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Abstract. Scientific workflow is the established method to manage
models and data analyses in computational materials science consist-
ing of many interrelated steps (jobs) running on different computing
resources. This approach improves the reproducibility of such models, as
well as the provenance and reusability of the data from all steps. How-
ever, the practical usability and productivity of this approach are not
satisfactory and, therefore, the willingness to adopt workflow manage-
ment systems in practice is still limited. We suggest a solution for this
issue pursuing a model-driven engineering strategy, which includes a do-
main specific language and a platform to make the workflow management
and the workload management systems fully transparent. On the partic-
ular example of modeling of catalysts for oxygen reduction reaction, we
compare critically different aspects of two approaches: based on a tra-
ditional bare workflow management system and on the newly proposed
textM language, and its supporting tools. We find that the proposed
approach introduces substantial improvements and benefits over the tra-
ditional one and anticipate production deployment of textM, for example
in virtual materials design projects.

Keywords: domain-specific language · model-driven engineering · com-
putational materials science · atomic and molecular modeling

1 Introduction

The FAIR principles for scientific data [37] have been originally introduced for
experimental data but they are equally important for data produced in computer
simulations. In many domains of science and engineering, the models (physics-
based, data-driven, or combined) consist of multiple steps organized in scientific
workflows. A huge variety of workflow management systems is available for var-
ious computing architectures, platforms and scientific domains [3], and many
of them can generally satisfy the FAIR principles (see Ref. [8] and references
therein). The different workflow management systems offer various user inter-
faces: application programming interface (API), graphical user interface (GUI) or
command-line interface (CLI). For example, the FireWorks [10] and Jobflow [26]
workflow systems provide Python APIs for general purpose workflows. Based on
these, Atomate [18] provides a Python API for managing materials simulation
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and data analysis workflows. Nevertheless, workflow management systems still
have some unsolved issues. Some technical challenges, such as materials mod-
eling ontology, have been discussed recently in the context of materials design
[28].

In this work, we address issues of non-functional nature that we have faced
over the last 15 years of experience with several workflow management systems
in multiple collaboration projects. Specifically, these issues are the low usabil-
ity of workflow management tools and the low scientist productivity from using
workflow management tools. These issues limit the general acceptance and will-
ingness to use these tools within the materials research community. There are
different causes of these issues: for instance, the great number of workflow sys-
tems with large variety of technical options can overwhelm the domain scientist
in the choice of the right tool; another issue occurs when scientists need to tran-
sition to another workflow tool to address a new problem, not only because of
lacking interoperability but also due to the long time required to learn how to
employ such tools. This issue can be alleviated by using workflow languages, such
as CWL [2], and generative tools [24,25]. However, the domain scientist still has
to acquire knowledge that is far from their application domain, e.g. about man-
aging workflow graphs and capturing provenance metadata, or resolving race
conditions and deadlocks. A good workflow management system performs these
actions automatically but still requires thorough understanding from the side of
the user. Even after the knowledge and skill barriers have been surpassed, the
technical complexity of workflow modeling causes high development effort with
every new model since prototyping is very difficult and slow.

In this work, we propose a new alternative approach based on a domain-
specific language (DSL), which maintains all the benefits from workflow manage-
ment systems. The language allows creating, using and reusing FAIR-compliant
models with low effort and without the aforementioned complex technicalities
of scientific workflows. Moreover, the language provides an additional level of
abstraction which conceals some of the intricacies of high performance com-
puting, such as the resource management system and the application runtime
environment.

In the next Sect. 2, related recent work will be briefly reviewed. In Sect. 3,
we will outline the key concepts and elements of the textS and textM languages.
Further in Sect. 4, we will demonstrate the benefits of the new textM language
in a real-life use case by comparing to the more traditional scientific workflow
approach applied to the same use case. In Sect. 5 we will summarize the paper.

