942 0,81772 

Yield Strength 

500  15 16 5 0,41487 107,3134 0,7692 

363 5.0 12 15 log2 0,33678 117,2393 0,76763 

449  15 4 10 0,01534 111,0111 0,76205 

Elongation 

500 4.0 20 3 10 0,0643 1,94019 0,68966 

500  20 5 10 0,01 1,96385 0,68818 

500  19 14 1 0,21465 1,97934 0,68665 

Brinell Hard-

ness 

276 20.0 6 14 log2 0,25239 30,67184 0,84162 

226 20.0 10 14 sqrt 0,26227 31,01598 0,83934 

500 5.0 20 16 5 0,29529 31,96409 0,82974 

Impact 

Toughness 

500 5.0 16 17 10 0,0628 20,93412 0,71911 

253 3.0 12 13 5 0,21654 21,34153 0,71249 

426 20.0 20 13  0,06868 20,83767 0,70993 

 

Optimization using the Bayesian Search algorithm was a major success, as it success-

fully selected the best parameter sets in terms of model performance. For the models 

related to the elongation and impact toughness parameters, the situation is not entirely 

clear, as it cannot be definitively stated that these models are worse. Models generated 

using Bayesian optimization were evaluated using 5-fold cross-validation, while Grid 

Search only applied 3-fold validation. This may suggest that, in reality, the models se-

lected by Bayesian Search are more efficient. Therefore, when evaluating the results 

for the A5 and K parameters, models obtained using both Bayesian optimization and 

Grid Search will be considered. 
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4.5 Summary of Results 

During the evaluation of results, all models selected during the study were assessed 

based on the test set, just as in the first experiment with default parameters. This allowed 

for the selection of the best model for each parameter, with the summary of selected 

models shown in Table 5. 

 
Table 5  Summary of the Best Models for Parameters 

Parameter Model 
N estima-

tors 
Max 
depth 

Min 

samples 

split 

Min 

samples 

leaf 

Max fea-
tures 

Learning rate 

Tensile 
Strength 

bs_rm 263 2 6 1 sqrt 0.19746561089365053 

Yield Strength bs_a5 500 4 20 3 10 0.0643048881887624 

Elongation gs_a5 500 None 15 2 sqrt 0.01 

Brinell Hard-
ness 

bs_a5 500 4 20 3 10 0.0643048881887624 

Impact Tough-

ness 
bs_a5 500 4 20 3 10 0.0643048881887624 

 

4.6 Application 

The set of models forms the basis of a web application providing a graphical interface 

that allows the end user to quickly estimate the parameters of the produced casting. For 

this project, a microservices architecture was chosen. A key aspect considered when 

making this decision was the ability to separate the project into distinct modules for the 

user interface and the server-side component. This approach allows each component to 

be developed independently, which makes it easy to expand specific functionalities 

without affecting the rest of the system. 

The main task of the client application is to display data retrieved through requests 

to the server and to allow the user to input data describing the chemical composition, 

thickness, and heat treatment parameters of the cast iron. Upon reaching the main page 

of the client application, the user will see a table of standards based on PN-EN 

1564:2012 in the central part of the view. The navigation bar on the main page of the 

application contains the application name and three functional buttons: Predict Params, 

Read CSV, API Specification. 

The main task of the server is to process the HTTP requests received from the client 

(the user can input the chemical composition, thickness, and heat treatment process of 

the designed cast iron) via the exposed API (Application Programming Interface), 

which includes three endpoints: 

- GET /CastIronApi/norms – returns a list of standards based on EN-PN 1564:2012. 

- POST /CastIronApi/ – makes predictions of mechanical properties based on the 

received parameters of the cast iron and assigns the appropriate standard. 

- POST /CastIronApi/csv – makes predictions of mechanical properties, in this case, 

the query contains a .csv file with a list of input parameters for one or more cast irons, 

which is then processed and a list of predictions is returned. 
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Communication between the main components is realized using the REST API ex-

posed on the server side. The client application, when interacting with the user, sends 

HTTP requests to the server, which processes the received queries, loads the models, 

calculates the results, and sends a response to the frontend application, which then pre-

sents the obtained results. 

5 Conclusion 

Research on the use of machine learning algorithms in the context of ADI cast iron 

production has enabled the identification of optimal models for predicting its mechan-

ical properties. As a result, a set of optimized predictive models and a web application 

for interactive work with these models were developed. An analysis was conducted, 

covering the impact of hyperparameters on the effectiveness of algorithms, different 

parameter space search strategies, and the assessment of the efficiency of both simpler 

and more complex models after applying data augmentation to a limited dataset. The 

research results allowed for the selection of the most efficient models and the optimi-

zation of their hyperparameters. It was found that GradientBoostingRegressor from the 

scikit-learn library achieves the best results for all analyzed mechanical properties of 

ADI cast iron, which is why models based on this method were used in the developed 

system. 

Despite the use of augmentation techniques, no significant improvement in model 

accuracy was observed. This may be due to both the data specification and the insuffi-

cient size, diversity, and completeness of the dataset. Data on the mechanical properties 

of ADI cast iron are strongly related to actual physical and technological processes. 

Augmenting such data may not introduce new data, which may lead to overfitting. 

Future work should focus on the applicability of artificial neural networks and other 

data augmentation techniques. The tested dataset was very limited, so other data gen-

eration techniques need to be tested to expand the dataset. Data augmentation did not 

bring any improvement, so in future research, we plan to use synthetic data to verify 

the models on a larger dataset. 

Disclosure of Interests. The authors have no competing interests to declare that are relevant to 

the content of this article.  
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