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Abstract. We present a novel framework for object detection and seg-
mentation in large-scale 3D point clouds. Our approach integrates edge-
aware feature extraction with graph-based clustering to achieve highly
accurate semantic segmentation. Unlike conventional methods relying
heavily on handcrafted features or extensive labeled datasets for deep
learning, our framework leverages geometric consistency and topological
constraints to achieve robust object partitioning. We demonstrate the
efficacy of our method on benchmark datasets, achieving state-of-the-art
precision in complex environments with incomplete data.
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1 Introduction

Point clouds are essential datasets for representing 3D objects and spatial en-
vironments [1]. These datasets consist of discrete points in a three-dimensional
coordinate system, each carrying geometric information and often additional at-
tributes such as color and intensity. Point clouds are widely used in numerous
fields, including autonomous driving, robotics, cultural heritage preservation,
and medical imaging [2].

The acquisition of point clouds relies on advanced sensing technologies, in-
cluding:

– Photogrammetry-based image reconstruction;
– Light Detection and Ranging (LiDAR) systems;
– Red Green Blue - Depth (RGB-D) cameras (e.g., Microsoft Kinect, Intel

RealSense);
– Synthetic Aperture Radar (SAR) imaging.

Different point clouds exhibit varying characteristics depending on the ac-
quisition method, sensor resolution, and environmental conditions. Variability
in density, noise levels, and occlusion effects pose challenges for automated anal-
ysis [3]. Among these challenges, one of the most significant is 3D Point Cloud
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Segmentation (PCS), which involves partitioning raw 3D data into semantically
meaningful regions [4].

Segmentation methods fall into three primary categories:

– Semantic segmentation: Assigning class labels to each point (e.g., chair, ta-
ble, floor);

– Instance segmentation: Identifying separate objects of the same class;
– Part segmentation: Dividing objects into meaningful subcomponents (e.g.,

legs, backrest of a chair).

Traditionally, point-cloud segmentation has relied on geometric features and
statistical methods. Techniques such as region growth, edge detection, and model
fitting have been widely used [5]. However, recent advances in deep learning,
particularly graph-based neural networks and transformer-based architectures,
have significantly improved segmentation accuracy [6].

With the increasing availability of large-scale annotated datasets such as
S3DIS, ScanNet, and SemanticKITTI, machine learning-based methods have
gained prominence. However, they come with computational costs, requiring
extensive training data and high-performance computing resources.

This paper presents a novel edge-aware segmentation approach that inte-
grates geometric feature extraction with graph-based clustering. Our method
balances the efficiency of traditional techniques with the robustness of modern
deep learning, offering improved segmentation performance in diverse environ-
ments.

2 Related Work

The proposed method entails the instance segmentation of 3D point clouds, a cru-
cial and challenging task that aims to distinguish individual object instances in a
3D space. Our approach combines per-point semantic prediction with geometric
constraints to extract candidate object instances efficiently. Unlike traditional
deep learning-based methods requiring extensive labeled datasets, our method
enables object instance extraction without large-scale supervised training.

Instance segmentation techniques for 3D point clouds are typically catego-
rized into:

– Detection-based methods;
– Segmentation-based methods.

Jiang et al. [7] introduced the PointGroup architecture, which performs in-
stance segmentation by leveraging both spatial distribution and semantic labels.
Their two-stage approach first groups points into potential object clusters and
then refines the segmentation using an offset-based learning mechanism.

Han et al. [8] proposed an occupancy-aware segmentation method that uti-
lizes voxel-based representations. Their model employs multi-task learning to
predict occupancy signals and embedding representations, allowing effective ob-
ject instance identification in cluttered 3D environments.
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In another approach, Engelmann et al. [9] and Liu et al. [10] investigated
Gaussian Instance Center Networks (GICN) for semantic instance segmentation.
These models estimate the probability distribution of instance centers within a
scene, leading to improved object localization and segmentation accuracy.

Pham et al. [11] presented a multi-task pointwise network capable of per-
forming joint semantic and instance segmentation directly on reconstructed 3D
maps. Their work highlighted the advantages of leveraging deep learning models
for instance-level classification.

An alternative approach is to separate semantic and instance segmenta-
tion tasks and later fuse their outputs. The JSNet framework [12] follows this
paradigm, integrating PointNet++ [13] and PointConv [14] to extract and re-
fine features. However, these methods often suffer from high computational costs,
requiring powerful GPUs and large training datasets to achieve optimal perfor-
mance.