2 Related Work

Domain-specific languages (DSLs) have been applied in different domains. Some
notable examples are SQL, HTML and PostScript. In the domain of computer
aided engineering, the Modelica language [9] has been successful. DSLs are terse
and more expressive in their domains, and require less effort from their users
because they include domain concepts and idioms which would otherwise require
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significant effort, and result in code redundancies, if implemented using general-
purpose languages such as C, C++, Python or Java. Given that the domain
knowledge is directly integrated in a DSL and its supporting tools (parsers,
editors, compilers, interpreters, etc.), a domain scientist learns a DSL faster and
uses a DSL more productively than a general-purpose language.

As with any formal computer language, creating a DSL from scratch is a so-
phisticated task. This is mainly because a parser for the new language with a spe-
cific output language must be generated from a grammar by a parser generator.
This process can be enormously facilitated by model-driven engineering, which
has been shown to bring benefits in different domains, e.g. high-performance
computing and molecular modeling [5,4,21,23]. Using the model-driven approach,
creating DSLs has become a fairly feasible task [36]. For example, Xtext from the
Eclipse Modeling Framework [30] has been employed to create domain-specific
languages for rapid workflow development [23] and to generate high-performance
computing code from algorithmic skeletons [38]. Inspired by Xtext, which has
Java as output language, a similar system for Python named textX has been
developed and demonstrated with the Kronos language for task scheduling [29].
Currently, twelve different projects have employed textX for developing DSLs in
different domains. So far, we are not aware of any DSL for materials modeling.

Native support of physical units is provided in other languages, such as
F# and Mathematica. The Unum package adds semantics for physical units
to Python. The DSL workbench MontiCore can be viewed as an alternative to
textX and provides a grammar for SI units.

3 The textS/textM Language Family

In this section, we introduce our domain concepts, such as the platform and the
type system, illustrate the textS and textM semantics and syntax, and briefly
describe the implementation of the supporting tools.

3.1 Domain Analysis

We are not aware of a formal, and sufficiently structured, domain knowledge
description that captures the abstractions, notations, and constraints in com-
putational materials science, that can be used to develop a DSL. Therefore, we
have performed a continuous domain analysis throughout the development of
the project. These aspects will be introduced in detail in the next section.

Besides the knowledge from computational materials science, we have en-
countered cross-sectional aspects related to the domain of computational science.
These impose requirements such as using high-performance computing (HPC)
environments involving resource management systems, workflow management
systems, databases, and database management systems. On the other hand, we
have detected a large pool of Python software resources that are heavily used
in the domain. Therefore, a family of DSLs has been conceived for the plat-
form shown in Fig. 1, left diagram. The platform integrates three back-ends: a
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Fig. 1. Architecture stack read from the left to the right (left diagram). The Python and
the domain specific components are shown on green and blue backgrounds, respectively.
The full model life cycle facilitated by textS/textM (right diagram).

workflow management system, a document database, and a workload manage-
ment system. Data reuse, which requires persistence of data and rich provenance
metadata, is managed by the FireWorks workflow management system [10] and
a MongoDB database. The computing jobs are run via Slurm on one or more
HPC clusters. The back-ends are made fully transparent by the platform and
the language interpreter is provided via user interfaces on two front-ends: a
command-line tool to manage models in both scripting and interactive mode,
and a Jupyter kernel to be used with Jupyter Notebook and Jupyter Lab. The
DSL grammars, and all supporting tools have been released as open source in
the VRE Language package [33].

Currently, the family of DSLs on the platform are textS, for general scientific
computing, and textM, for atomic and molecular modeling, which is a proper
super-set of textS. Models written in textS and textM can run on the platform
and cover the entire model life cycle as shown in Fig. 1, right diagram.

