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Abstract. Medical image analysis often relies on models optimized for specific 

tasks, such as classification or detection. However, this single-task approach lim-

its the utilization of shared features across tasks and becomes particularly ineffi-

cient when data availability is limited. In this paper, we investigate the potential 

of multi-task learning (MTL) with Visual Transformers to optimize both classi-

fication and reconstruction tasks, especially when training data is scarce. Using 

datasets like BRATS (binary classification of brain tumor presence on MRI 

slices) and ultrasound images of muscles (for identifying pathologies such as My-

opathy, Myelopathy, and Polyneuropathy), we evaluate MTL against standalone 

and pre-training paradigms. Results indicate that MTL significantly enhances 

model performance, particularly in classification tasks, by leveraging shared rep-

resentations and improving attention mechanisms. Our findings demonstrate that 

MTL mitigates the challenges of limited data availability by effectively transfer-

ring knowledge between tasks, making it a valuable strategy for medical imaging 

applications. 

Keywords: Multi-task learning, Visual Transformers, Medical Imaging, MRI, 

Ultrasound, Brain Tumor Classification, Muscle Pathology Detection, Limited 

Data Learning. 

1 Introduction 

1.1 Background and Motivation 

Medical imaging plays a pivotal role in clinical decision-making by providing non-

invasive insights into pathological conditions [1]. In recent years, deep learning-based 

approaches have significantly improved performance in diagnostic tasks such as tumor 

classification, anomaly detection, and disease progression assessment. However, these 

models often rely on single-task learning (STL), which assumes large, well-annotated 

datasets specific to each task [2]. 

Multi-task learning (MTL) presents a promising alternative by jointly optimizing 

multiple objectives, leveraging shared representations to improve generalization and 

sample efficiency. By incorporating multiple tasks, MTL mitigates overfitting and pro-

vides improved robustness when training data is limited [5][6].  
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Transformers, particularly Visual Transformers such as DINO, have gained attention 

for their ability to model long-range dependencies within images. Recent studies have 

demonstrated their superiority over CNN-based architectures in tasks such as segmen-

tation and classification [9][10]. 

Unlike prior works that focus on multi-task optimization for medical imaging [2], 

this study incorporates MIM-based reconstruction [3] alongside classification, demon-

strating how shared feature representations can improve diagnostic accuracy. By di-

rectly comparing MTL with STL and pretraining paradigms, we provide empirical ev-

idence that MTL not only achieves higher classification accuracy but also reduces over-

fitting in data-limited settings. 

Our study evaluates MTL’s effectiveness across both small and large dataset sizes, 

revealing that MTL’s advantages become more pronounced when training data is 

scarce. 

 

1.2 Objectives 

The primary objective of this study is to evaluate the effectiveness of MTL using Visual 

Transformers in medical imaging applications with limited data. Specifically, we aim 

to: 

• Quantify the impact of MTL on classification task by comparing its perfor-

mance against STL and pre-training approaches. 

• Evaluate performance of MTL for small-sized datasets compared to large-

sized datasets. 

• Analyze attention map visualizations to assess the effectiveness of learned fea-

ture representations and their relevance to pathology-specific regions. 

 

By addressing these objectives, we aim to contribute to the development of more 

efficient deep learning models for medical image analysis, particularly in resource-con-

strained scenarios where large-scale annotated datasets are unavailable. 

2 Theoretical Foundations 

2.1 Multi-Task Learning Framework 

The concept of multi-task learning is rooted in the idea that jointly optimizing multiple 

objectives can improve model efficiency and performance. MTL is formally defined as 

an optimization problem where a model learns a set of related tasks simultaneously 

[4][8]. The total loss function for an MTL model is expressed as: 

𝐿 =  ∑ 𝜆𝑖𝐿𝑖

𝑇

𝑖=1

 

Where 𝑇 is the number of tasks, 𝜆𝑖 is the weight for task 𝑖, 𝐿𝑖 is the task-specific loss. 
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2.2 Loss Functions 

Loss functions play a crucial role in optimizing deep learning models, especially in the 

context of multi-task learning (MTL), where different tasks often require distinct ob-

jective functions. In this study, we employ a combination of loss functions tailored to 

classification and masked image modeling (MIM) tasks. 