Recent advancements have explored more efficient architectures, such as Dy-
namic Graph CNN (DGCNN) [15], which enhances geometric feature extraction
by incorporating graph-based representations. Unlike conventional deep learn-
ing techniques that rely on structured grids, DGCNN dynamically constructs
neighborhood graphs, making it more adaptable to point cloud sparsity. Shogo
et al. [16] demonstrated that replacing PointNet++ with DGCNN significantly
improved segmentation flexibility and accuracy while reducing dependency on
labeled datasets.

While deep learning-based frameworks have shown promising results, they
remain resource-intensive. Our proposed method addresses these limitations by
integrating geometric reasoning with graph-based clustering, reducing reliance
on annotated datasets while maintaining competitive segmentation accuracy.

3 Methodology

The aim of the method is to label points within a point cloud distinguishing
groups which represent particular objects like chairs, desks, lamp or other ele-
ments, that may be scanned in indoor areas. To achieve this goal, we bring the
point cloud to the set of edges which are easier to operate and interpret in 3D
space. Additionally, it was observed, that through geometrical characteristic of
edges, it is possible to retrieve objects contours. Therefore, in order to apply
proper algorithm allowing points’ grouping into edges, the axis aligned point
clouds are required.

3.1 Designating points on the edges

The first step of the method is to designate points in the clouds that belong
to the edges. It is achieved by taking each 3D point and creating covariance
matrix from its local neighborhood. The eigenvalues of this matrix can be used
to calculate geometric features which describe local dimensionality of the point.

Weinmann et al[17]. presented the following concept of linearity feature:
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Lλ =
λ1 − λ2

λ1
(1)

Where:

Lλ - linearity feature
λ1, λ2 - first two eigenvalues of pointclouds’ covariance matrix,
fulfilling condition λ1 ≤ λ2 ≤ λ3 ≤ 0

Afterwards, the points with values below a specified threshold are discarded
resulting in the point cloud having points that lay on the edges of the objects
only.

Fig. 1. Designated linearity for point cloud (CloudCompare preview)

3.2 Walls, ceiling and floor detection

Surfaces not directly visible to the scanner appear in the point cloud as missing
data or gaps (Fig. 1). Those are surrounded from algorithm perspective by unde-
sired edges. Meaning, that contours of these gaps are considered as edges, based
on linearity feature. These gaps are mostly visible on the floor and walls because
objects in the interiors are mostly placed next to them. In further processing, it
may cause unintended results during edge analysis.

In order to remove edges detected around gaps, is to remove not needed
surfaces like walls, ceiling and floor. To achieve it, method proposed by Ioannis
Anagnostopoulos et al. [18] has been employed, with some adjustments explained
further.
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Due to existing differences between the data sets in use, the criteria for
detecting walls had to be changed. The vertical planes are considered walls when
they touch the floor (2) and have the minimum distance to the cloud bounding
box (3).

|Zmax − Zmin| < T (2)

Where:

Zmax - the highest z coordinate number of a plane
Zmin - the lowest z coordinate number of a plane
T - the smallest distance of a detected surface to the borders of a pointclouds’
bounding box

T =
ax+ by + cz + d√

a2 + b2 + c2
(3)

where:
a, b, c, d - bounding box’s closest plane coefficients
x, y, z - coordinates of the center point retrieved from the detected plane

Afterwards detected walls, ceiling and floor are stored as classified objects
and removed from the original cloud.

Fig. 2. a) Cloud cropped based on linearity b) Cloud without walls, ceiling and floor
c) Common part of clouds a) and b)

As a consequence of the previous steps two clouds are generated. Moreover,
the common parts can be extracted from those clouds as shown in Fig. 2. The
resulting cloud consists mostly of the edges belonging to objects that are not
part of the structure and are separated in 3D space.

3.3 3D points classification

First step in order to treat point cloud as a set of edges is to group points by
their local structure.
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The process starts from creating a voxel grid from a point cloud. Then set of
points within bounds of each voxel is taken into consideration. Using Singular
Value Decomposition, a best line for each set of points in a voxel is designated.
This describes the orientation of the given set of points in voxels. All points
in those point cloud fragments are assigned to a certain group based on the
minimum angle between orientation of the voxel points and each of the vectors
to which the classification groups are assigned.

