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Abstract. Chaotic systems are characterized by extreme sensitivity to
initial conditions, where two arbitrarily close starting points lead to expo-
nentially divergent trajectories over time. Since the 1990s, research has
demonstrated that chaotic behavior can be controlled, a phenomenon
known as chaos control. In this paper, we address the problem of chaos
control in unidimensional maps, specifically focusing on stabilizing chaotic
dynamics to a periodic orbit of a given period. Our approach builds on a
previously proposed method that applies control pulses of intensity λ to
the system variables every ∆n iterations, where λ and ∆n are adjustable
parameters. We formulate this problem as a challenging multimodal, mul-
tivariate, continuous, nonlinear optimization task and tackle it using the
bat algorithm, a popular swarm intelligence method. To evaluate the ef-
fectiveness of our approach, we conduct computational experiments on
the logistic map under various parameter settings. The results indicate
that our method performs effectively for all tested chaotic behaviors.
We conclude that the proposed approach is a promising step toward an
automated procedure for chaos control in chaotic maps.

Keywords: Dynamical systems · chaotic maps · chaos control · contin-
uous optimization · swarm intelligence · bat algorithm

1 Introduction

Dynamical systems are a widely studied research topic due to their ability to de-
scribe complex real-world phenomena across various fields, including mathemat-
ics, physics, chemistry, engineering, biology, medicine, and economics. Broadly,
a dynamical system is defined as a system governed by a mathematical func-
tion that describes the temporal evolution of a point in a n-dimensional space,
known as the phase space. Dynamical systems are classified as either discrete
(typically described by difference equations) or continuous (described by dif-
ferential equations) [2, 40]. Given an initial condition for the system variables,
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integrating these equations produces a trajectory or orbit that traces the sys-
tem evolution [1,7,18]. These trajectories serve as a powerful analytical tool for
understanding the temporal evolution of the system behavior.

A particularly intriguing class of dynamical systems is chaotic systems, which
are distinguished by their extreme sensitivity to initial conditions. This sensitiv-
ity means that even the smallest perturbations in the starting conditions (e.g.,
due to measurement noise or numerical rounding errors) can grow exponen-
tially over time, leading to significantly divergent outcomes. Remarkably, this
unpredictable behavior arises even in systems governed by purely deterministic
equations, a phenomenon known as deterministic chaos [20, 34].

Despite their apparent randomness, chaotic systems exhibit underlying struc-
tures. For instance, many chaotic systems possess attractors – bounded regions
in the phase space toward which trajectories tend to evolve. These attractors can
take various forms, including fixed points, finite point sets, curves, or more com-
plex fractal structures known as strange attractors. Chaotic attractors contain an
infinite number of unstable periodic orbits. The chaotic behavior emerges as the
system’s trajectory moves near one unstable periodic orbit, follows it briefly, and
then transitions to another, resulting in an intricate and seemingly unpredictable
pattern over time.

For many years, the unpredictable nature of chaotic systems was viewed as
problematic and undesirable. However, in 1990, it was demonstrated that chaotic
dynamics could be stabilized through small perturbations to system parameters.
The first method of this kind, known as the OGY method [28], uses a Poincaré
section to identify an unstable periodic orbit. By applying carefully calculated
perturbations when the system approaches this orbit, the trajectory can be redi-
rected from the unstable manifold to the stable manifold, thereby stabilizing
the chaotic system [35]. Since the introduction of the OGY method, numerous
other chaos control techniques have been developed, including the time-delayed
feedback method proposed by Pyragas [31]. Other examples of chaos control
techniques can be found in [3, 5, 26, 30, 32, 33, 36]. Comprehensive surveys on
chaos control methods can be found in [4, 6, 8], while experimental validations
are reported in [21,27].

An alternative approach to chaos control involves applying small perturba-
tions directly to the system variables [15, 16]. This includes methods utilizing
pulses applied on Poincaré and Lorenz sections [19, 22]. The general framework
involves applying additive or multiplicative discrete pulses of intensity λ at fixed
intervals of ∆n iterations. Historically, this method has been implemented man-
ually, with parameter selection based on trial and error. Automating this process
requires optimizing key parameters, including the pulse intensity λ and frequency
∆n, to achieve effective control.