3.2 Domain Concepts and Language Abstractions

The major design decision in creating a DSL for computational materials sci-
ence was to depart from the notion of scientific workflow. Nonetheless, since a
scientific workflow is inherent to any complex computer model in this domain, a
workflow management system is still employed to store and run the model. The
key difference is that its user interfaces have been concealed in the language.
Considering commonly accepted practices within the materials community, the
DSL relies on the declarative programming paradigm with immutable variables,
rather than employing other categories such as directed acyclic graphs, workflow
nodes, tasks, and links. Correspondingly, error messages are domain-specific and
debugging code is mostly not needed. The major idioms in materials modeling
are represented by expressions, which have been thoroughly considered when
constructing the grammar rules. However, the pure function has also been inte-
grated leaning on the work of Kelly et al. [11,12]. For example, the built-in if
function and if expression are equivalent:
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var1 = if(bool_expression, value_on_true, value_on_false)
var2 = value_on_true if bool_expression else value_on_false

Physical units of all numeric parameters, of both scalars and arrays, have
been fully implemented as part of the language syntax, and are interpreted based
on the Pint package [22]. The Tuple, Series, Table, and Array data structures can
be used as stand-alone parameters, or as foundations for further domain-specific
parameters of other types.

In atomic and molecular modeling the concept of atomic structure, or sim-
ply structure, has been established, for example in Python Materials Genomics
(pymatgen) [20]. The Atomic Simulation Environment (ASE) [17] uses a similar
object named Atoms. In contrast, the Structure parameter in textM does not
include attributes such as Calculator, Algorithm, or Constraint because these
are not integral parts of an atomic structure, but rather external entities. More-
over, Structure does not have any attributes related to these entities. Instead,
the Property entity alone governs the relationships between these three entities
and Structure. For example, to compute intrinsic properties of an atomic struc-
ture, such as the moments of inertia, the center of mass or the radius of gyration,
no Property is necessary. As a rule of thumb, if at least one parameter, exter-
nal to Structure, is necessary to compute a property, then the property must
be computed via Algorithm or Calculator and retrieved from Property. For
example, let us compute the root mean square deviation (RMSD) with respect
to a reference structure ref_struct:

rmsd = Property rmsd ((algorithm: rmsd_algo), (structure: struct1))
rmsd_algo = Algorithm RMSD ((reference: ref_struct))

Obviously, this property can be modeled using an existing abstraction from
textS, e.g. to define and then call an internal function:

rmsd_func(struct, reference) = ...
rmsd = rmsd_func (struct1, struct2)

However, the use of Property and Algorithm is more expressive in this do-
main and provides the necessary separation of concerns, for example if more
parameters than just the reference structure have to be modeled.

3.3 Type System

One lesson learned from the experience with different workflow management
systems, specifically with FireWorks, was that a static type system would be
necessary to prevent errors from being deferred to run time and to improve
the quality of error messages. For example, in recent studies using FireWorks
[27,1,31] errors often have occurred only after consuming a significant amount
of computing time. Many of such errors can be detected before the expensive
evaluation is started. Therefore, every parameter in textS/textM has a type
attribute that is evaluated after the model has been successfully parsed. The
type in textS/textM is not annotated but inferred from types of literals and
imported parameters, and types returned by certain operations, which makes
the input code terse and more readable.
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The plain types in textS are String, Boolean, Integer, Float, and Complex.
These types can be combined to create data structures, such as Tuple, Series,
Table, and Array, that are types themselves. The types in textM include Struc-
ture, Calculator, Algorithm, Property, Constraint, Trajectory, Species, Reaction.
Most of the textM types are iterable and can be used in the same operations as
Table and Series. This facilitates enormously locating properties in these param-
eters by using sub-scripting and performing single-instruction – multiple-data
operations, e.g. by using functions such as map and filter.

3.4 Language Implementation

The use of the textX tool [7] and the Arpeggio parser [6] has been essential
for the rapid development of the textS/textM languages and their supporting
tools, including a Python interpreter to integrate the three back-end systems and
several domain-specific Python packages. The process involving these packages
is shown in Fig. 2. First, the textX meta-language is used to define the textS
and textM grammars (see Ref. [33] for more details) which are processed by the
textX parser. This parser is, in turn, generated by using the higher-level textX
grammar. The result from parsing the textS/textM grammar includes a meta-
model, which is a set of Python classes with relationships, and an in-memory
textS/textM parser. The generated textS/textM parser then parses the user
input and creates the model as a set of plain Python objects that are instances of
the textS/textM meta-model classes. These objects are then processed by object
and model processors to apply constraints, such as to check types, detect cyclic
dependencies etc. Eventually, the interpreter uses the model to create a persistent
workflow that can be evaluated completely or partially on-demand, employing
local or HPC resources by employing the VRE Middleware package [34]. The
nodes of the persistent workflow contain the relevant textM statements as meta-
data, so that the original user input persists as well. All processes described
above, starting from parsing the grammar to running the interpreter, are fully
automated [33].

