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Abstract. Forecasting small sequences with missing values poses significant 

challenges in machine learning, particularly when dealing with limited training 

data and incomplete information. In this paper we present a novel unified meth-

odological standpoint, which comparatively evaluates the effectiveness of vari-

ous machine learning models in predicting sequential data under constrained con-

ditions. We investigate four model families: ARIMA, Gradient Boosting, Fully 

Connected Neural Networks, and Transformers, examining their performance 

through both frequentist and Bayesian implementations. Utilizing five diverse 

datasets representing different sequencing patterns, we systematically analyze 

model behavior under varying data availability and missingness scenarios. By 

randomly reducing dataset sizes and introducing missing values, we explore how 

model complexity and Bayesian probabilistic approaches impact predictive ac-

curacy. The experimental results demonstrate that Bayesianization consistently 

improves model performance across different datasets, with an average SMAPE 

reduction of 1-5%. Notably, neural network models, particularly Fully Connected 

Neural Networks, showed the most significant improvements through Bayesian 

techniques. This research provides insights into handling small, sparse sequential 

data and highlights the potential of Bayesian methods in enhancing predictive 

modeling under data-constrained conditions. 

Keywords: Bayesian Inference, Time Series Forecasting, Small Data, Missing 

Values, Machine Learning Models 

1 Introduction and Motivation 

Sequential data prediction is one of the typical tasks in ecology, education, medicine, 

finance, to name a few areas. Analysts must use disparate data, collecting every avail-

able element from all possible sources, some of which can seem unusual. These cases 

are of interest for the research of predicting small data sequences with missing values. 

Both constraints may cause some problems in supervised learning models: both small 

datasets and missing data can result in biased or incomplete models, making it difficult 

to achieve accurate predictions [1]. 

Handling missing values and small datasets in sequence predicting tasks has a long 

and well-developed background [2, 3]. The basic challenge for both of them is model 

overfitting. A natural way to prevent it is to balance the amount of training data with 

the number of parameters of the machine learning (ML) model being trained. This can 
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be reached by using various methods, among which Autoregressive Integrated Moving 

Average (ARIMA) models [4] remain one of the most popular time series forecasting 

techniques. Some more sophisticated models have also been proposed, namely, a tool 

based on genetic programming and Kalman filter as suggested in [5].  

The emergence of transformers [6], which have de facto become ubiquitous for a 

wide range of IT solutions [7], could not but affect the area of sequence prediction [8]. 

However, in most known solutions, transformers are primarily used to impute the miss-

ing values into a sequence [9]. The only exception detected is the study by [10] that 

aims to predict clinical outcomes from irregularly sampled multivariate clinical time-

series without any imputation required. The effective use of transformers for predicting 

time sequences is reported in [9, 11, 12], however, [13] has reported the opposite re-

sults. In terms of the performance of transformers on short-term forecasting on small 

samples, the only work detected [14] experimentally compared the efficiency of the 

ARIMA-, LSTM- and transformer-based algorithms. As stated by the authors themself, 

this result is not exhaustive and does not neglect further studies of the transformers 

capabilities for short sequence forecasting. 

Our analysis shows that the implementation of all the models described above relies 

on frequential statistics, that is on point estimates of parameters. A new impetus to 

enriching the available data may be received from a transition from point estimates of 

parameters to probabilistic estimates using Bayes theorem, the so-called Bayesianiza-

tion [15, 16]. This enables defining a prior distribution over the missing values so that 

they can be inferred with the other unobserved parameters when fitting the models [17]. 

In the perspective of balancing the number of parameters and the amount of training 

data, this transition could enrich the dataset as such while allowing the model to extract 

more information from each sample.  

A revival of interest in the Bayesianization has recently been due to the advent of 

transformers [19]. Although earlier works [18] confirmed its effectiveness for predict-

ing short sequences, other authors including [20] tended to claim a danger of overbias 

in this case.  

To sum up, the existing landscape of proposed approaches in the field of forecasting 

small sequences with missing values does not appear to be holistic and to provide a 

reasonable choice of IT solution in any specific situation. In an effort to fill this gap, 

we set the goal to compare, from a unified methodological standpoint, the effectiveness 

of the most popular approaches to forecasting small sequences with missing values in 

their frequentist and Bayesian implementations.  

