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Abstract. Polyploidy, the variation in chromosome sets within plants,
in�uences stomata size and density, making stomata analysis a valu-
able method for determining ploidy levels. Traditional microscopic anal-
ysis, nevertheless, is often labor-intensive and complex. This study ex-
plores the use of arti�cial intelligence for the automated classi�cation of
plant ploidy levels from stomata images, presenting a novel approach in
this �eld. Experiments were conducted on three blackcurrant genotypes:
diploid, triploid and tetraploid. Deep learning techniques were employed
for stomata segmentation and classi�cation, with performance compared
to traditional machine learning algorithms, including K-Nearest Neigh-
bors, Support Vector Machine, Random Forest and Multi-Layer Per-
ceptron. To mitigate the impact of color variations that could lead to
in�ated accuracy, multiple datasets were processed to reduce the in�u-
ence of color. Classi�cation was performed not only on whole images but
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also on subimages containing individual stomata instances, detected us-
ing the YOLOv8 algorithm. A majority voting approach was applied to
classify the entire image based on subimage classi�cations. ResNet152v2
achieved the highest accuracy of 0.973 on color images, although accuracy
declined when the in�uence of color was minimized. These results under-
score the signi�cant role of color in model performance and highlight the
challenges associated with achieving reliable and robust classi�cation.

Keywords: stomata, microscopic image classi�cation, machine learn-
ing, deep learning, Residual Neural Networks, YOLO algorithm

1 Introduction

Stomata are microscopic pores found in the epidermal layers of plant leaves and
other aerial tissues [21]. These pores are regulated by two specialized cells that
control their opening and closing. The stomata play a crucial role in regulating
the exchange of gases, including CO2 and in controlling factors such as light
intensity and humidity [5]. These factors can in�uence the visual characteristics
of stomata. Additionally, stomata traits may also be a�ected by the application of
biofertilizers, making the analysis of stomata cells a valuable method for assessing
the e�ectiveness of biofertilizers [2, 32]. Structurally, stomata form an elliptical
shape. Polyploidy, which refers to the number of chromosome sets in a plant, can
be determined through the microscopic analysis of stomata characteristics. Both
the size and density of stomata are in�uenced by polyploidy [35]. However, the
process of analyzing stomata images to assess polyploidy can be time-consuming
and complex. To address this challenge, the application of arti�cial intelligence
(AI) has been proposed in this paper. Although AI is successfully applied to
microscopic images of stomata for tasks such as segmentation [19], measurement
[27] and counting [9], to the best of our knowledge, it has not yet been used for
the automated classi�cation of plant ploidy level based on stomata images.

In this study, experiments were conducted on three classes of blackcurrant
genotypes, each distinguished by their ploidy level: diploid, triploid and tetraploid.
The research faced several challenges, primarily because stomata characteristics
are in�uenced by environmental factors [6]. Additionally, the color of the plant,
as observed in microscopic images, is also a�ected by environmental conditions,
further complicating the analysis. As a result, it is essential to ensure that each
ploidy class is represented under similar environmental conditions. One challenge
that arose was the variation in image color, which had the potential to arti�cially
in�ate accuracy (ACC) rates. To mitigate this, attention was concentrated on
the shape of the stomata, and the impact of color was minimized to the greatest
extent possible.

Due to subtle variations in brightness and color across the images, multiple
datasets were generated as preprocessed versions of the raw dataset, enabling
the evaluation of various analytical approaches. The analysis aimed to deter-
mine whether better classi�cation results could be obtained by analyzing the
entire image, considering all components and details of the leaf structure for

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97564-6_11

https://dx.doi.org/10.1007/978-3-031-97564-6_11
https://dx.doi.org/10.1007/978-3-031-97564-6_11


Deep Learning Classi�cation of Blackcurrant Genotypes 3

each ploidy. Alternatively, it was explored whether focusing solely on the stom-
ata cells would yield better outcomes. Furthermore, to reduce the in�uence of
color on the classi�cation results, several datasets characterized by di�erent color
spaces and channel con�gurations were examined in this paper.

In the latter, deep learning techniques were employed for the segmentation
task to accurately identify stomata objects. For the classi�cation task, deep
learning models were applied and their performance was compared against tra-
ditional machine learning algorithms. Finally, majority voting (MV) [29] was
employed on subimages to investigate whether classifying individual stomata
objects, followed by MV, could improve the overall classi�cation accuracy.

