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Abstract. Inrecent years, diffusion models brought unprecedented high-
quality image generation, alongside high inference costs. We explore vari-
ants of FLUX, a state-of-the-art family of models: baseline FLUX.1-dev
and distilled FLUX.1-schnell. We hypothesize that differences between
outputs of baseline and distilled models are consistent within a special-
ized domain, such as portrait generation. Then, we suggest training a
domain-specific image-to-image (I21) fast translation model from schnell
to dev domain. The paper discusses two potential backbones for the
model: UNet, requiring a pairwise dataset of low- and high-quality im-
ages of the same scene and subject, and non-pairwise CycleGAN. We
demonstrate that results produced by a distilled schnell model with our
121 head are perceptually close to what a baseline dev model would pro-
duce, while cutting 82% computational cost. We also show that results
generated by CycleGAN are superior to UNet, which suggests that train-
ing images need not be paired in order to achieve satisfactory results.
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Fig.1: Left sides: example input images from FLUX.1-schnell. Right sides:
outputs from our model based on ESA-CycleGAN. Our model adds skin details,
enhances hair, and improves the reflection of eye pupils, contributing to the
overall realistic feel of a portrait.

1 Introduction

Deep generative models are designed to learn data distributions so they can
create realistic images. But since they rely on a fixed set of parameters, they
often fall short when it comes to capturing the full complexity and nuances of
real-world subjects. This becomes especially clear in portrait generation, where
even the most advanced models can miss fine details or produce inaccuracies [4].

In recent years, models such as StyleGAN [18], BigGAN [5], DALL-E [23],
and FLUX.1 [1] have made remarkable progress in generating high-quality syn-
thetic images. These advancements have opened up new possibilities in areas
like entertainment, advertising, and professional avatar creation [22]. However,
their deployment remains constrained by high computational costs, requiring
extensive resources for both training and inference [7]. This poses challenges for
practical implementation, especially in resource-limited environments.

To address this, many models have their lightweight distilled versions such as
FLUX.1-schnell [1] that introduce a trade-off between computational demands
and image quality. However, these models often struggle more with visible imper-
fections — including unnatural lighting, texture inconsistencies, and unrealistic
facial details — limiting their effectiveness in professional applications.

Our proposal reduces the gap between resource-efficient distilled models and
the quality of their higher-quality versions by introducing a dedicated image-
to-image (I2I) model trained to recover lost details. As a motivation example,
we showcase photorealistic portrait generation using the recent diffusion model
FLUX.1. Images generated by its advanced revision, FLUX.1-dev, exhibit finer
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details in hair, skin, and eyes compared to those produced by FLUX.1-schnell,
a timestep-distilled variant. On the other hand, FLUX.1-dev is 7 times slower
than its distilled version, requiring more denoising steps.

To validate our approach, we propose and test two key hypotheses: (1) the
imperfections of a distilled model are consistent within a specialized domain
(e.g., portrait photography) and thus can be learned by an 121 model, (2) the
combined pipeline — comprising the distilled model and our I2I head — is still
significantly faster than the full-scale model.

A crucial factor in training an
effective 121 model is the dataset’s
quality. To address this, we introduce
a novel approach to fully synthetic
dataset generation. Our method oper-
ates pairwise, producing image pairs
featuring the same subject and com-
position but using different FLUX.1
revisions. This ensures controlled vari-

ations in quality and photorealis- Fig 2: Example pair of FLUX.1-schnell
tic detail, forming a strong training apnd FLUX.1-dew images from our
set for learning quality restoration. dataset. We observe that the dev vari-
We also demonstrate that a simple ant generates portraits featuring more

prompt engineering technique can sig-  details of skin, hair, and eyes, leading to
nificantly enhance dataset diversity a more photorealistic look.

across race, ethnicity, gender, and age.

We also compare our work to existing solutions aiming at improving the qual-
ity of images generated by diffusion models. Typical ways to influence the out-
puts of a model include prompt engineering and parameter-efficient fine-tuning
(PEFT) methods, such as LoRA [13]. We note that in comparison with those
methods, our approach is technically model-agnostic, as one can forward any
image through our model, regardless of its source.

