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Abstract. The accurate prediction of glass transition temperature (Tg)
is crucial for materials design but often relies on melting point depen-
dencies, limiting its applicability in inverse design problems. We present
a data-driven approach leveraging machine learning (ML) and symbolic
regression to predict Tg based solely on molecular structure. Using the
BIMOG dataset, we extract key structural features—including molec-
ular branching, computed from SMILES representations using RDKit
and PySMILES, and atomic composition ratios (C, CH, O, etc.)—to
enhance predictive accuracy. We apply multiple ML models, including
Linear Regression, Random Forest, Gradient Boosting, XGBoost, and
Extra Trees, achieving R

2 scores comparable to traditional approaches
that depend on melting point data. Finally, we employ genetic program-
ming for symbolic regression to derive an interpretable equation for Tg.
Our results demonstrate that incorporating structural descriptors allows
for accurate and generalizable Tg prediction without requiring melting
point information, making this method well-suited for inverse materials
design. This work highlights how computational approaches can improve
the tractability of complex materials problems, aligning with the broader
goal of integrating physics-based and data-driven methods for materials
discovery.

Keywords: Glass Transition Temperature Prediction · Inverse Design
of Materials · Machine Learning for Materials Design

1 Introduction

The glass transition temperature (Tg) is a critical property that governs the tran-
sition of materials from a rigid, glassy state to a viscoelastic state. This transition
influences mechanical performance, thermal stability, and processing characteris-
tics, making accurate Tg prediction essential for material design and engineering
applications. However, experimental determination of Tg across diverse chemi-
cal compounds is resource-intensive, necessitating computational approaches for
reliable prediction [1],[2].
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Previous studies by Alzghoul et al.[3] and Tao et al.[4] have demonstrated
the potential of machine learning (ML) models such as Support Vector Machines
and Random Forests for predicting Tg, for drug molecules and polymers. Tran et
al.[5] have used ML and SMILES to predict Tg and other properties of polymers
using various physical properties of the macromolecules. More recently, Armeli
et al.[6] (2023) utilized the Extra Trees model to predict Tg for organic com-
pounds, using the well-established, empirical Boyer-Beaman rule [7],[8] relating
Tg to the melting temperature Tm through Tg/Tm ≈ 0.7, which has been consid-
ered reliable across a large class of substances. However, the reliance of these ML
models on such empirical relationships, introduces significant limitations. First,
the accuracy of the Boyer-Beaman rule is heavily dependent on precise Tg mea-
surements, which are often inconsistent and impractical for many compounds.
For some organic molecules, Tm can reach extremely high values, making its
determination infeasible under standard laboratory conditions. Furthermore, or-
ganic molecules, characterized by their complex, flexible structures and diverse
functional groups, present formidable challenges for modeling. The intricate in-
teractions during the melting process lead to thermodynamic calculations that
are highly sensitive to slight variations in molecular interactions and entropic
contributions [9]. This complexity underscores the need for alternative, feature-
based approaches to enhance predictive reliability and reduce dependence on
Tm. Galeazzo et al. [10], on the other hand, demonstrated the importance of
molecular descriptors such as molecular mass and atomic composition in deter-
mining Tg. Their work highlights the potential of feature engineering to improve
Tg predictions by incorporating structural and compositional properties directly,
bypassing the reliance on melting temperature.

In this work, we propose a feature-engineered ML framework that elimi-
nates reliance on Tm by leveraging intrinsic molecular properties. We introduce
branching as a key structural descriptor, extracted from SMILES representations
[12] using RDKit [13], and demonstrate its effectiveness alongside comparative
atomic ratios such as carbon to hydroxyl (C:OH), double bond equivalent to car-
bon (DBE:C), methene to carbon (CH:C), and molecular mass. Our approach
improves prediction accuracy and enhances interpretability through genetic pro-
gramming, deriving an analytical equation for Tg directly from molecular fea-
tures. By aligning with the broader goal of making complex real-life systems
tractable through computational science, our method contributes to the devel-
opment of data-driven materials design frameworks that integrate ML with struc-
tural insights.