In this paper, we address the automation of chaos control using multiplicative
pulses by formulating it as a minimization problem. This formulation presents a
significant challenge due to its continuous, multivariate, multimodal, and non-
linear nature, which is not usually handled by conventional optimization tech-
niques. To overcome these difficulties, we employ the bat algorithm, a popular
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bio-inspired swarm intelligence method. Additionally, to reduce computational
complexity, our study focuses on one-dimensional maps.

The paper is organized as follows: Section 2 discusses briefly the chaos control
method and the optimization problem. Section 3 introduces the bat algorithm
as the selected optimization technique. Section 4 describes the experimental
setup and the example used in this study. Section 5 presents and analyzes the
computational results. Finally, Section 6 concludes the paper with a summary
of findings and potential directions for future research.

2 The Chaos Control Optimization Problem

In [15, 16], it was demonstrated that chaotic behavior can be stabilized by in-
troducing pulses into the system variables. Building on this idea, we consider
multiplicative pulses of the form xi Ñ p1 ` λqxi, where xi denotes the system
variable at iteration i and λ represents the pulse intensity. These pulses are
applied every ∆n iterations, i.e., when modpi,∆nq “ 0. The perturbation is
maintained for a duration of q iterations, following an initial transient phase of
p iterations during which no perturbation is applied. Note that the parameters
λ, ∆n, p and q are to be determined to achieve the desired system behavior.

Given a chaotic dynamical system and a predefined target periodic orbit, our
approach involves optimizing these parameters to drive the system toward the
desired periodic state. As mentioned earlier, this formulation results in a highly
complex continuous multivariate multimodal nonlinear optimization problem.
Even for low-dimensional dynamical systems, solving this problem presents sig-
nificant challenges that traditional mathematical optimization techniques strug-
gle to address. To overcome this, we employ a bio-inspired swarm intelligence
method well-suited for continuous optimization: the bat algorithm. The following
section provides a detailed description of this approach.

3 The Bat Algorithm

The bat algorithm is a widely used swarm intelligence technique for solving con-
tinuous optimization problems, inspired by the echolocation behavior of micro-
bats [41,43]. Microbats employ echolocation for navigation, prey detection, and
obstacle avoidance. The algorithm models these behaviors through a population
of agents (referred to as “bats”) that explore the search space to locate optimal
solutions based on a defined fitness function.

The algorithm begins by randomly initializing a population of bats across
the search space. Each bat i at iteration g is characterized by three key parame-
ters: its frequency fgi , position xg

i , and velocity vg
i , determined by the following

equations:

fgi “ fgmin ` βpf
g
max ´ f

g
minq (1)

vg
i “ vg´1

i ` rxg´1
i ´ x˚s fgi (2)

xg
i “ xg´1

i ` vg
i (3)
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Here, β is a uniformly distributed random variable in the range r0, 1s, and x˚

represents the current global best solution found by evaluating the fitness of all
bats. In addition to global exploration, the algorithm performs a local search
around the best solution using a random walk: xnew “ xold ` εAg, where ε
is a uniformly distributed random number in r´1, 1s, and Ag “ă Ag

i ą de-
notes the average loudness of all bats at iteration g. New candidate solutions are
accepted if they improve the current best solution, with an acceptance probabil-
ity influenced by the bat’s loudness. Upon acceptance, the pulse emission rate
ri and loudness Ai are dynamically updated according to the following rules:
rg`1
i “ r0i r1 ´ expp´γgqs and Ag`1

i “ αAg
i , where γ and α are user-defined

parameters controlling the rate of change. This adaptive mechanism allows the
algorithm to balance exploration and exploitation: as the search progresses, bats
emit pulses more frequently while their loudness decreases, focusing the search
around promising regions. The algorithm iterates until a maximum number of
generations, Gmax, is reached.

Each bat is initialized with random values for loudness A0
i P p0, 2q and pulse

emission rate r0i P r0, 1s, which are updated only when better solutions are found.
The bat algorithm is chosen in this work due to its demonstrated effectiveness in
handling complex, multimodal optimization problems, as supported by previous
research by the authors (e.g., [10, 12–14, 23–25, 37–39]). For a comprehensive
overview of the bat algorithm and its applications, readers are referred to [42].