Those vectors are designated by using equally distributed points on a Fi-
bonacci sphere that has its centre in the beginning of the coordinate system and
radius equal to 1. The method distinguishes 9 of those vectors.

In case of the entire set of points in given voxel not fitting within range of
Rvoxel/3 then this set is recursively divided into smaller voxels with the resolu-
tion of Rvoxel/2 and the check continues until all points are classified or the max
depth is reached Fig 3.

Fig. 3. Voxel classification stages in order from left to right, The best fitting line
adjustment regarding point distribution within a voxel, distance comparison from point
in a voxel to the best fitting line, splitting step into smaller voxels in case the distance
being greater then Rvoxel/3 and the best fitting line adjustment within smaller voxels.

The result is a dictionary, where a key is a group number and a value is
the set of points. As seen on Fig 4. straight lines share usually one group with
only small gaps. The density of different groups is highest in the corners where
algorithm had to adjust the size of voxel. In consecutive stages, such organized
points allow to separate edges from each other.

3.4 Adjacency graph

The essential step for this method to work is computing adjacency graph [20].
Such graph, allows further analysis in regard to qualification of point sets into
particular edges and further analysis of edge characteristics, like direction or
connections with other edges. This graph will be then used till the end results
being received.
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Fig. 4. Classified points

Adjacency graph is a graph of adjacent voxels. Voxels are acquired from the
voxel grid that is created based on the cropped point cloud. There can be 3 types
of adjacency with respect to voxels enumerated: 6-, 18-, or 26-adjacency. This
method involves 18-adjacency as it provides the best results.

18-adjacent voxels are neighbouring one other when they share a face or an
edge. To fulfill this condition the adjacent voxels centers need to be within range
of

√
2 ∗Rvoxel. Where Rvoxel is a voxel resolution that was used to create voxel

grid.

3.5 Voxel Edges

Voxel edges play a fundamental role in our method, enabling the organization
of point cloud data into structured segments. The process begins with the cre-
ation of a voxel grid, in which the point cloud is discretized into cubic units
(voxels). Each voxel is assigned to a specific group based on the classification of
its contained points.

To establish voxel edges, adjacent voxels belonging to the same group are con-
nected, forming structured edge representations. Since a single voxel may belong
to multiple groups, overlapping edges can occur, leading to discontinuities. To
resolve this, we apply a series of filtering and merging techniques:

– Edge Filtering: Edges that are subsets of larger edges are removed to elimi-
nate redundancy.

– Edge Merging: Edges with a single adjacent neighbor are combined to im-
prove continuity.

– Graph-Based Merging: If two neighboring edges share only two adjacent
voxels, they are merged into a single entity, ensuring structural coherence.
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– Artifact Removal: Small disconnected edges are reassigned to the largest
neighboring edge to prevent segmentation artifacts.

By refining voxel edges through these steps, our method enhances object
continuity while maintaining segmentation accuracy. These refinements ensure
that segmented objects retain their structural integrity, improving the robustness
of instance segmentation in complex point clouds.

3.6 Finding graph cycles

Fig. 5. Visualisation of steps in retrieving the smallest cycles during a graph analysis

It was observed, that through the edge adjacency, it is possible to consider
distinguished edges as parts of graph. Therefore, decision was made to continue
point cloud processing through a graph analysis. Such approach introduce addi-
tional characteristics and features which allow to retrieve more data regarding
edge relations and connections. One of such features are graph cycles. In filtered
edge set, it was seen that some particular graph cycles of certain traits, repre-
sent contours of objects’ parts. Good example is a top of a table. In order to
do that Voxel Edges are treated as graph nodes, whereas connections between
neighbours as graph edges. Graph analysis is presented in Fig. 5

For each node the shortest closed chain (graph cycle) is searched. During the
processing all non-unique cycles are discarded. As a result, the cycles that share
at least 2 nodes are merged together with the exception of the case when two
cycles have the same number of nodes. Then the cycle which after merging is
of bigger volume is being discarded. Where, the volume is calculated based on
simulated bounding box for a particular set of points within a graph cycle.

Voxel Edges belonging to founded cycles are being merged.