Several Python packages are reused by the interpreter (see Fig. 1): ASE for
atoms, calculators for various electronic structure and molecular dynamics codes,
Pint for units and Pandas to implement the Table and Series data structures,
Numpy to implement the Array, and Seaborn/Matplotlib for data visualization.
The VRE Middleware package [34] is used to configure the HPC resources and
the run-time environment of model statements evaluated as batch jobs.

3.5 Additional Features

A persistent model can be extended at any time in its life cycle (see Fig. 1,
right diagram) via the same mechanism outlined in Sect. 3.4 and in Fig. 2.
Simple references in new variables enable intuitive data reuse within a model.
For example, to compute the RMSD for a set of atomic structures structs with
the same reference structure ref_struct in Sect. 3.2, one can load the model
containing these variables and add a new Property with a reference to the same
rmsd_algo:
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Fig. 2. DSL engineering and processing stages of a model written in textS/textM

rmsds = Property rmsd ((algorithm: rmsd_algo), (structure: structs))

If rmsd_algo and structs are in other models in the database, they and all
their ancestor statements can be reused by using this syntax:

rmsds = Property rmsd ((algorithm: rmsd_algo@uuid_of_model1),
(structure: structs@uuid_of_model2))

Suppose that we want to compute RMSD without aligning the structure and the
reference, then we can simply add:

vary ((rmsd_algo: Algorithm RMSD
((reference: ref_struct), (adjust: false))))

This will create a new model, still bundled with the original model in a
group, which automatically performs the evaluation of everything depending
on rmsd_algo with the new values specified in the vary statement. This feature
implements an idiom often called parameter sweep, or parameter scan, commonly
used in high-throughput computing.

4 Use Case: Oxygen Reduction Reaction Catalyst

In this section, we perform a systematic evaluation of the textM language and
demonstrate the substantial improvements and benefits of the proposed approach
compared to the traditional FireWorks workflow approach. We show how the
textM language is applied to a model describing catalyst materials for oxygen
reduction reaction. Originally, the model has been implemented with the Fire-
Works workflow management system using Python and YAML and employed in
several application studies [1,27,31]. This previous work allows us to make a fair
comparison to the new textM-based implementation. Due to the large number
of lines of Python/YAML code, a direct side-by-side comparison to textM is not
possible in this paper. Instead, we compare the number of code lines and provide
the complete source code of both variants in an open source repository [35].
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4.1 Brief Model Description

The model is based on the original work of Nørskov et al. [19]. The computational
workflow has been discussed in detail in Sect. 4.3 of Ref. [28] and shown in Fig. 4
therein. Here we outline the main physical quantities in order to understand the
textM-based implementation.

The oxygen reduction reaction (ORR) is the electrochemical process taking
place at the cathode of a fuel cell or a metal-air cell. The ORR has a mechanism
consisting of four elementary reactions

M + O2 + (H+ + e–) MOOH (1)

MOOH + (H+ + e–) MO + H2O (2)

MO + (H+ + e–) MOH (3)

MOH + (H+ + e–) M + H2O (4)

where the symbol M denotes an active site on the surface of the catalyst. The
quantity describing the thermodynamic efficiency of the catalyst is the onset
potential, i.e. the minimum electrode potential at which the ORR is activated.
The difference between the standard electrode potential U0 and the onset po-
tential is called overpotential. For the O2/H2O couple, U0 is 1.23 V versus the
standard hydrogen electrode. The design goal is to increase the onset potential
of the cathode for ORR. We employ the critical potential Umax as a descriptor
that can be regarded as an upper thermodynamic bound of the ORR onset po-
tential, and is the least upper bound of the electrode potential U at which all
elementary reactions in Eqs. (1-4) are spontaneous, i.e.