In section 2 we describe the methodology for branching calculation. In sec-
tion 3 we explore the impact of additional molecular ratios; and propose a novel
approach to predict Tg independent of Tm by integrating the combined effects
of molecular mass and branching. We then present an interpretable equation for
Tg derived via symbolic regression.
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2 Methodology

Dataset and Algorithms The dataset used in this study is sourced from the
Bielefeld Molecular Organic Glasses (BIMOG) database [11], a comprehensive
collection of experimental glass transition temperature data. It includes a diverse
range of chemical compounds, each annotated with detailed molecular descrip-
tors essential for accurate Tg prediction. In our methodology, we applied machine
learning algorithms to the BIMOG dataset, incorporating additional molecular
features. Specifically, we derived a branching feature from the SMILES descrip-
tor [14] and included the number of functional groups as an input variable. The
models evaluated includes Linear Regression, Random Forest, Gradient Boost-
ing, XGBoost, and Extra Trees. The dataset was split into a training set (90%)
and a testing set (10%) to assess model performance.

To quantify predictive accuracy, we used the R2 score (the coefficient of de-
termination), to measure how well the model explains the variance in Tg. This is

defined as: R2 = 1−
∑

n

i=1
(yi−ŷi)

2

∑
n

i=1
(yi−ȳ)2 , where yi is the actual Tg, ŷi is the predicted

value, and ȳ is the mean of the actual values. An R2 score of 1 indicates perfect
predictive accuracy, while a score of 0 suggests the model provides no explana-
tory power. Higher R2 values signify better model performance.

Calculation of Branching Molecular branching is quantified by counting
atoms with degree > 2 in the SMILES [12]-based molecular graph, where atoms
are nodes and bonds are edges. Atoms with higher degree (e.g., junction car-
bons) signal branch points, while terminal and linear atoms have degrees 1 and
2, respectively. This is efficiently computed using RDKit [13] and PySMILES [14].
Chiral centers — bonded to four distinct groups — further add configurational
complexity and contribute to the branching factor. Figure 1a shows chiral centers
in Nystose (C24H42O21); Figure 1b displays the Tg distribution.

(a) (b)

Fig. 1: (a) Nystose (C24H42O21) molecule representation with chiral centers
(b) Distribution of Tg values in the BIMOG[11] dataset

Deriving an Interpretable Equation for (Tg) Prediction We now outline
our approach to deriving a transparent and interpretable equation for predict-
ing Tg, combining exploratory visualization and symbolic regression to refine
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the model. Our methodology consists of two stages: (1) Visualization-Based Ex-
ploratory Analysis to identify key functional relationships. (2) Symbolic Regres-
sion with PySR [15] to derive and optimize an explicit mathematical expression.

Stage 1: Visualization-Based Exploratory Analysis In the first stage, we
examined the relationships between Tg and various molecular descriptors by
plotting Tg as a function of each feature independently. This helped identify
possible functional dependencies and trends, providing initial insights into how
each descriptor contributes to Tg independent of others.

Stage 2: Symbolic Regression Using PySR While visualization provides
valuable insights, it does not fully capture the complex interactions among
features. To address this, we employed symbolic regression using PySR [15],
which applies evolutionary algorithms to discover interpretable mathematical
expressions that best fit the data. The PySR framework operates in two loops.
In the inner loop, a population of candidate equations undergoes mutation,
crossover, simplification, and optimization, guided by an objective function such
as maximizing the R2 score. The outer loop employs an island-based frame-
work, which evolves equations independently within isolated populations, with
periodic migrations fostering diversity and preventing premature convergence.
This dual-loop approach balances exploration (diverse equation search) and ex-
ploitation (optimizing promising candidates), ultimately yielding a robust and
interpretable equation for predicting Tg.

