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Abstract. High-resolution atmospheric data is essential for understand-
ing local atmospheric processes, however it is computationally expen-
sive to achieve such high resolutions through physical models. Recently,
deep learning techniques, particularly those used in Single Image Super-
Resolution, have emerged as a promising approach for statistical down-
scaling. However, much of the existing research has focused on enhancing
model performance within small geographical regions, with limited at-
tention given to the transferability of these models to diverse areas out-
side of their training domain. This paper introduces a methodology that
evaluates the ability of a UNet model to downscale daily 2-meter tem-
perature data outside its training region. The proposed approach uses
one-third of the Contiguous United States to train the model, and as-
sesses its performance on unseen areas. Our experimental design deliber-
ately tests both spatial and temporal generalization, demonstrating that
relatively compact models can effectively transfer downscaling capabili-
ties to new regions. This results in improvements across key performance
metrics including Mean Absolute Error, Root Mean Square Error, and
Peak Signal-to-Noise Ratio. Additionally, our approach significantly re-
duces computational costs while improving downscaling accuracy across
diverse climatic and topographic conditions.
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1 Introduction

High-resolution meteorological and climate data is essential for advancing our un-
derstanding of local atmospheric processes, such as extreme weather events, and
future climatic scenarios. However, this local-scale data is often unavailable and
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2 M. Benitez

must be generated through downscaling, a process that refines coarse-resolution
data into finer-scale information.

Downscaling techniques can be categorized into two approaches: dynamical
downscaling and statistical downscaling. Dynamical downscaling uses numerical
weather prediction models which solve complex physical equations to simulate
atmospheric conditions at high resolutions. While these methods are physically
consistent, they are computationally expensive, making them unfeasible for large
areas or long-term simulations. In contrast, statistical downscaling uses histori-
cal relationships between coarse-scale and local-scale data to infer finer details.
Although these methods are computationally cheaper than dynamical downscal-
ing, they can produce overly smooth maps and less accurate results, limiting its
usage in certain applications.

Recently, deep learning (DL) methods used in the computer vision task of
single image super-resolution [15] have gained popularity as statistical downscal-
ing techniques. The use of architectures, such as Convolutional Neural Networks
(CNNs), UNets [13], Generative Adversarial Networks (GAN) [1, 5], and more
recently, Diffusion Models (DM) [8], has spread across the community, demon-
strating promising results in several studies. Generative architectures like GAN
and DM even have the ability to produce ensembles, a highly sought-after fea-
ture in downscaling and weather forecasting applications. Despite the growing
adoption of DL architectures, most efforts in the field have focused on improving
model performance using different architectures for small regions [8, 6, 10, 7, 2],
validating the models within the same small region in years outside of the train-
ing set. There has been limited work on analysing and understanding the ability
of these models to transfer knowledge to larger areas outside of their training
region [9].

This paper introduces a methodology that evaluates the effects of training a
DL model (UNet) to downscale daily 2-meter temperature in a relatively small
area and use the resulting model to produce predictions in unseen regions with
diverse climatic and topographic features. We choose the Contiguous United
States (CONUS) as our training region, using only one third of the available
area to train the model, reducing the cost and time needed to train it. The
rest of the data is used exclusively for validation and testing. We study both
the spatial and temporal generalization capabilities of the downscaling model by
also selecting new years for evaluation. The results show that small models are
capable of transferring their downscaling skill to unseen areas, reducing metrics
such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and
Peak Signal-To-Noise Ratio (PSNR).

2 Proposed Methodology

This section outlines the main components of the study, illustrated in Fig. 1.
We begin by defining the study region, followed by a description of the datasets
used and variables selected (Fig. 1a). Next, we define the model architecture
and training details. Subsequently, we explain the spatial and temporal data
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Transferability of UNet-Based Downscaling 3

partitioning, shown in Fig. 1b. Finally, we introduce the evaluation metrics used
to assess model performance.

(a) Sketch of the training process. From left to right; input data (low-resolution tem-
perature field from ERA5 and elevation from CONUS404), model architecture and
target data (high-resolution temperature field from CONUS404.

(b) Image showing the spatial and temporal splitting of the dataset. The left side shows
in red the training set (splits 01, 02, 05, 08), in blue the validation set (splits 04, 07,
10, 12) and in green the test set (splits 03, 06, 09, 11). On the right side we show the
training (2017-2019), validation (2020) and test years (2021).

Fig. 1: Overview of the proposed methodology (a) and dataset temporal and
spatial splitting (b).