MIM involves predicting masked pixel values from an input image, making regres-

sion-based loss functions a natural choice. One of the most used loss functions for this 

task is the Mean Squared Error (MSE), which is defined as: 

𝐿𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 −  𝑦�̂�)

2

𝑛

𝑖=1

 

For the classification task, where the model predicts whether a given medical image 

belongs to a certain pathology class, we use the Binary Cross-Entropy (BCE) loss: 

𝐿𝐵𝐶𝐸 =  −
1

𝑛
∑[ 𝑦𝑖 ∗ 𝑙𝑜𝑔(𝑦�̂�) + (1 −  𝑦𝑖) ∗  𝑙𝑜𝑔(1 −  𝑦�̂�)]

𝑛

𝑖=1

 

2.3 Comparison of Pretraining and Multi-Task Learning Loss Functions 

A key challenge in MTL is balancing different loss functions, as optimizing for one 

task may degrade performance on another. Traditional pretraining approaches optimize 

a model for a general task before fine-tuning it on the target task. 

In pretraining, the optimization objective is: 

 
𝜃𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = arg 𝑚𝑖𝑛𝜃𝐿𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛(𝜃) 

where  𝜃 are the model parameters. During fine-tuning for the target task: 

 

𝜃𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒 = arg 𝑚𝑖𝑛𝜃𝐿𝑡𝑎𝑟𝑔𝑒𝑡(𝜃) 

This sequential process can lead to catastrophic forgetting because the gradi-

ent  ∇𝜃𝐿𝑡𝑎𝑟𝑔𝑒𝑡 may overwrite the features learned from 𝐿𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛. 

In MTL, the optimization is simultaneous: 

 

𝜃𝑀𝑇𝐿 = arg 𝑚𝑖𝑛𝜃( 𝜆1𝐿𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛(𝜃) +  𝜆2𝐿𝑡𝑎𝑟𝑔𝑒𝑡(𝜃)) 

where 𝜆1 and 𝜆2 balance the importance of the pretraining and target tasks. This 

prevents catastrophic forgetting because both tasks contribute to the shared gradient: 

 
∇𝜃𝐿𝑀𝑇𝐿 =  𝜆1∇𝜃 𝐿𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 +  𝜆2∇𝜃 𝐿𝑡𝑎𝑟𝑔𝑒𝑡  

Thus, features useful for both tasks are retained. 

 

2.4 Analysis of Regular Training and Multi-Task Learning Loss Optimization 

In MTL, the model learns a shared representation ℎ𝑠ℎ𝑎𝑟𝑒𝑑 =  𝑓(𝑥; 𝜃𝑠ℎ𝑎𝑟𝑒𝑑), where 

ℎ𝑠ℎ𝑎𝑟𝑒𝑑 is the shared feature representation learned by the model, x is the input, and 

𝜃𝑠ℎ𝑎𝑟𝑒𝑑  are the parameters of the shared layers with the objective: 
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𝐿𝑀𝑇𝐿 =  ∑ 𝜆𝑖𝐿𝑖(ℎ𝑠ℎ𝑎𝑟𝑒𝑑 , 𝜃𝑖
𝑡𝑎𝑠𝑘)

𝑇

𝑖=1

 

Where 𝜃𝑖
𝑡𝑎𝑠𝑘 are the task-specific parameters. While in MTL, the shared parameters 

𝜃𝑠ℎ𝑎𝑟𝑒𝑑  are updated using gradients from all tasks: 

∇𝜃𝑠ℎ𝑎𝑟𝑒𝑑
𝐿𝑀𝑇𝐿 =

𝜆𝑖

𝑛𝑖

 ∑ ∇𝜃𝑠ℎ𝑎𝑟𝑒𝑑
ℓ𝑖(𝑥𝑘,𝑦𝑘)

𝑛𝑖

𝑘=1

+
𝜆𝑗

𝑛𝑗

∑ ∑ ∇𝜃𝑠ℎ𝑎𝑟𝑒𝑑
ℓ𝑗(𝑥𝑘,𝑦𝑘)

𝑛𝑗

𝑘=1𝑗≠𝑖

 

MTL increases the effective dataset size for the shared parameters. 

𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =  𝑛𝑖 + ∑
𝜆𝑗

𝜆𝑖 

𝑛𝑗

𝑗≠𝑖

 

Tasks with larger effective dataset size reduce the overall variance, stabilizing the up-

dates to shared parameters. 