3 Results and Discussions

Incorporating Functional Group Ratios Galeazzo et al. [10] proposed an
equation for Tg based on the molar mass and atomic oxygen-to-carbon (O/C)
ratio of organic compounds of the following form:

Tg = A+B ·M + C ·M2 +D · (O/C) + E ·M · (O/C) (1)

In our preliminary analysis, we initially focused solely on the O: C ratio, aligning
with existing literature. However, through iterative experimentation, it became
evident that additional atomic ratios, such as DBE: C, C: OH, and CH: C, also
played a crucial role in characterizing the organic compounds under investiga-
tion, as can be seen in Fig2(a). By incorporating these ratios into our model, we
observed some enhancement in the accuracy and predictive power of our results.

The comparative analysis presented in Fig. 2(b), 2(c) and 2(d)underscores
the significant contribution of these additional ratios in Tg prediction. Here,
the three cases demonstrated are (1) when only the O:C ratio is considered (2)
when all ratios except O:C are considered; and (3) when all ratios are considered,
respectively.

Importance of Branching as a feature Feature importance analysis (Fig.3)
highlights the strong influence of branching on Tg, with a correlation of 0.8. Fig.
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Fig. 2: (a) Correlation with different ratios; (b) Model performance with Molec-
ular Mass; (c) Model performance with Branching; (d) Model performance with
both Molecular Mass and Branching. Models are encoded as: 1-Linear Regres-
sion, 2-Random Forest, 3-Gradient Boosting, 4-XGBoost, 5-Extra Trees.

Fig. 3: (a) Feature importance plot (b) Correlation heat map

2(b) shows the model performances considering only molecular mass, which is
also a strong predictor of Tg, having a correlation coefficient of 0.76. In Fig.
2(c), we remove the information about molecular mass and consider only the
branching number. Interestingly, we observe that Tg is predicted with an accu-
racy of 92-93% in this case. Thus it can be said that branching is also a strong
predictor of Tg. In Fig. 2(d), both molecular mass and branching have been
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considered together. In this case, even though the overall performance remains
almost consistent, the performance is enhanced even when the O/C ratio is not
considered.

ML Models All Ratios Considered Only O:C Considered All Ratios Except O:C Considered

I II III I II III I II III

Random Forest 0.9724 0.9030 0.0694 0.9722 0.9073 0.0649 0.9740 0.9030 0.0710

Gradient Boosting 0.9803 0.9139 0.0664 0.9783 0.9174 0.0609 0.9793 0.9233 0.0560

XGBoost 0.9681 0.9093 0.0588 0.9696 0.9087 0.0609 0.9611 0.9194 0.0417

Extra Trees 0.9735 0.9196 0.0539 0.9748 0.9222 0.0526 0.9741 0.9311 0.0430

Table 1: Performance of ML models in predicting Tg under Different Ratio Consid-
erations. Columns I shows R

2 when Tm is included, column II shows the same when
Tm is replaced by branching, thus only containing structural descriptors. Column III
shows the difference between the R

2 scores.

In Fig. 2(b) - 2(d), it is significant that even though the Boyer-Beaman re-
lationship between melting point temperature and glass transition temperature
is not explicitly considered, yet the prediction of glass transition temperature
is achieved with an accuracy of 92-93%. Table 1 shows the R2 scores for a Tg

prediction based on melting point (Tm) and one based on branching, without con-
sidering Tm. We see that although, in general, models including Tm are slightly
better in performance, branching based models are close enough, with the mean
difference in R2 score ranging from 0.05 to 0.06. This observation is significant
because it shows that a Tm dependency is not required for Tg prediction. Depen-
dencies on Tm limit a model’s usefulness for inverse materials design, where the
goal is to identify new molecular structures with target Tg values. Since Tm is
often unknown for novel materials, relying on it introduces an additional predic-
tion or experimental step, increasing uncertainty. Moreover, while Tg and Tm are
correlated, their relationship is system-dependent and not universally predictive.
A model dependent on Tm does not provide a direct structure-property relation-
ship, making it less effective for guiding molecular modifications to achieve a
desired Tg. Recursive dependencies between predicted Tm and Tg can also prop-
agate errors, reducing reliability. By directly predicting Tg from molecular fea-
tures like branching and molecular composition, our approach overcomes these
limitations, making it better suited for inverse design applications.