2.1 Region of Study

Our study focuses on a large domain to evaluate the temporal and spatial gener-
alization capabilities of our downscaling method. The study region is located on
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the CONUS but it also includes parts of Canada, Mexico and other countries,
such as Cuba and the Bahamas (Fig 2). This area has been selected due to the
availability of a high-resolution dataset that we use as our target, this dataset is
presented in section 2.2. The region covers 5,472 km from west to east and 4,064
km from north to south at 4km resolution, which in terms of pixel size, translates
to 1368 by 1016 pixels. Working with such a large domain ensures that we are
able to sample from a variety of climatic and topographically diverse regions to
study the ability of the models to generalize across diverse environments.

Fig. 2: Spatial boundaries and topographical features of the study region. The
image shows the high-resolution elevation map that has been used as input for
our model and during the creation of the target dataset (CONUS404).

2.2 Datasets and Selected Variables

The ERA5 dataset [3], produced by the European Center for Medium-Range
Weather Forecast (ECMWF) using the Integrated Forecast System (IFS), pro-
vides hourly global meteorological data at 0.25º spatial resolution. The dataset
includes a wide range of atmospheric variables at single levels (2D) and pressure
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or model levels (3D) and its temporal coverage starts from 1940 to near real
time.

The CONUS404 dataset [12], developed through a collaboration between the
National Center for Atmospheric Research (NCAR) and the U.S. Geological Sur-
vey (USGS), is a high-resolution hydro-climate dataset covering the CONUS area
at a 4km resolution during a 40-year period. The dataset consists of Weather Re-
search and Forecasting model outputs that use ERA5 as its boundary conditions
to force the simulation.

Both datasets use different grids systems: ERA5 uses a regular latitude-
longitude grid, while CONUS404 uses a Lambert Conformal Conic projection
with a 4km grid. To homogenize the projections of both datasets we use the
Climate Data Operator (CDO) library [14] to bilinearly interpolate ERA5 onto
the target grid. This interpolated data serves both as input and the baseline for
our DL model.

This work focuses on downscaling daily 2-meter temperature across the study
region in the 2017-2021 period. Additionally, we incorporate elevation data from
the target dataset to represent topographical features, helping the model learn
how these features interact with daily 2-meter temperature and transfer its re-
sults onto unseen regions.

2.3 Model

Our DL model is based on the UNet architecture. We implement this model
using the Segmentation Models Python library [4], which allows us to change
the UNet encoder for other models, such as the RegNetY [11] family of networks.

The UNet architecture consists of two components: the encoder (contracting
path) and the decoder (expanding path). The encoder, in our case a RegNetY,
captures contextual information, extracting features through a series of convolu-
tional layers with grouped convolutions and squeeze-and-excitation blocks. The
layers progressively reduce spatial dimensions while increasing feature depth at
each step, learning hierarchical representations of the input. The decoder recon-
structs the spatial resolution through upsampling operations and skip connec-
tions, preserving details that would otherwise be lost during downsampling.

We choose RegNetY architecture as our encoder due to its flexibility in size
and improved feature extraction capabilities. The Segmentation Models library
uses the encoders implemented in the PyTorch Image Models Python library
[16] that implements 15 different sizes of the RegNetY encoder, allowing us to
evaluate the performance of various encoders without changing the architecture.

The resulting model uses the encoder named "regnety_032" and has 24M
trainable parameters. We trained it for 250 epochs with a batch size of 128, which
took 2 hours on a single NVIDIA H100 GPU (64GB) at the Barcelona Super-
computing Center. We used the Adam optimizer with an initial learning rate
of 0.0005 and a Cosine Annealing Warm Restarts scheduler (T0=20, Tmult=2).
For the objective function, we used the Mean Square Error (MSE) loss. All data
has been standardized by subtracting the mean and dividing by the standard
deviation of the train set.
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2.4 Dataset Partition

A large training domain typically provides the model with a diverse set of meteo-
rological patterns and spatial variability, which can enhance its ability to capture
complex relationships and improve generalization to unseen regions. However,
this comes at the cost of increased computational resources and hardware re-
quirements. Training with smaller areas lowers the computational needs and
allows us to study the generalization capabilities of the model by partitioning
the dataset spatially and reserving some areas only for evaluation purposes.

As mentioned in section 2.1, the full region of study has a shape 1368x1016
pixels, where each pixel represents a 4x4km area. The leftmost part of the ini-
tial area (Pacific Ocean) was dropped since it only contained ocean pixels. The
resulting area is then divided into 12 smaller regions of 310x310 pixels (Fig 3),
totalling around 1240x1240km per tile. The inputs of the network are 256x256
random crops of the aforementioned regions.

Fig. 3: Patches created from the original study region after eliminating part of
the Pacific Ocean. The white number on each tile represents the identifier used
to separate the tiles into training, test and validation splits (shown in Fig.1b
and Table 1).