2 Materials

The experiment was carried out in the Experimental Pomological Orchard in
Skierniewice, central Poland, belonging to the National Institute of Horticultural
Research. Plants of blackcurrant (Ribes nigrum L.) were grown under natural
light in 50 L pots �lled with a mixture of peat substrate and soil at a ratio of
1:1. Water potential in the growing medium was maintained at a level (−) 10
kPa. The moisture content of the growing medium were monitored with dielec-
tric probes (TEROS-12, METER, USA). Plants were maintained according to
standard agrotechnical measures for the blackcurrant. Leaves were sampled for
photo documentation at the end of a vegetation season from the 5th to the 25th
of September 2024.

The dataset utilized in this research comprises three classes of blackcurrant
genotypes distinguished by their chromosome counts: diploid (2n = 2x = 16)
cultivar (class 0), triploid (2n = 3x = 24) cultivar (class 1) and tetraploid
(2n = 4x = 32) clone (class 2) (see Figure 1). Class 0 includes 252 images of
the `Gofert' cultivar and 252 images of the `Polares' cultivar. Class 1 contains
502 images of the triploid `Dlinnokistnaja' cultivar, while class 2 consists of 251
images of the autotetraploid clone of `Gofert' cultivar and 250 images of the
`Polares' cultivar obtained by in vitro poliyploidyzation [23]. All images were
captured using the VHX-7000N KEYENCE digital microscope, ensuring high-
quality imaging suitable for detailed analysis.

3 Methods

This work focuses on comparing classical arti�cial intelligence methods with ap-
proaches based on deep neural networks. Deep learning techniques were applied
in this research to both image classi�cation and segmentation tasks. The fol-
lowing subsections provide a detailed description of the selected deep learning
methods.

3.1 Convolutional Neural Networks

This research leverages Convolutional Neural Networks (CNNs) [31] a class of
deep learning models applied to tasks related with image processing and com-
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(a) (b)

(c)

Fig. 1: Exemplary images of diploid (a), triploid (b) and tetraploid (c) genotypes
from the raw dataset.

puter vision. CNNs, are widely recognized not only for their ability to perform
classi�cation, regression, object detection, segmentation task on input data [7]
but also for their capacity to automatically extract relevant features. The im-
age, which serves as the input to the CNN, undergoes processing through various
network layers that iteratively extract features [10].

The term convolution in CNN refers to the convolution layer, a fundamental
component responsible for performing convolution operation [8]. This procedure
involves processing the input image with a �lter, which is designed to emphasize
speci�c aspects of the image, such as edges or patterns [15]. These �lters are
learned during training, allowing the network to identify features critical for the
task at hand.

Another essential component of CNN is the pooling layer, which serves to
distill the most signi�cant information while discarding irrelevant details. The
pooling operation reduces the spatial dimensions of the data, resulting in com-
putational e�ciency and mitigating resource constraints without sacri�cing per-
formance [33].

The convolution and pooling, along with other specialized layers, process
the input image, transforming it into a feature vector. This vector serves as
the input to the classi�cation stage, typically implemented as a fully connected
neural network - commonly referred to as a Multi-Layer Perceptron (MLP) [1].
This �nal stage performs classi�cation or regression, depending on the speci�c
task under consideration.
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Residual Neural Networks (ResNets) [26] are a specialized type of Convolu-
tional Neural Networks created in 2016 [12] that were employed in this research
for the classi�cation task. A key architectural feature of ResNets is their ability
to learn based on residual errors, utilizing skip connections to mitigate the van-
ishing gradient problem [28]. These networks have various versions, di�ering in
the number of convolutional blocks and the arrangement of layers [17]. In this
study, the ResNet50v2 and ResNet152v2 architectures [13] are considered.

3.2 YOLO

Convolutional Neural Networks form a core component of the YOLO (You Only
Look Once) algorithm [24], a highly e�cient and versatile deep learning frame-
work. YOLO is widely utilized for tasks such as classi�cation, object detection
and instance segmentation. In this study, YOLO is employed to segment stomata
in images.

YOLO is renowned for its speed and capability to detect multiple objects in
a single pass [3]. The algorithm processes input data, typically images, by �rst
scaling them to a prede�ned size. The scaled image is then divided into a grid
structure, where each grid cell is responsible for detecting objects whose centers
fall within that speci�c cell [4]. A CNN is then applied to extract features and
detect objects within each grid cell.

The output of the CNN provides essential information, including the proba-
bility of an object's presence, the x and y coordinates of the object's center, its
width and height, and a one-hot encoded vector representing the object's class
[24]. Predicted bounding boxes are evaluated using the Intersection over Union
metric, which measures the overlap between prede�ned bounding boxes for the
target objects and those predicted by the model [34].