Umax = sup
{
U : ∆G(r)(U) ≤ 0 ∀r ∈ [1, 2, 3, 4]

}
. (5)

Thus, the defined critical potential allows us to define a bound for the ORR
overpotential as ηORR = U0 − Umax. The free energies ∆G(r)(T,U) for given
temperature T and potential U can be computed from the relative reaction
energies ∆E(r) as

∆G(r)(T,U) = ∆G
(r)
0 − zrU ≈ ∆E(r) +∆ZPE(r) − T∆S(r) − zrU . (6)

In Equation (6), ∆E(r), ∆ZPE(r), ∆S(r) and zr are the potential energy, the
zero-point vibrational energy, total entropy, and transferred charge of the rth re-
action, respectively. The quantities ∆E(r), ∆ZPE(r), and ∆S(r) are computed us-
ing density functional theory (DFT) applied to the relevant adsorbed (M OOH,
M O and M OH) and gaseous (H2O, H2 and O2) species. Furthermore, stan-
dard conditions (pressure of 1 bar and temperature 298.15 K) are used, while
each proton–electron pair (H+ + e–) from Eqs. (1-4) is replaced by 1

2H2 gas-phase
molecule, which has the same free energy under these conditions [19].
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4.2 Implementation in textM

As first step, we provide a set of tags with which we can find the model later in
the database:

tag {metal: ’Pt’, ’active site type’: ’fcc’, environment: ’vacuum’}

Once the model is added to the database, the tag can be modified at any time.
One can start creating the model by defining the main quantities in Eq. (5),
Eq. (6), and the reactions in Eqs. (1-4):

eta_orr = U_0 - U_max; U_max = min(orr_potentials)
min(s) = reduce((x, y: if(x < y, x, y)), s)
orr_potentials = map((g: -g/(n * e)), orr_free_energies)
n = 1 # number of transferred electrons per elementary reaction
n_elec = 4 # total number of transferred electrons
e = 1 [elementary_charge]; U_0 = 1.23 [V]
orr_free_energies = map((r: r.free_energy[0]), orr)
orr = (reactions: orr1, orr2, orr3, orr4)
orr1 = Reaction M + O2 + 0.5 H2 = MOOH
orr2 = Reaction MOOH + 0.5 H2 = MO + H2O
orr3 = Reaction MO + 0.5 H2 = MOH
orr4 = Reaction MOH + 0.5 H2 = M + H2O

It is striking how the modeling starts with the target quantity so that the modeler
does not have to think about the control flow, i.e. which step follows which.
This way one can draft a new model quickly from scratch by only following the
functional dependencies. Next we need to specify the species. Since all species
are defined similarly, here only MOOH is shown as an example:

MOOH = Species MOOH ((energy: opt_OOH.energy[0]),
(zpe: 0.5 * sum(nrm_OOH.vibrational_energies[0])),
(entropy: vib_entr_f(nrm_OOH.vibrational_energies[0])),
(temperature: temperature))

The quantities ∆E(r), ∆ZPE(r), and ∆S(r) are defined as properties of the
MOOH species, and are organized in a table with columns energy, zpe and
entropy. The free energy of MOOH is computed by textM automatically from
these properties. The calculation contains calls to internal functions and requires
importing some external functions:

vib_entr_f(v) = kB * sum(map(entr, v, map(exp_hob, v)))
kB = 1 [boltzmann_constant]; temperature = 298.15 [K]
exp_hob(ene) = exp(-ene * beta); beta = 1.0 / (kB * temperature)
entr(ene, eh) = ene * beta * eh / (1.0 - eh) - log(1.0 - eh)
use exp, log from numpy