4 Experiment

Proposed solution was evaluated and tested on public S3DIS data set. This
particular point clouds collection is widely used to do the comparison of seg-
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mentation methods. It consists of 6 large-scale indoor areas, covering more than
6000 square meters. Additionally, S3DIS has 13 classes of objects already iso-
lated, which enables comparison precision of instance segmentation. Therefore,
the measure which was chosen to compare results with other methods is precision
(mPrec) and recall (mRec) measure . Precision quantifies the number of positive
class predictions that actually belong to the positive class and recall quantifies
the number of positive class predictions made out of all positive examples in the
set of data. Both measures are widely used in instance segmentation comparison
[8].

Additionally, comparison was made in 2 environments. Firstly, proposed
method was compared with other approaches with access to color data per every
point. In second test, the same experiment was performed in the environment
without access to color data. Proposed approach does not use any data regarding
scanned color within a point in dataset. The only fundamental data is geometric
features retrieved from points entropy. Therefore, it is possible to do comparison
in two different environments, where for the most of other methods, color is an
important part of analysis.

4.1 Results

The following step is the presentation of test results and comparison with the
ground truth. As per the visual example Fig. 6, it can be noticed that prediction
has several differences considering the ground truth. However, segmentation is
still consistent with entropy of the most important objects scanned in a very
complex point cloud. It is worth mentioning, that this point cloud consist of
many chairs tucked in tables and objects placed on chairs, what additionally
hinders geometrical analysis.

Fig. 6. Example of comparison between predicted instance segmentation and ground
truth. In order from left: original point cloud, ground truth, predicted segmentation

Fig. 7 shows the additional visual comparison for the ScanNet v2 dataset.
As in the previous example, the original point cloud, ground truth segmentation,
and the result predicted by the proposed method are presented from left to right.

To get more precise explanation of the results, the mean precision of pre-
dictions was shown in the tables below Tab 1 and Tab 2. It was divided into
distinguished object classes. Presented comparison is considered in environment
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Fig. 7. Visualisation of the Result of point cloud segmentation for ScanNet v2 collec-
tion.

excluding color data, since proposed method does not use color data. Therefore,
such comparison will give the best insight, regarding improvements in geomet-
rical analysis of pointclouds.

Table 1. Mean precision (mPrec) per class w S3DIS without color data
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JSNET[12] 0.0 68.3 56.1 95.5 85.3 42.3 23.5 53.4 91.5 53.6 66.4 80.4
CNN[16] 10.0 86.9 64.3 55.9 90.0 52.8 21.3 87.5 95.8 89.1 87.3 90.9
Proposed 81.1 0.0 71.3 94.1 85.1 85.5 99.9 81.2 97.1 81.8 75.8 94.9

Table 2. Mean recall (mRec) per class w S3DIS without color data
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JSNET[12] 0.0 66.7 40.1 85.3 74.4 28.7 10.8 25.0 97.0 33.8 68.6 71.1
CNN[16] 0.0 4.8 18.4 37.3 37.2 20.6 6.5 33.9 51.2 27.5 41.6 34.4
Proposed 81.1 0.0 71.3 94.1 85.1 85.5 99.9 81.2 97.1 81.8 75.8 94.9

In both tables we see differences regarding different types of objects.
In case of precision measure, proposed approach has visibly better results,

especially for beam, clutter and column classes. Improvement reached even 70 %
considering beam class. It is crucial to mention, that final result is set of labeled
points assigned to single objects, not sets of objects (semantic segmentation).
The above results are considered regarding the complexity and similarities in
certain classes and the influence of these characteristics on segmentation into
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single instances, without a class recognition. Considering recall results, it is vis-
ible that achived values are for the most of classes, lower comparing to other
methods. However, mRec value is highly influenced by additional division of
objects, which is caused by low level of scan accuracy in some areas of point
clouds. It disturbs the continuity of scanned objects and disallows to treat them
as a part of a bigger objects. An example is presented in the Fig. 8. Where,
the same distinguished chair parts are considered as a one object in the ground
truth segmentation. In fact, this can be treated as a positive side effect of the
proposed solution, which allows to recognise object’s important parts.

Fig. 8. Example of chair divided into 2 separate objects (blue - sitting part, red - basis)

4.2 Quantitative comparison

The comparison of this method with the other proposals is shown in table 3 and
4. The selected methods are considered to show the best precision in the case of
the S3DIS data set in both environments: with and without color data [8].