A key benefit of MTL is the reduction in variance of the parameter updates. The 

variance of the gradient updates for the shared parameters 𝜃𝑠ℎ𝑎𝑟𝑒𝑑  is given by: 

𝑉𝑎𝑟(∇𝜃𝑠ℎ𝑎𝑟𝑒𝑑
𝐿𝑀𝑇𝐿) =

𝜆𝑖
2

𝑛𝑖
2   𝑉𝑎𝑟(∇𝜃𝑠ℎ𝑎𝑟𝑒𝑑

ℓ𝑖) + ∑
𝜆𝑗

2

𝑛𝑗
2 𝑉𝑎𝑟(∇𝜃𝑠ℎ𝑎𝑟𝑒𝑑

ℓ𝑗)

𝑗 ≠𝑖

 

MTL leads to lower variance, provided that auxiliary tasks contribute sufficient 

training samples. This stabilizes gradient updates and prevents abrupt weight changes, 

improving model robustness. 

In scenarios where the tasks are correlated, the total variance must also account for 

covariance terms: 

𝑉𝑎𝑟(𝐿𝑀𝑇𝐿) =
𝜆𝑖

2

𝑛𝑖
2 𝑉𝑎𝑟(𝐿𝑖) + ∑

𝜆𝑗
2

𝑛𝑗
2 𝑉𝑎𝑟(𝐿𝑗) + ∑

𝜆𝑖𝜆𝑗

𝑛𝑖𝑛𝑗

𝐶𝑜𝑣(𝐿𝑖 , 𝐿𝑗)

𝑖 ≠𝑗𝑗 ≠𝑖

 

If tasks are positively correlated (𝐶𝑜𝑣 >  0), total variance increases, meaning tasks 

reinforce each other’s learning signals. In situation when tasks are negatively correlated 

(𝐶𝑜𝑣 <  0), total variance decreases, meaning tasks act as a regularizer. 

3 Methodology 

3.1 Dataset Selection and Preparation 

In this study, we utilize two distinct medical imaging datasets: ultrasound images of 

muscles and MRI scans from the BRATS dataset. These datasets were chosen for their 

relevance in evaluating multi-task learning (MTL) performance across different imag-

ing modalities and pathologies. 

The ultrasound dataset consists of grayscale scans of muscle tissue, annotated with 

labels indicating the presence or absence of muscular diseases such as Myopathy, Mye-

lopathy, and Polyneuropathy. Given the inherent variability in ultrasound imaging, this 

dataset poses challenges in feature extraction and classification, making it an ideal 

testbed for evaluating the effectiveness of a multi-task model. 

The BRATS dataset, on the other hand, comprises MRI scans that are widely used 

in brain tumor research. The classification task in this study focuses on binary tumor 
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detection - distinguishing between MRI slices with and without tumor presence. The 

complexity of MRI images, combined with the necessity for precise localization of tu-

mor regions, adds another layer of difficulty to the learning process. 

Both datasets undergo preprocessing steps such as normalization, resizing, and aug-

mentation to ensure consistency across training samples. Given the different imaging 

characteristics, specific transformation pipelines are applied to retain essential medical 

features while standardizing the input format for the model. 

 

3.2 Model Design and Learning Strategy 

The model architecture is based on a Visual Transformer (DINO), which serves as the 

core feature extractor. Unlike conventional CNN-based approaches, transformers ena-

ble long-range dependencies and capture global and local patterns, which are particu-

larly beneficial for medical imaging applications. Two task-specific heads are incorpo-

rated into the model. 

Masked Image Modeling (MIM) Head, responsible for reconstructing missing image 

patches, enabling the model to learn structural and contextual information from medical 

images [7]. 

Classification Head, designed to predict disease labels based on learned feature rep-

resentations, enabling accurate identification of pathological conditions. 

The integration of these task-specific heads facilitates knowledge sharing between 

classification and reconstruction tasks, leveraging the strengths of both to improve 

overall model generalization. 

 

3.3 Training Approach and Optimization 

To ensure robust learning, we adopt a multi-task training strategy where both classifi-

cation and reconstruction losses are optimized simultaneously. The classification task 

employs Binary Cross-Entropy (BCE) Loss for tumor and muscle pathology detection. 

The reconstruction task utilizes Mean Squared Error (MSE) Loss. 

 Bellow you can see an example of MIM task evaluation on ultra-sound muscles im-

ages dataset. 

 

Fig. 1. Evaluation of MIM task for ultra-sound image of muscle. 