In the post-processing stage, the algorithm re�nes the detection results. First,
the most probable object detections are retained and overlapping bounding boxes
identifying the same object are eliminated using the Non-Maximum Suppression
algorithm [25]. This step ensures that redundant boxes corresponding to multiple
anchors in a single grid cell are removed. The �nal output of the YOLO algorithm
is a list of detected objects.

The YOLO algorithm was originally introduced in 2015 and subsequent ver-
sions are developed to enhance its performance.

4 Experiments and results

The experiments were conducted in multiple stages using both the raw and pro-
cessed versions of the dataset. Subimages containing individual stomata were
extracted for analysis. The primary objective of this study was to evaluate and
compare the classi�cation accuracy of deep learning algorithms against tradi-
tional machine learning techniques. The latter presents classi�cation outcomes
for scenarios where the raw dataset, including color information, is used and
other where the in�uence of color is minimized to focus exclusively on the shape
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of the stomata objects. The computations were performed using the Python
programming language.

4.1 Image Segmentation

To identify stomata cells, the YOLOv8 algorithm was applied. This version of
YOLO was chosen because its output is a precise segmentation mask that covers
the area of the searched object, rather than a bounding box. For this segmenta-
tion task, the algorithm was trained on 70 images and validated on 30 images of
tetraploid `Polares' cultivar, which were manually segmented. The dataset used
for training included images of blackcurrant subjected to varying water condi-
tions (50 images under high irrigation and 50 images under low irrigation). This
variation in water availability was introduced to ensure that the YOLO algo-
rithm could learn to detect stomata cells of all sizes, as the size of the stomata
changes depending on water availability.

The YOLOv8 model, using the yolov8n-seg.pt [14] con�guration, was trained
for 500 epochs. The image size was set to 2000 × 2000 pixels and a batch size
of 5. To reduce computation time, the number of points in the labels used as
input to the YOLO algorithm was reduced by a factor of 4 compared to those
created by manual segmentation. The output of YOLO algorithm is a list of
stomata object labels. Based on the coordinates of labels the stomata instances
were identi�ed which allowed creation of binary masks - white area represents
stomata objects and black area is the remaining part of the image.

4.2 Preparation of various datasets

Due to variations in sample color, computations were performed on multiple
datasets to reduce impact of color on classi�cation accuracy. The �rst ana-
lyzed dataset was included raw images curated by biology experts. Additional
9 datasets were derived from this original dataset, incorporating modi�cations
to minimize the in�uence of sample color. Figure 2 demonstrates a noticeable
reduction in color variation across the selected color channels among the three
classes. This is demonstrated through a comparative analysis of the mean green
component in the RGB and grayscale image with the mean hue (H) component
in the HSV color space and the mean value (V) component in the histogram-
equalized HSV. The following datasets were considered (see Figure 3):

1. Images - unmodi�ed raw images in the RGB color space.
2. Grayscale images - the Images converted to grayscale.
3. HSV images - H - the hue component of Images in the HSV color space.
4. HSV images - V equalized - the value component of Images in the HSV color

space, with histogram equalization applied.
5. Image masks - binary masks of images.
6. Subimages - containing a single stoma extracted from the original images.
7. Subimages black background - Subimages with the background set to black

(only the stoma object retains color).
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8. Subimages grayscale - Subimages converted to grayscale.
9. Subimages grayscale black background - Subimages converted to grayscale

with the background set to black.
10. Subimage masks - binary masks of Subimages.

(a) (b)

(c) (d)

Fig. 2: The boxplots of mean values for three classes (0 - diploid, 1 - triploid, 2
- tetraploid) across selected channels: green from RGB (a), grayscale (b), hue
from HSV (c) and equalized value from HSV (d).

Datasets 1�5 were derived from entire microscopic images, while datasets
6�10 were based on subimages. These subimages, measuring 224 × 224 pixels,
were extracted with a single stoma centrally positioned within each image.