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97564-6_14

https://dx.doi.org/10.1007/978-3-031-97564-6_14
https://dx.doi.org/10.1007/978-3-031-97564-6_14


Transferability of UNet-Based Downscaling 7

Each data split consists of non-overlapping years and spatial areas (Table 1).
The model is trained on data from years 2017, 2018, and 2019. The valida-
tion uses year 2020 and testing year 2021. The dataset is spatially partitioned
as mentioned above and each resulting region is exclusively used for training,
validation or testing. Regions 01, 02, 05, and 08 are used in the training split,
totalling 4,380 samples. Validation uses regions 04, 07, 10, and 12 (1464 samples).
Finally, regions 03, 06, 09, and 11 are reserved for testing.

Table 1: Separation of the years and areas (defined in Fig. 1b and 3) used for
the train, validation, and test partitions. The last column shows the number of
exclusive samples (patches) of that split.

Years Reserved Areas # Exclusive samples

Train 2017, 2018, 2019 01, 02, 05, 08 4380
Validation 2020 04, 07, 10, 12 1464
Test 2021 03, 06, 09, 11 1460

2.5 Evaluation Metrics

Three metrics are used to evaluate the quality of the downscaled temperature
fields: MAE, RMSE and PSNR.
MAE measures the average magnitude of the absolute differences between pre-
dicted and target values, without considering their direction.

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

where yi represents the target value (i.e. CONUS404), ŷi the predicted value and
n the number of observations, in this case pixels.

RMSE calculates the square root of the average squared differences between
predicted and target values. By squaring the errors before averaging, RMSE
gives more weight to larger deviations.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

where yi represents the target value, ŷi the predicted value and n the number of
observations, in this case pixels.

PSNR is a commonly used metric in the field of image processing and com-
pression to evaluate the quality of a reconstructed or predicted image compared
to the original. It quantifies the ratio between the maximum possible power of
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the signal (target image) and the power of the noise (error introduced of the
prediction).

PSNR = 10 · log10
(

MAX2
I

MSE

)
(3)

where MAXI is the maximum possible pixel value of the image.
Additionally, Power Spectral Density (PSD) is used as a measure of the

spatial variability of temperature patterns across different scales. The 2-meter
temperature fields are decomposed into different spatial frequency components,
which reveal the representation of scale-dependent structure within the data.
The power spectra is computed by applying a 1D Fast Fourier Transform to
each row (latitude) of the temperature field and squaring the result. Finally the
average of the obtained power spectra is calculated over all rows to produce the
power spectrum.

3 Experimental Results

Results presented in this section are obtained using year 2021 in the entire region
of study. Table 2 shows the results of both methods (bilinear interpolation and
UNet) divided by season and data split (i.e. train, test and validation). The UNet
outperforms bilinear interpolation in annual metrics across all splits, though
the degree of improvement is not uniform for each split and season. For MAE,
the performance gain of the UNet is 0.23 (16%), 0.15 (12%) and 0.02 (2%) for
train, validation and test splits respectively. Similar behaviour can be observed
in RMSE, where the increase is slightly higher at 0.33 (17%), 0.23 (13%) and
0.10 (6%) for each split. The difference between MAE and RMSE gain implies
that the UNet reduces large errors across all regions, but fails to correct smaller
errors. This pattern is expected with the selected loss function, MSE loss, which
penalizes large errors more heavily than smaller ones. The PSNR metric shows
a similar trend, with the test split achieving considerably less performance gain
(0.22) when compared to train (2.10) and validation (0.85) splits.

Seasonal analysis reveals that the performance of the UNet is better than
bilinear interpolation in most seasons. A decrease in performance gain is observed
in the summer and autumn seasons, due to the limitations of the UNet model
in areas where the overall baseline errors are lower.

Fig. 4 shows the spatial distribution of MAE (top) and RMSE (bottom)
across the study region. In the case of MAE maps, there are large discrepancies
between bilinear interpolation and CONUS404 on mountainous regions, such as
the Rocky Mountains and the Appalachian Mountains. On the other hand, the
UNet has learned the relationship between elevation and temperature change,
successfully correcting the larger errors, however the correction is overly smooth
for orographically complex areas, as it can be observed in the Rocky Mountains
where the UNet has increased MAE values in some locations. This effect is
caused, as previously explained, by the MSE loss function. The same pattern is
present in the RMSE maps, where errors are consistently lower along the East
coast compared to the West coast. Although the UNet reduces extreme errors
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Table 2: Comparison of MAE, RMSE and PSNR metrics between baseline and
UNet models for test year 2021 and across seasons (DJF: Winter, MAM: Spring,
JJA: Summer, SON: Autumn) for train, validation and test splits.