Equation for Tg predicted using Symbolic Regression The exploratory
analysis revealed key relationships affecting Tg. Branch number dependency was
polynomial in nature, capturing an upward trend with an accuracy of 82%.
Molecular mass showed a logarithmic relationship with Tg, with a 78% accuracy,
indicating a slow increase in Tg as molecular mass grew. The atomic ratios (C :
OH and O : C) were modeled using linear equations, achieving an accuracy of
78%. Starting with these forms after several iterations of evolutionary refinement,
the final equation was generated (Equation 2), incorporating both linear and
non-linear relationships between the molecular descriptors and Tg, providing a
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more accurate and interpretable model. We obtain the relation

Tg = A+B ln(M) + CM2 +D(branching)2/3 + EM(O/C)

+ F (C/OH) +G(DBE/C) +H(CH/C), (2)

where DBE stands for double bond equivalent. O
C , DBE

C , C
OH and CH

C are
the comparative ratios for carbon, oxygen, methene and hydroxyl groups. M is
molecular mass and branching is the number of branches the molecular structure
has. A, B, C, D, E, F, G and H are constants determined for each molecule. The
initial equation generated using PySR did not include the logarithmic function,
which was derived from the exploratory analysis and that improved the accuracy
from 78.2% to 80.32%. The symbolic regression approach confirmed the primary
influence of molecular mass and branching on Tg. The ratios were found to
have a secondary impact, contributing to the refinement of the model without
overshadowing the primary factors.

Limitations The model’s accuracy was limited to ∼80% due to the relatively
small dataset (400 chemical compunds). Increasing model complexity (e.g., deeper
decision trees) improved accuracy to ∼85% but led to overfitting, reducing gen-
eralizability. The dataset exhibited a bimodal distribution with peaks at Tg =
144.90 K and 307.47 K (Figure 1b) based on a Gaussian Mixture Model fit.
Consequently, predictions in these regions achieved ∼85–90% accuracy. Inter-
molecular interactions and dynamic properties like relaxation times, fragility
etc. that would be related to Tg are also ignored. While Tran et al.[5] have used
various descriptors to obtain Tg for polymers, our model uses a smaller descriptor
set. Our method would not suffice for polymers where inter-chain interactions,
segmental mobility, and molecular weight effects dominate Tg behaviour. The
classical Flory-Fox expression [16] that works well for high molecular weight
polymers would not work for the small molecular compounds we are consider-
ing. The symbolic regression process favors compact, interpretable equations,
which may trade off accuracy for simplicity, underfitting complex interactions
between features, especially in cases where multiple factors jointly influence Tg.

4 Conclusion

In this work, we have developed a machine learning-driven approach for pre-
dicting the glass transition temperature (Tg) of molecular organic glasses using
structural features, eliminating the need for melting point dependencies. By ex-
tracting branching information from SMILES representations and incorporating
atomic composition ratios alongside molecular mass, we achieved improved Tg

predictions using multiple machine learning models, including Random Forest,
Gradient Boosting, and XGBoost. Our results demonstrated that these struc-
tural features provide predictive power comparable to traditional models rely-
ing on melting point data. Furthermore, we applied genetic programming for
symbolic regression, deriving an interpretable equation for Tg based purely on
molecular descriptors. This study highlights the importance of leveraging molec-
ular structure features for Tg prediction, enabling a more direct and reliable
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approach to the design of new organic glass materials. By avoiding recursive
dependencies on melting point, our method facilitates the discovery of novel
molecular organic glasses with tailored thermal properties. Future work could
explore extending this approach to larger and more diverse datasets, incorpo-
rating additional molecular descriptors, and integrating it with computational
materials screening frameworks.
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