We selected the models typical for benchmarking the efficiency of sequences pre-

diction, and, following the approach of [21], used model complexity as the basic pa-

rameter for characterizing the model. Specifically, we used models from the families 

for ARIMA, Gradient boosting with trees (GB), fully connected neural networks 

(FCNN), and transformers. All model implementations were examined both in their 

classical and in Bayesian forms. 

We used the Missing Completely at Random (MCAR) model, where the probability 

of having the missing data does not depend on covariates; however, we apply the re-

moval procedure either to single samples with extremely short sequences or to the entire 

sequences when it represents the whole dataset. We have chosen 1-step forecasting as 
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the basic task in the time series forecasting. We have chosen forecasting in a regression 

form, as categorical sequential data can be forecasted likewise by choosing a link func-

tion [22]. 

2 Method and Materials 

2.1 Models and their Bayesianization 

We aimed to explore the dependence of the prediction quality of on the ML model 

type and its complexity. The models selected for comparison are described below.  

In implementing a GB regression we followed [23] to handle a multidimensional 

sequence forecasting task. The model’s complexity was regulated by the variable depth 

of trees. The number of trees was fixed at a standard value of 100 trees. To handle 

missing values with the ARIMA model, the maximum likelihood approach was used as 

an example of an approach adopted to MCAR type missing values. A FCNN was im-

plemented and applied in a standard way for sequence forecasting as described in [36]. 

The number of layers was chosen as the complexity parameter for this model. A trans-

former model (Figure 1) was built in the simplest form [8] as a composition of multi-

head attention layers with standard feed forward network and normalization between 

them to elicit the effect of a small training dataset in its pure form.  

To convert models to Bayesian form we used a scheme (Figure 2) with the parame-

ters estimated by fully factorized gaussians [27]. This scheme was chosen as one of the 

simplest, the fastest and the most stable among Bayesian inference for deep learning 

(DL) models to increase the reliability of results. This method was applied for ARIMA 

in the same way as in [28] to obtain its analogue in the form of Bayesian structural 

model. Bayesianization was only applied to the last fully connected layers of the trans-

former model (Figure 3) to increase stability and convergence [29].   

 

Fig. 1. Transformers scheme in the frequentist variant. 

 

Fig. 2. Bayesianization scheme. 

 

Fig. 3. Transformers scheme: Bayesian variant. 
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2.2 Data sets used 

We used five datasets with different types of sequencing. The datasets were classi-

fied into the following groups: (i) a set of extremely short sequences; (ii) a long se-

quence with regular patterns; (iii) a sequence with irregular patterns. 

The main parameters of the used datasets are summarized in Table 1. 

Table 1. Main parameters of the datasets used. 

Dataset name Original size Type of sequencing 

Students Performance  480 sequences (i) 

Global Mean Sea 30000 records (ii) 

Long-term Weather 52560 records (ii) 

Microsoft  5000 records (iii) 

Stock Market  25161 records (iii) 

 

2.3 Experimental scenario and metrics  

We pursued two objectives: to investigate how different models configurations would 

address the prediction task with a variable training set size and the volume of missing 

values; to compare the quality of Bayesian alternatives with classical frequentist mod-

els. We generally followed the methodology of the previous benchmarking [35].  

For this purpose, the fragments of various lengths (100%, 75%, 50%, 25%) were 

randomly selected from the training part of each experimental dataset. Data fragmenta-

tion for the training set was performed so as to preserve the semantic coherence of the 

original data set. Namely, sequences of adjacent data were cut out from the data sets 

consisting of a single time series; individual time series were selected without disturb-

ing them from the data sets representing a set of short time series. 

To simulate the missing values, following MCAR model, we randomly replaced var-

ied (0%, 25%, 50%, 75%) proportions of values with the missing ones. 

We repeated the above procedures 30 times with each dataset, thereby forming sub-

datasets for training the models.  namely, 480 sub-datasets for each original dataset. All 

the analyzed models were trained independently and from scratch on each such sub-

dataset. Their efficiency was measured using the SMAPE metric: 

SMAPE =
100

n
∑

|𝑦𝑖−𝑦𝑖̅̅̅|

(|𝑦𝑖|+|�̅�𝑖|)/2

𝑛
𝑖=1 ,  

where yi is the target value of i-th example, y̅i is the prediction for i-th example. 