Model DJF MAM JJA SON Annual

MAE↓

Train Interpolation 1.75 1.34 1.26 1.20 1.39
UNet 1.43 0.99 1.12 1.11 1.16

Validation Interpolation 1.61 1.36 0.91 1.06 1.23
UNet 1.42 0.99 0.90 1.02 1.08

Test Interpolation 1.41 1.09 0.93 0.96 1.10
UNet 1.27 1.01 0.98 1.05 1.08

RMSE↓

Train Interpolation 2.47 1.91 1.79 1.69 1.98
UNet 2.08 1.35 1.55 1.51 1.65

Validation Interpolation 2.27 1.85 1.25 1.42 1.74
UNet 2.02 1.35 1.20 1.35 1.51

Test Interpolation 2.13 1.62 1.31 1.37 1.64
UNet 1.90 1.42 1.37 1.43 1.54

PSNR↑

Train Interpolation 30.02 32.13 33.21 33.34 32.18
UNet 32.32 35.25 34.77 34.74 34.28

Validation Interpolation 29.91 31.17 33.66 32.68 31.86
UNet 30.53 33.31 33.94 33.03 32.71

Test Interpolation 31.97 33.47 34.64 34.50 33.65
UNet 32.39 34.19 34.75 34.12 33.87

in mountainous regions, the smoothing effect of the predictions introduces the
slightly larger errors that we observe in the Western CONUS.

Fig. 5 shows the power spectra for ERA5, CONUS404 and UNet prediction.
The image shows that the UNet is more capable of capturing local features than
bilinear interpolation. Specifically, bilinear interpolation begins to decline around
the 10−2 frequency, which represents patterns finer than 100km. In contrast, the
UNet model produces a power spectra that closely resembles the target one, only
declining right before 10−1 frequency.

Fig. 6 compares monthly 2-meter temperature distributions at Mount Har-
vard (38.93°N, 106.32°W in tile 06 from the test split), the highest point in
our elevation map at 3,827m. The bilinear interpolation trend shows that this
method does not capture the effect of elevation on 2-meter temperature. In con-
trast, the UNet does capture the trend, corrects the values and even causes a
cold bias by overcorrecting during summer months, specially in July and August.

Fig. 7 presents one example for each season of UNet downscaled 2-meter
temperature fields and its ERA5 and CONUS404 counterparts. All ERA5 images
are initially blurry, but the UNet model has largely improved the representation

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97564-6_14

https://dx.doi.org/10.1007/978-3-031-97564-6_14
https://dx.doi.org/10.1007/978-3-031-97564-6_14


10 M. Benitez

(a) Comparison of MAE for bilinear interpolation (left) and our model (right) during
year 2021. The UNet shows consistent results across unseen regions and demonstrates
significant skill in mountainous areas.

(b) Comparison of RMSE for bilinear interpolation (left) and our model (right) during
year 2021. The RMSE maps show that the UNet is capable of mitigating the biases
across all the region, specially on the northeastern part of the study region.

Fig. 4: Error maps of the study region for year 2021. Dark reds indicate high
mean error, while lighter red tones represent lower error values.

of temperature fields over mountainous regions. While not of the same quality
of the CONUS404 groundtruth, the results of our model are promising since it
is capable of producing consistent results outside of the train regions.
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Fig. 5: Power spectra of the interpolated ERA5 input (blue), CONUS404 (green)
and UNet (orange), computed over the whole region for year 2021.

Fig. 6: Distributions of ERA5, CONUS404 and our UNet for daily 2-meter tem-
perature (ºC) values at Mount Harvard grouped by month for year 2021.

4 Conclusion and Future Work

We successfully trained a small UNet (24M parameters) for downscaling daily
2-meter temperature from 25km to 4km in the CONUS region, using only one
third of the inference region. Our evaluation shows that the model outperforms
bilinear interpolation, this increase in performance is maintained in areas outside
of the train region, opening the way to produce large-scale downscaling.
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Fig. 7: Four samples extracted from selected days, starting from top to bot-
tom: 2021-01-15, 2021-04-15, 2021-07-15 and 2021-10-15. (Left) ERA5 2-meter
temperature fields, (Middle) UNet predicted 2-meter temperature field, (Right)
CONUS404 2-meter temperature field

Future work includes an analysis of the temporal requirements by transition-
ing from daily data to 3-hourly data. This change aims to improve the model’s
ability to capture finer temporal patterns and to improve its seasonal and overall
performance.

We also plan to experiment with the loss function, encouraging the presence
of high-frequency details by adding extra penalization to blurry results.
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Finally, we will benchmark our results to other DL architectures or ensemble
methods, which could result in enhanced predictive performance. We also plan
to extend this methodology to other variables (precipitation and wind speed)
and study regions.
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