Now, only two parameters are needed to calculate the MOOH species: opt_OOH
and nrm_OOH. These correspond to DFT geometry optimization and normal mode
calculations, both performed on 40 cores for 2 hours:
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opt_OOH = Property energy, forces, dipole (
(structure: geom_surface_OOH),
(calculator: calc_rlx),
(constraints: (fix_rlx_OOH))) on 40 cores for 2.0 [hours]

nrm_OOH = Property vibrational_energies, energy_minimum (
(structure: opt_OOH.output_structure),
(calculator: calc_nrm),
(constraints: (fix_nrm_OOH))) on 40 cores for 2.0 [hours]

The input atomic structure geom_surface_OOH is loaded from a file in any format
that can be read by ASE. The two Calculator parameters are defined for using
the VASP code [13,14,15,16] as follows:

calc_rlx = Calculator vasp == 5.4.4 (...), task: local minimum
calc_nrm = Calculator vasp == 5.4.4 (...), task: normal modes

The ellipsis (...) denotes a set of calculator-specific parameters, omitted here for
brevity, using the same table syntax as shown above for Property and Species.
The remaining geometry constraints fix_rlx_OOH to fix the bottom layer of
atoms, and fix_nrm_OOH to fix all metal atoms can be defined as:

constr(n, m) = map((x: x < n), range(0, m, 1))
c_surf_OOH = constr(9, 30); c_nrm_OOH = constr(27, 30) # boolean series
fix_rlx_OOH = FixedAtoms where c_surf_OOH
fix_nrm_OOH = FixedAtoms where c_nrm_OOH

Constraints can be defined in various ways, such as using tags (if available) in
the atoms section of the Structure parameter, setting the displacements along
the z-axis, or using chemical symbols explicitly. For example, to fix all platinum
atoms one can write:

c_nrm_OOH = map((x: x == ’Pt’), geom_surface_OOH.atoms[0].symbols)

4.3 Assessment of the DSL Approach

As with other non-functional requirements, providing a rigorous measurement
to assess usability and productivity is no trivial task. One typical approach is
to perform continuous measurements during operation and/or perform extensive
user surveys. These methods require the tools to be in the production deployment
phase, which unfortunately is not yet the case for the VRE Language. Therefore,
as a quantitative measure for the productivity we suggest the number of written
lines of code which is shown in Table 1. In addition, we discuss several evident
qualitative differences that we have detected in the course of our comparison of
the two approaches throughout the full life cycle of the model.

4.4 Create a Model

To use FireWorks, one has to understand the formal workflow structure of the
model and draft the control flow and data flow. This yields a directed acyclic
graph that is a formal representation of the workflow. Then the individual nodes
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Table 1. Number of human-written lines of code. Commented and empty lines, and
lines of the input atomic structures, and common files have not been counted.

Python YAML (input) YAML (config) textM Bash Total
FireWorks 537 684 20 0 15 1256
VRE Language 0 0 2 237 5 244

have to be implemented as use-case specific Python functions. At the end the
workflow graph is implemented either as a Python script or as a YAML document
as here. This implementation has no concepts of data types nor physical units
for the numeric types; it merely provides "glue code" to ASE and FireWorks.

As shown in Sect. 4.2, to implement the model in textM, we do not need
to create a workflow graph but rather write declarative statements: typically
variables defining what to compute (physical quantities, objects from the do-
main, etc.) but not how to compute them. The interpreter infers the control flow
and data flow from these statements, and automatically creates a FireWorks
workflow and adds it to the database.

The savings in the number of human-written lines of code, shown in Table 1,
can be divided into two categories: i) node attributes (ID, name and further
metadata) and links between the nodes are not coded in textM; ii) Python code
written for the specific use case is replaced by terse textM code. It should be
noted that the Python code in the textM interpreter used in this specific use
case is use-case agnostic and sufficiently generic to be reused in other use cases;
see the examples folder in the VRE Language [33] repository. In both categories,
it becomes evident that textM is more expressive, while allowing more concise
code compared to Python or YAML.

4.5 Evaluate a Model

The evaluation of a model in FireWorks is performed node by node using either
the CLI provided by FireWorks, or the CLI, Python API or GUI provided by
the VRE Middleware package [34]. All configuration metadata such as node
category (interactive or batch), worker name, required computing resources, and
application run-time environment must be specified in either in the workflow
description, or in the configuration files of the worker and queue adapter. This
is reflected in the number of YAML lines of code in Table 1.