4.3 Classi�cation with Residual Neural Networks

All 10 datasets were used as input to ResNet50v2 and ResNet152v2 models
which were con�gured with the following parameter values. Each dataset was
split into training, validation and test sets in a 7:2:1 ratio. The models were
�ne-tuned from ImageNet [17], starting from the layer conv5_block1_1_conv.
The applied pooling method was average pooling. The classi�cation part of the
network included the following layers: a dense layer with 512 neurons and ReLU
activation function, followed by a dropout layer with a rate of 0.3, another dense
layer with 512 neurons and ReLU activation function, an additional dropout
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(a) (b)

(c) (d)

(e)

(f) (g)

(h) (i) (j)

Fig. 3: Exemplary images from datasets 1�10, corresponding to sub�gures (a�j),
representing class 0 - diploid.
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layer and a �nal dense layer with a softmax activation function. The Adam
optimizer was used with a learning rate of 0.01. An early stopping mechanism
was implemented with a patience of 50 epochs, with a maximum of 1000 epochs
and a batch size of 32. Table 1 presents accuracy values ranging from 0.606 for the
HSV images - H dataset using ResNet50v2 to 0.973 for the Images dataset with
ResNet152v2. For the Image masks dataset, ResNet50v2 achieved an accuracy
of 0.787, while ResNet152v2 yielded an accuracy of 0.618 on the Subimage masks

dataset.
Furthermore, datasets 6�10 were also subjected to a majority voting ap-

proach. Each subimage was classi�ed into one of three classes. Subsequently,
the image from which the subimage was extracted was assigned to the class
that received the majority of classi�cations from its constituent subimages. The
application of MV on subimages achieved a maximum accuracy of 0.96 with
ResNet152v2 on the Subimages dataset. In contrast, for the Subimage masks

dataset, MV with ResNet152v2 yielded an accuracy of 0.624 (see Table 1).

Dataset
ResNet50v2 ResNet152v2

no MV MV no MV MV

1 Images 0.953 - 0.973 -
2 Grayscale images 0.953 - 0.88 -
3 HSV images - H 0.606 - 0.636 -
4 HSV images - V equalized 0.62 - 0.63 -
5 Image masks 0.787 - 0.68 -
6 Subimages 0.856 0.913 0.866 0.96
7 Subimages black background 0.68 0.765 0.759 0.765
8 Subimages grayscale 0.78 0.839 0.815 0.9
9 Subimages grayscale black background 0.783 0.859 0.782 0.9
10 Subimage masks 0.607 0.577 0.618 0.624

Table 1: Classi�cation accuracy of stomata images on 10 di�erent datasets ap-
plying Residual Neural Networks with majority voting applied - MV or without
majority voting - no MV.

4.4 Classi�cation with classical machine learning methods

In this study, the performance of ResNets was compared to classical machine
learning techniques [16]. The dataset utilized in this comparison consisted of
Image masks, which represent the shapes of stomata instances without relying
on color information. For each image, features were manually extracted for each
stomata individually and the mean value of each feature was subsequently calcu-
lated. The features included in the dataset were: convex area [30], contour area
[30], perimeter, solidity [30], elongation [11], circularity [11], object width and
object height.
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The classical machine learning algorithms selected for this analysis were K-
Nearest Neighbors (KNN) [18], Random Forest (RF) [20], Support Vector Ma-
chine (SVM) [22] and Multi-Layer Perceptron [1]. The hyperparameters of these
models were tuned to optimize performance. Speci�cally: for KNN, the number
of neighbors k was varied from 1 to 10; in RF, the number of trees was tested
from 100 to 500; the regularization parameter C in SVM was evaluated over the
range from 0.8 to 2.6. The architecture of the MLP was explored using con�gu-
rations with three hidden layers, ranging from 10×10×10 neurons to 20×20×20
neurons. All experiments were conducted using 10-fold cross-validation to ensure
the robustness and reliability of the results.

The computations were conducted on the Image masks and Subimage masks

with and without the application of majority voting. The highest accuracy re-
sults, corresponding to the evaluated parameter values, are summarized in Table
2. Although MV generally enhances classi�cation accuracy compared to the per-
formance on the Subimage masks dataset without MV, it only improves the
classi�cation accuracy of whole images in the case of MLP (0.627 with MV on
Subimage masks vs. 0.548 on Image masks). For the other methods, classi�cation
on Image masks dataset yields higher accuracy compared to its application to
Subimage masks both with and without MV. Among classical machine learning
methods, the highest accuracy obtained on binary masks is achieved with Ran-
dom Forest, reaching 0.758. However, this is lower than the accuracy obtained
on binary masks with deep learning, where ResNet50v2 without MV achieved
0.787, outperforming the classical approaches.

Image masks Subimage masks Subimage masks MV

method ACC adj. param. ACC adj. param. ACC adj. param.

KNN 0.706 k = 2 0.63 k = 10 0.643 k = 10

SVM 0.647 C = 1.8 0.62 C = 2.6 0.569 C = 2.4

RF 0.758 n = 400 0.646 n = 350 0.692 n = 300

MLP 0.548 14× 14× 14 0.585 16× 16× 16 0.627 14× 14× 14

Table 2: The highest classi�cation accuracy for stomata images on the Image

masks and Subimage masks datasets achieved using classical machine learning
methods, with or without the application of majority voting, across the evaluated
set of adjusted hyperparameters (adj. param.).