4 Example and Experimental Settings

The proposed method has been applied to various instances of chaotic maps.
However, due to space limitations, this paper focuses on a representative exam-
ple: the logistic map.

4.1 Illustrative example: the logistic map

The logistic map is a well-known one-dimensional chaotic map frequently used
in the study of dynamical systems. It is defined by the quadratic difference
equation:

xn`1 “ rxnp1´ xnq (4)

where r is the system parameter. By varying r, the logistic map exhibits a range
of dynamic behaviors, which can be effectively visualized through a bifurcation
diagram. In this diagram, the vertical axis represents the system’s attractors,
while the horizontal axis corresponds to the parameter r. Figure 1(top) displays
the bifurcation diagram of the logistic map for r P r0, 4s. As shown in the graph,
the logistic map exhibits a fixed-point orbit for 0 ď r ă 3. Specifically, the
value of the fixed point is zero for 0 ď r ă 1 and pr ´ 1q{r for 1 ď r ă 3.
For r “ 3 the system exhibits a period-doubling bifurcation where the fixed-
point orbit is replaced by a periodic orbit of period-2. This period-doubling
bifurcation process continues for larger values of r, and periodic orbits of periods
2, 4, 8, 16, and so on are obtained. This process is a typical route to chaos
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Fig. 1. Bifurcation diagram of the logistic map for the interval r P r0, 4s (top), and
magnification of the diagram on the interval r P r3.4, 4s (bottom).

known as the period doubling cascade. This chaotic behavior emerges for the
parameter value r8 “ 3.46994.... Increasing the value of r even further, the
system exhibits chaotic behavior until the value r “ 4, with some windows of
periodicity arisen for certain interval values of r. This behavior can be better
seen in Fig. 1(bottom) which shows a magnification of the bifurcation diagram
on the interval r P r3.4, 4s. In this paper we focus on four parameter values within
the chaotic regime: r1 “ 3.6, r2 “ 3.7, r3 “ 3.8 and r4 “ 3.9. These values are
highlighted in Figure 1(bottom) by the four vertical dashed lines in red, orange,
magenta, and green, respectively.
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Table 1. Best values of the pulse intensity λ and pulse frequency ∆n for the parameter
r and the target periods per in all the examples presented in the figures of this paper.

r per λ ∆n r per λ ∆n r per λ ∆n r per λ ∆n

3.6

1 -0.31 1

3.7

1 -0.2 1

3.8

1 -0.45 1

3.9

1 -0.43 1
3 -0.31 3 2 -0.1 1 2 -0.9 2 2 -0.87 2
4 0.25 2 3 -0.3 3 4 -0.45 2 4 -0.55 4
5 0.039 1 4 -0.05 1 4 -0.41 4 6 -0.79 3
8 -0.31 2 6 -0.22 2 6 -0.45 3 7 -0.52 4
12 0.019 1 12 -0.3 2 6 -0.9 3 8 -0.49 4

4.2 Experimental Settings

To apply the bat algorithm to our optimization problem, it is essential to define
an appropriate representation of individuals and to fine-tune the algorithm pa-
rameters. In our approach, each individual Bk

i of index i at iteration k, represent-
ing potential solutions of the problem, is given by a vector: Bk “ pλ

k
i , ∆

k
i , p

k
i , q

k
i q,

where λki takes real values on the interval p´1, 1q,∆k
i is a positive integer ranging

from 1 to 5, and pki , qki can take integer values from 500 to 5,000. However, our
experiments indicate that pki and qki have minimal influence on the performance
of the method. Thus, to reduce the search space and focus on optimizing λki and
∆k

i , we fix their values as pki “ qki “ 3, 000 in all simulations. A population size
of 50 individuals was used in this work.

About the parameter tuning, the bat algorithm is run for a fixed number
of iterations, denoted by Gmax. Based on extensive simulations, we found that
Gmax “ 100 iterations provides sufficient convergence across all tested cases.
The remaining parameters of the bat algorithm are set empirically as follows:
A0 “ 0.5, r0 “ 0.3, α “ 0.5, and γ “ 0.25. Subsequently, the bat algorithm
is executed. At the end of the process, the best-performing individual from the
final iteration is selected as the solution to the optimization problem.

The computations in this paper have been carried out on a PC desktop with
a processor Intel Core i9 running at 3.7 GHz and with 64 GB of RAM. The
source code has been developed by the authors in the programming language of
the scientific program Mathematica version 12.