By using textM the available, and the default, resources and environments
are described in a resconfig.yaml configuration file. This is achieved through
a tool from the VRE Middleware package. By simply specifying on 40 cores
for 2.0 [hours] in a statement (see Sect. 4.2), the interpreter changes the
category of the created workflow node and evaluates in which queue, and with
what resources, to configure the node. In addition, depending on the calculator’s
type, version and task, it adds environment variables and modules to the run-
time configuration. The two configuration lines in resconfig.yaml are used to
set custom names of the VASP environment module and the VASP executable,
both of which can vary over different computing clusters.
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4.6 Extend a Model

Through extensions one can add further statements to a persistent model. This
allows not only to perform data analysis, but also to extend the model by reusing
persistent data. In both approaches extensions can be performed at any time,
independent of the state of the model, i.e. whether variables have been evaluated.

In FireWorks an extension can be performed using the CLI, or Python API,
after having prepared a workflow in YAML, or Python, respectively, and all the
necessary Python functions for the tasks. For the extension to work, one must
perform database queries to identify the IDs of the relevant parent workflow
nodes, ensuring that all data-flow links are correct, and specifying them in the
extension call.

In comparison, extensions in textM can be done in the same way as creating
a textM model from scratch. Instead of parent IDs and data-flow links only the
references to existing variables are needed. The names of the variables can be
simply found in the CLI tool (texts session) by typing the %history magic
command. To demonstrate this, we extend the model described in Sect. 4.2 for
computing the overpotential of the oxygen evolution reaction (OER), which is the
reverse process of ORR and, also, the ORR rate-determining step. This extension
merely requires nine lines of additional code, also included in the total lines for
textM in Table 1. Here, we illustrate the extension for the OER overpotential:
eta_oer = U_min - U_0; U_min = max(map((g: -g/(n*e)), oer_free_energies))
oer_free_energies = map((r: -r.free_energy[0]), orr)

The OER critical potential Umin is defined as the greatest lower bound of the
electrode potential U at which all reactions defined in Eqs. (1-4) are sponta-
neous in the reverse direction, thus the minus sign in the reactions’ free energies
oer_free_energies.

4.7 Archive and Publish a Model

To archive, a workflow can be dumped to a file in standard JSON format. The
archive can then be used in a data publication, for example Ref. [32]. One draw-
back of publishing the workflow is that one has to include all Python and YAML
code, otherwise the workflow is no longer reproducible. Nevertheless, the JSON
archive can still be employed as reference, since it includes the input and output
data of all workflow steps.

In the textM realization, the number of lines of code needed to reproduce
and publish the model is substantially smaller compared to the pure workflow
approach. The VRE Middleware and VRE Language packages, necessary to re-
produce (or reuse parts of) the textM model, are already available as open source
and not needed in the publication. A JSON archive of the workflow including
the produced data would still be necessary as reference.

5 Conclusion

In this work, we have introduced a novel approach to materials modeling and
data analysis based on the domain-specific language textM. Compared to a con-
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ventional approach based solely on a workflow management system, textM shows
equivalent capabilities and provides more features. The proposed approach intro-
duces benefits in terms of improved tools, usability, and developer’s productivity
through all stages of the model’s life cycle. The textM language is not intended to
replace C++ or Fortran used for implementing HPC algorithms. Instead, it pro-
vides a supplementary platform that facilitates the integration of widely used
tools in composite computer models, such as domain-specific packages, data-
analysis codes, HPC resources, and data life-cycle management applications.
Compared to the conventional approach, the textM language has a minimal
learning curve and can be particularly appealing for non-programmers and do-
main experts unfamiliar with functional or declarative programming paradigms.

Future work will enable calculations including quantities with uncertainties
and improve: i) the grammar and interpreter modularity to ease the creation of
new languages in the VRE Language family; ii) the Jupyter kernel usability by
adding highlighting, completer, and magic commands; iii) the type inference by
using a Hindley–Milner algorithm.
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