3 Results and Discussion 

As shown in Section 2.3, the full experimental results are too extensive to be in-

cluded in the paper. They can be provided upon request. To demonstrate the identified 

patterns, the most representative cases were selected for each of the dataset groups de-

scribed in Section 2.2. Namely, the following groups of cases were formed: 

1) Full dataset without missing values, referred to below as “Full dense”; 
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2) 10% of the original dataset, but without missing values, referred to below as 

“Small dense”; 

3) Full dataset, but with 75% missing values, referred to below as “Full missing”; 

4) 10% of the original dataset with 75% missing values, referred to below as 

“Small missing”.  

Figure 4 demonstrates the behavior of model’s SMAPE for the datasets of group (i). 

 
                                   a                                                                      b 

 
                                     с                                                                  d  

Fig. 4. SMAPE  models for datasets of group (i) – a set of extremely short sequences  

  

Figure 4 shows that in the cases of Full dense, Small dense and Full missing (Figure 

4a, 4b, 4c), Bayesianization improves the efficiency of all models - FCNN, GB and 

transformers - regardless of their complexity. On the other hand, for FCNN and GB, a 

stable decrease by approximately 5% is observed in SMAPE, and for transformer mod-

els, the average SMAPE drop makes about 1% and is less stable. The exception is the 

case of Small missing (Figure 4d), where for all types of models, the decrease in 

SMAPE is nearly the same (approximately 4%). 

A comparison of Figures 4a–4d shows that for ARIMA, Bayesianization yields a 

SMAPE drop of approximately 3% on average. However, overall they underperform 

the other models, with an average SMAPE of around 26–30%, while most other models 

have SMAPE in the range of 21–27%. 

Figure 5 demonstrates the behavior of model’s SMAPE for datasets of group (ii). On 

small versions of the dataset (Figure 5b - Small dense, Figure 5d - Small missing), 

regardless of the data sparsity, SMAPE remains approximately the same for all models. 

For FCNN and GB, it grows by approximately 0.5-1.5% with Bayesianization, but no 
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stable effect is observed on the quality of the transformers. At the same time, GB in-

creases quality with increasing complexity (SMAPE drops by 2%), and FCNN lose 

about the same amount. In the case of complete data (Figure 5a - Full dense, Figure 5c 

- Full missing), the quality varies somewhat more, but the same ratio of values is pre-

served as on small data. 

In the case of Small missing data (Figure 5d), a trend towards a decrease in the qual-

ity of FCNN with increasing complexity and a small increase in the quality of trans-

former models is again evident, but this time only for the Bayesian version. ARIMA 

and its Bayesian version still do not exhibit a stable dependence of quality on complex-

ity. 

 
                                   a                                                                      b 

 
                              с                                                                  d 

Fig. 5. SMAPE models for datasets of group (ii) – large sequence with a large propor-

tion of missing values  

  

We also examined the behavior of SMAPE models for datasets of group (iii). In the 

cases of missing values, regardless of the size, the same dependencies are traced as in 

Fig. 5, but the influence of Bayesianization on both FCNN and transformers becomes 

stronger. Additionally, it should be noted that Bayesianization has a weak influence on 

the quality of both ARIMA and boosting in this case - no more than 0.5%. In the case 

of Small missing data, the transformer approximately maintains the error level, varying 

it within 0.7%. The quality of a FCNN with Bayesianization increases by a significant 

6% in both Full missing and Small dense  cases. At the same time, for both regular and 

Bayesianized FCNN, on Full missing, an increase in complexity leads to a drop in error 

within 3.5%, and on Small dense, on the contrary, the error increases by 2.1%. GB and 

ARIMA along with their Bayesian versions lose quality by 2-3% with increasing com-

plexity. 
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4 Conclusion and Future Works 

In this paper, we compared forecasting methods for small sequences with missing val-

ues using frequentist and Bayesian approaches. We focused on 1-step forecasting with 

models like ARIMA, Gradient boosting, neural networks, and transformers. We used 

three dataset types: extremely short sequences, a large sequence with many missing 

values, and a small sequence with many missing values, creating 480 sub-datasets each. 

Models were trained independently on each sub-dataset, using SMAPE to measure pre-

diction quality. Results showed Bayesianization reduced SMAPE by 2% for short se-

quences, 3-5% for long sequences, and 1-3% for small sequences. Bayesianization is 

promising for improving forecasting quality in challenging conditions.  
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