5 Computational Results

The bat algorithm described in Sect. 3 has been applied to the logistic map
presented in Sect. 4.1, using the settings indicated in Sect. 4.2. This section
details the computational results obtained for four cases, each corresponding
to a different value of the system parameter r. Table 1 summarizes the optimal
values of the pulse intensity λ and pulse frequency∆n obtained using our method
for all the examples shown in the figures of this paper. It is worth noting that the
proposed approach can stabilize a wide range of chaotic behaviors into periodic
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Fig. 2. (top-bottom, left-right) Six examples of application of our method for the lo-
gistic map and the parameter value a “ 3.6: (t-l) period-1 orbit; (t-r) period-3 orbit;
(m-l) period-4 orbit; (m-r) period-5 orbit; (b-l) period-8 orbit; (b-r) period-12 orbit.

orbits of a desired period. However, due to space limitations, we focus on a
selected set of 24 examples, each representing a different periodic orbit arising
from chaotic behavior for various values of r. In our opinion, these examples
provide strong evidence of the method’s effectiveness and its ability to handle
diverse scenarios with consistently satisfactory results.

5.1 Case 1: parameter value r “ 3.6

Figure 2 presents six examples demonstrating the application of our method
to stabilize chaotic orbits of the logistic map for the parameter value r “ 3.6,
for which the logistic map exhibits a two-piece chaotic attractor. In all figures,
a vertical red dashed line indicates the time at which the control strategy is
applied. As shown in the figures, the method exhibits a very good performance,
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Fig. 3. (top-bottom, left-right) Six examples of application of our method for the lo-
gistic map and the parameter value a “ 3.7: (t-l) period-1 orbit; (t-r) period-2 orbit;
(m-l) period-3 orbit; (m-r) period-4 orbit; (b-l) period-6 orbit; (b-r) period-12 orbit.

as we have been able to stabilize the chaotic behavior of the system to periodic
orbits of different periods. Notably, periodic orbits of periods 1, 3, 4, 5, 8 and
12 have been obtained automatically using our method, a clear indication of the
high flexibility of our approach. Note also that the transient between the chaotic
and the periodic behavior is generally very short, with just a few iterations
typically needed for convergence to a periodic behavior. The exception is the
period-12 orbit in Fig. 2(bottom-right), where a longer transient was required.
Nevertheless, even in this challenging case, the system stabilized within 500
iterations. It is also worthwhile to notice that these periodic orbits have been
obtained for both positive (periods 4, 5, and 12) and negative (periods 1, 3,
and 8) pulse values. Also, we remark that different periodic behaviors (periods
1, 3, and 8) have been obtained for the same pulse intensity, λ “ ´0.31, but

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97564-6_17

https://dx.doi.org/10.1007/978-3-031-97564-6_17
https://dx.doi.org/10.1007/978-3-031-97564-6_17


Bat Algorithm for Automatic Chaos Control in the Logistic Map 9

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

t

X

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

t

X

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

t

X

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

t

X

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

t

X

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

t

X

Fig. 4. (top-bottom, left-right) Six examples of application of our method for the lo-
gistic map and the parameter value a “ 3.8: (t-l) period-1 orbit; (t-r) period-2 orbit;
(m-l) period-4 orbit; (m-r) period-4 orbit; (b-l) period-6 orbit; (b-r) period-6 orbit.

different pulse frequency (∆n “ 1, ∆n “ 3, and ∆n “ 2, respectively). This
show the great ability of the method to find orbits of different periods through
the interplay between these parameters.

5.2 Case 2: parameter value r “ 3.7

Figure 3 shows six additional examples for the parameter value r “ 3.7, corre-
sponding to period 1, 2, 3, 4, 6 and 12 orbits selected as targets, respectively. Sim-
ilar to the previous examples, convergence to the periodic behavior is achieved
very quickly once the chaos control method is applied. Note also that the size of
the attractor can be enlarged with the chaos control method, even for relatively
small values of the pulse intensity, as seen for the period-6 and period-12 or-
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Fig. 5. (top-bottom, left-right) Six examples of application of our method for the lo-
gistic map and the parameter value a “ 3.9: (t-l) period-1 orbit; (t-r) period-2 orbit;
(m-l) period-4 orbit; (m-r) period-6 orbit; (b-l) period-7 orbit; (b-r) period-8 orbit.

bits of this figure. This is a clear evidence of the strong sensitivity to the initial
conditions of the logistic map.