5 Conclusions and discussion

The application of deep learning for dataset classi�cation demonstrated re-
markable accuracy, reaching values as high as 0.973 for Images dataset with
ResNet152v2. It is important to emphasize that the classes under analysis ex-
hibited distinct color variations. This characteristic may lead the model to make
overly optimistic predictions, resulting in in�ated accuracy metrics.
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To investigate the extent to which color in�uences classi�cation performance,
the dataset was transformed into other color spaces designed to minimize inter-
class color variation. This approach aimed to challenge the model's reliance on
color-based features. Consequently, the classi�cation accuracy notably decreased,
with ResNet50v2 achieving a reduced accuracy of just 0.606 on HSV images - H

dataset. These �ndings underscore the importance of evaluating model perfor-
mance under varying color conditions to ensure robust and generalizable classi-
�cation results.

To further re�ne the analysis, the focus was narrowed to stomata objects by
extracting subimages containing individual stomata instances. In most cases, this
approach resulted in decreased classi�cation accuracy compared to using whole
images. For instance, while ResNet50v2 achieved an accuracy of 0.953 on the
Image dataset, the accuracy dropped to 0.856 when applied to the Subimages.

To enhance performance on subimages, a majority voting approach was im-
plemented, which involved aggregating predictions from multiple subimages.
This strategy generally led to improved accuracy compared to classifying in-
dividual subimages alone. However, despite the gains, the MV approach did
not outperform classi�cation on whole images. For instance, Subimages with
ResNet50v2 and MV achieved an accuracy of 0.913, which remained lower than
the 0.953 accuracy obtained with the Image.

To eliminate the in�uence of color entirely, the analysis was conducted on
image masks, which preserve only the shape of the stomata. On the Image

masks dataset, classi�cation accuracy was 0.787 and 0.68 using ResNet50v2 and
ResNet152v2, respectively. Further experimentation involved applying the same
approach to Subimage masks, focusing on individual stomata objects. In this
scenario, the highest accuracy achieved was 0.624 using ResNet152v2 with the
majority voting strategy. These results highlight a noticeable decrease in per-
formance compared to color images, emphasizing the signi�cant role color plays
in model accuracy and the challenges of relying solely on structural features for
classi�cation.

The classi�cation results obtained using deep learning on mask datasets were
compared with those achieved using a classical approach based on handcrafted
shape features. After hyperparameter optimization, the highest accuracy for Im-

age masks was 0.758 using Random Forest, while for Subimage masks, the best
result was 0.692, also with Random Forest combined with majority voting. These
results demonstrate that better outcomes are achieved when the entire mask is
classi�ed, as not only the shape of the stomata is important, but also the depen-
dencies between di�erent objects and their spatial arrangement in the image.

Deep learning models outperformed the classical approach when applied to
Image masks containing multiple stomata instances, achieving an accuracy of
0.787 with ResNet50v2 compared to 0.758 with Random Forest on the same
dataset. However, when focused on Subimage masks, ResNet models were out-
performed by handcrafted shape features combined with majority voting. Specif-
ically, ResNet152v2 with majority voting achieved an accuracy of 0.624, whereas
Random Forest with majority voting reached 0.692. These results suggest that
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deep learning e�ectively utilizes spatial context, while handcrafted features are
more e�ective when spatial dependencies are absent.

These �ndings underscore the importance of considering environmental fac-
tors in ploidy classi�cation. A key challenge for researchers is to avoid relying
on color-related features, as subtle di�erences in leaf shade can lead to in�ated
classi�cation accuracy. The studied cultivars di�ered in ripening time. For in-
stance, `Gofert' is an early ripening variety - the fruit ripens in the �rst decade
of July, while `Polares' ripens in the last decade of July, which can in�uence the
condition of the leaves collected at the end of the vegetation season.

This preliminary research highlights the need to prepare datasets under di-
verse conditions to introduce greater variation in stomata size and leaf color
within each class. By doing so, the resulting models will be more robust to en-
vironmental variations, ensuring more reliable and generalizable classi�cation
outcomes. In addition, maintaining uniform conditions for plant growth may
facilitate visual di�erentiation between classes by scientists. However, this con-
sistency can lead models to learn spurious correlations that should not be the
basis for classi�cation. Therefore, to achieve reliable and meaningful results, it is
crucial to design datasets that challenge the model to focus on essential biological
features rather than environmental cues.
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