3.4 Evaluation Metrics 

To gauge the effectiveness of the proposed approach, a comprehensive evaluation 

framework is implemented. For classification performance, we rely on the Area Under 

the Receiver Operating Characteristic Curve (ROC AUC). 
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For the reconstruction task, we evaluate model output using quantitative metrics 

such as MIM loss (MSE) and qualitative assessments of visual fidelity. By analyzing 

the reconstructed images, we can determine the model’s ability to recover missing de-

tails and preserve structural consistency in medical imaging scenarios. 

Through this methodology, we aim to demonstrate the benefits of multi-task learning 

in improving both classification accuracy and image reconstruction quality. 

4 Experiments and Results 

4.1 Evaluating Multi-Task Learning Performance 

Our experiments were conducted using two distinct medical imaging datasets: ultra-

sound images of muscles and MRI scans from the BRATS dataset. The primary objec-

tive was to evaluate the effectiveness of Multi-Task Learning (MTL) compared to pre-

training and single-task learning approaches. 

Table 1. Ultra-sound images of muscles pathology classification. 

Training strategy ROC-AUC 

STL 0.72 

Pre-training 0.64 

MTL 0.88 

Table 2. MRI scans classification. 

Training strategy Sampling ROC-AUC ROC-AUC lower 

bound 

ROC-AUC upper 

bound 

STL All data 0.71 0.69 0.72 

MTL All data 0.71 0.71 0.71 

STL Under sampled 0.70 0.67 0.73 

MTL Under sampled 0.71 0.68 0.74 

 

The results demonstrated that MTL improves classification performance, particu-

larly in scenarios where the training dataset is relatively small. A key observation was 

that reducing the number of training samples led to better results on the hold-out test 

set for MTL. This finding aligns with our theoretical understanding of MTL. 

On the other hand, pre-training the model on a general task before fine-tuning it for 

classification resulted in decreased performance. These findings highlight the ad-

vantage of training classification and reconstruction objectives simultaneously within 

an MTL framework rather than relying on a sequential pre-training approach. 

4.2 Interpreting Attention Mechanisms 

To gain further insights into model behavior, we analyzed attention maps generated by 

the Visual Transformer backbone. In MTL-trained models, attention maps showed 
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increased focus on diagnostically relevant regions within medical images. This suggests 

that MTL enhances the model’s ability to identify critical features, reinforcing the ben-

efits of shared feature representations across tasks. 

 

 

Fig. 2. Attention map visualization for MTL with ultra-sound images. 

In contrast, models trained using pre-training or single-task learning exhibited more 

diffuse attention distributions, often highlighting irrelevant regions. These results fur-

ther confirm the effectiveness of MTL in directing model focus toward the most in-

formative parts of medical images, improving interpretability and diagnostic accuracy. 

 

 

Fig. 3. Attention map visualization for STL with ultra-sound images. 

Overall, our experimental findings provide strong empirical support for the theoret-

ical advantages of MTL, demonstrating its ability to enhance generalization and im-

prove attention-based representations in medical image analysis. 

5 Conclusion and Future Work 

This study investigated the impact of Multi-Task Learning (MTL) in medical image 

analysis using Visual Transformers, specifically in the classification of ultrasound mus-

cle images and MRI-based brain tumor detection. Our findings reinforce the theoretical 

advantages of MTL, particularly in cases where the availability of labeled data is lim-

ited. Pre-training the model before fine-tuning led to a decline in performance. Addi-

tionally, attention map analysis revealed that MTL-trained models focused more effec-

tively on diagnostically relevant regions, indicating an improvement in feature learning 

and interpretability. 

Future research should explore more advanced techniques to refine the MTL frame-

work. One potential direction is the investigation of adaptive task-weighting mecha-

nisms, which could dynamically balance classification and reconstruction losses based 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97564-6_16

https://dx.doi.org/10.1007/978-3-031-97564-6_16
https://dx.doi.org/10.1007/978-3-031-97564-6_16


8  F. Author and S. Author 

 

on learning progress. Further, expanding this study to multi-class and multi-label clas-

sification tasks would provide a more comprehensive understanding of MTL's ad-

vantages in diverse medical imaging settings. Another promising direction involves 

evaluating MTL on additional imaging modalities, such as CT or PET scans, to assess 

its broader applicability across different diagnostic domains. 

By addressing these directions, future work can further solidify MTL as a viable 

solution for improving medical data analysis, advancing AI-driven diagnostic tools that 

are both efficient and clinically relevant. 
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