There is a wider spectrum of approaches in the environment including color
data, which allows one to make a comparison with more methods. Therefore,
such results are also shown within the analysis.

As shown, the proposed approach has the best mPrec result in both environ-
ments, with and without color data. mRec result is lower than in other methods.
However, in colorless comparison it seems to be on moderate level. When we con-
sider the environment with color data, mRec has low value. As was explained,
the reason for such diversity is the division of objects into separate elements,
which, in fact, gives additional information about the structure of an object.

5 Conclusions

In this paper, the novel method of segmenting point cloud objects based on edge
detection and its evaluation was presented. Compared with the other approaches,
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Table 3. The comparison of mean precision and recall on S3DIS data set with color
data

mPrec mRec
JSNET[12] 66.9 53.9
PartNet[19] 56.4 43.4
ASIS[21] 63.6 47.5

3D-BoNet[22] 65.6 47.6
OccuSeg[8] 72.8 60.3
Proposed 79.0 29.7

Table 4. The comparison of mean precision and recall on S3DIS data set without color
data

mPrec mRec
JSNET[12] 58.26 47.7
CNN[16] 68.5 25.4
Proposed 79.0 29.7

it is in the minority of colorless instance segmentation methods and does not re-
quire training data set as in machine learning approaches. It is strictly based
on geometrical analysis, which, on the other hand, makes it more flexible with
regard to usage possibilities. It might be included as a form of augmentation to
other methods or used in cases where RGB coded color is not inaccessible.

During experimental tests in both environments, with and without color data,
it was proven that segmentation predicted by this solution could be considered
as reliable, even in case of very complex and not accurate three-dimensional
scans. Moreover, it is of quite good quality in case of precision measure (mPrec).
Among colorless methods it can be considered as the highest result achieved.
Due to vulnerability to incomplete scanning, the recall measure (mRec) could
be seen as of lower quality than mRec received by methods using color data.
Though, in colorless environment, we see that mRec results are moderate, where
it should be noticed that the main comparison is done in this domain

With the above mentioned impediments, the presented solution, managed to
give certain amount of additional information about the described space in point
cloud, through dividing objects into separate parts. It could be well regarded as
a positive adaptation to scans with missing areas. However, there are still some
aspects to improve. For example, vulnerability to noise in point clouds. It highly
influences the solution, since edge detection and evaluation involve the relation
of the point’s neighborhood and continuity in voxels. Thus, unexpected points
in point cloud can cause some changes during further evaluation stages. What
should be checked further are possible improvements in edge point detection ac-
curacy, where each precision boost can enhance the final result. Another aspect
considered, regarding the future research, is graph processing. It will be inves-
tigated if there are some better or more complex solutions of partitioning the
graph into meaningful areas than the currently used search of cycles. For ex-
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ample, volumetric or shape-driven characteristics of 3D objects that could give
additional data during object evaluation.

To sum up, the proposed approach is more flexible than the existing solutions
regarding the lack of training requirement and in case of the most instance seg-
mentation methods, lack of color analysis. It can be considered as currently the
best solution, in case of mPrec measure regarding both environments. In mRec
measure it can be considered as relevant for colourless solutions, where it should
be noticed that, this area is the main concern of this paper. Although, still there
is a room for improvements in immunity for point cloud scans imperfections,
proposed method had proven significant contribution in this research area. De-
spite its promising results, the proposed method has certain limitations. Firstly,
it is sensitive to noise and outliers in the input point clouds, which may lead to
incorrect edge detection and ultimately impact segmentation accuracy. This is
particularly evident in scenes with incomplete or low-density scans, where geo-
metric continuity is disrupted. Secondly, the method assumes axis-aligned point
clouds and relies on geometric regularities (e.g., edges and corners) that may
not be present in more organic or irregular environments, such as natural out-
door scenes or complex vegetation. In such cases, additional preprocessing steps
such as denoising or alignment may be required. Furthermore, the method does
not incorporate semantic understanding of object classes. As a result, it may
over-segment large objects or under-segment clustered items without a post-
processing stage that refines instance boundaries. In future work, we plan to
investigate the use of advanced graph partitioning techniques and incorporate
shape priors or volumetric heuristics that can mitigate these limitations.

Acknowledgments. This work was supported by the NCBiR in Project POIR.01.02.00-
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