5.3 Case 3: parameter value r “ 3.8

Figure 4 shows six additional examples for the parameter value a “ 3.8, corre-
sponding to period 1, 2, 4, and 6 orbits selected as targets. Interestingly, two
examples are shown for the period-4 and period-6 orbits, showing that our opti-
mization problem is multimodal, as different combinations of values for the pulse
intensity and frequency can lead to periodic orbits of the same period. Note also
that similar values of the parameter λ can still lead to orbits of different periods,
depending on the value of ∆n. This is the case for the period-1, period-4 and
period-6 orbits in this figure, which are obtained for the same value λ “ ´0.45
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but with different pulse frequencies ∆n “ 1, ∆n “ 2, and ∆n “ 3, respectively.
Similarly, the same value of ∆n can lead to orbits of different periods depend-
ing on the value of λ. This is the case for the period-2 and period-4 orbits in
Fig. 4, obtained for the same value ∆n “ 2 but with different pulse intensities
λ “ ´0.9 and λ “ ´0.45, respectively. Finally, two different period-6 orbits have
been obtained for the same pulse frequency ∆n “ 3, but with different pulse
intensities λ “ ´0.45 and λ “ ´0.9, respectively. This shows the high diver-
sity of different behaviors that can be obtained with our method. Note that the
difference in the pulse intensity leads to a shifted region of the period-6 orbit
in Fig. 4(bottom-right) with respect to the period-6 orbit in Fig. 4(bottom-left)
and also with respect to the original chaotic attractor before the chaos control
method is applied.

5.4 Case 4: parameter value r “ 3.9

Figure 5 shows six examples of the application of our chaos control method for
the parameter value a “ 3.9, corresponding to period 1, 2, 4, 6, 7, and 8 orbits.
They have been obtained for different combinations of λ and ∆n reported in
the last two columns of Table 1. It is interesting to remark that three different
periodic behaviors have been attained for the same pulse frequency ∆n “ 4
and close values of the pulse intensity: λ “ ´0.55, λ “ ´0.52, and λ “ ´0.49
for period-4, period-7 and period-8 orbits, respectively. In practical terms, this
∆n “ 4 value of the pulse frequency implies that the effective pulse intensity is
actually much smaller for each individual iteration. However, even these small
variations of the pulse intensity can result in different periodic behaviors.

6 Conclusions and Future Work

In this paper, we address the problem of chaos control, which involves stabilizing
the chaotic behavior of a dynamical system to a periodic orbit with a prescribed
period. The chaos control considered in this work is based on the application
of multiplicative pulses of intensity λ on the system variables every ∆n itera-
tions, with λ and ∆n being method parameters. This problem is formulated as
a difficult multimodal multivariate continuous nonlinear optimization problem.
This optimization problem is addressed through a popular swam intelligence
method called bat algorithm that is applied to compute the relevant parame-
ters of the chaos control procedure. We conducted computational experiments
to evaluate the performance of our approach, applying it to several illustrative
examples with different parameter values of the logistic map. The experimental
results demonstrate that the method performs effectively, successfully stabiliz-
ing chaotic behavior into periodic orbits of various periods. We conclude that
this method shows promise as a fully automatic procedure for chaos control in
chaotic maps.

Despite the positive results, our method does have some limitations. For in-
stance, we were unable to automatically obtain certain periodic behaviors (e.g.,
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period-11 orbits). We suspect that they correspond to very narrow windows of
the parameter r, making them challenging to capture within the number of itera-
tions considered in our method. Expanding our approach to address such cases is
a goal for future research. Additionally, we plan to extend our method to chaotic
maps of higher dimensions and to tackle the more complex case of continuous
chaotic systems (flows), cases that present additional complexity [9]. We also
aim to conduct a comparative analysis with other artificial intelligence-based
methods as part of our future work in the field. Finally, we wish to investigate
the application of this control of chaos technique to other interesting problems
in dynamical systems, such as the synchronization of chaotic systems [11,17,29]
and their potential role for secure communications.
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