Our contributions are as follows. (1) We demonstrate that, given two ver-
sions of a model — baseline and distilled — and a specialized domain, such as
portrait generation, it is possible to train an image-to-image translation model
that effectively mitigates some of the quality degradation introduced by the
distilled model (Figure 1). (2) We show that using a distilled version of a gener-
ative model with our 121 head leads to 82% savings in computation time. (3) We
propose a novel approach to dataset generation involving a tailored prompt engi-
neering technique that results in a fully synthetic, pairwise, and diverse dataset.
(4) We use our approach to generate a dataset of synthetic portraits of 280,000
images, of which samples are shown in the Figure 2. (5) We compare different
approaches to 121 training, including supervised paired methods based on UNet
and unpaired ones based on CycleGAN [33, 30].
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2 Related Work

The rapid development of generative models has significantly improved the qual-
ity and realism of synthesized images. While diffusion models have set new stan-
dards in photorealistic image generation due to their iterative refinement process
[11,7], their high computational cost limits their practical deployment [28,8|.
This has led to an increasing focus on efficient alternatives, including model dis-
tillation [10], quantization [16], and hybrid fine-tuning approaches [12]. Despite
these optimizations, distilled and quantized models often introduce artifacts,
such as unnatural lighting and texture inconsistencies [24, 31]. Addressing these
issues is critical for applications requiring high-fidelity image synthesis.

2.1 Diffusion-Based Image-to-Image Translation

Diffusion models, such as DDPM [11] and DDIM [28], have revolutionized image
synthesis by leveraging iterative denoising processes to generate high-quality
images. Compared to GANs, they offer superior realism and diversity but at the
cost of high computational demands.

One approach to improving efficiency in 121 tasks is the DiffI2I model, which
incorporates a compact prior extraction network and a dynamic transformer to
produce accurate translations with reduced computational overhead [31]. An-
other challenge is content preservation, which researchers have tackled by dis-
entangling style and content representations, ensuring that generated images
maintain the original content while adopting the desired style [20]. This is par-
ticularly relevant for tasks requiring high fidelity to the source image, such as
portrait generation.

Recent research has also explored alternative 121 models, including Latent
Consistency Models (LCMs) [21], which accelerate diffusion processes while main-
taining quality. Additionally, GAN-based approaches, such as pix2pix [15] and
CycleGAN [17], have demonstrated effectiveness in translating images across
domains, albeit with challenges in preserving fine details. ControlNet [32] has
further enhanced diffusion-based I2I tasks by providing more precise control over
image modifications.

2.2 FLUX: A State-of-the-Art Text-to-Image Model

FLUX is a state-of-the-art generative model optimized for computational effi-
ciency, making it suitable for real-time applications such as avatar generation or
creative content workflows [1].

In our work, we utilize two versions of this model: a baseline version with
standard quality settings (FLUX.1-dev) and a faster distilled version (FLUX.1-
schnell) optimized for speed. The latter significantly reduces the number of dif-
fusion steps, accelerating generation time while preserving most of the visual
fidelity. This efficiency is achieved through model distillation — a compression
technique where a smaller “student” model is trained to mimic the behavior of
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a larger “teacher” model [10]. In generative models, distillation enables faster
inference with minimal quality loss, which is crucial for practical deployment.
Both of these models are open-weight and available through the Hugging
Face platform |2, 3].
Additionally, FLUX supports modern fine-tuning, allowing further optimiza-
tion for specific use cases without retraining from scratch [13].

2.3 Fine-Tuning Techniques

Fine-tuning pre-trained models is a prevalent strategy to adapt generative mod-
els to specific tasks or styles. Two primary methods have emerged: full fine-
tuning and parameter-efficient fine-tuning techniques like Low-Rank Adaptation
(LoRA).

Comparisons between full fine-tuning and LoRA training suggest that full
fine-tuning yields superior results, with reduced overfitting and improved gen-
eralization [27]. However, this approach demands significant computational re-
sources, which may not be feasible in all scenarios. In contrast, LoRA fine-tuning
offers a more resource-efficient alternative by introducing low-rank matrices to
capture essential adaptations, updating only a subset of parameters, thereby re-
ducing memory usage and training time [13]. Additional studies have explored
hybrid fine-tuning strategies, such as adapter-based tuning [12] and layer-wise
modifications [19], to balance efficiency and model expressiveness.

Furthermore, specialized fine-tuning techniques such as Realism LoRA [14]
and DreamBooth [25] have been developed to enhance realism in generated im-
ages. Realism LoRA refines model weights to produce highly detailed and lifelike
outputs, making it valuable for portrait generation and professional photography
applications. DreamBooth, on the other hand, enables user-specific fine-tuning
by incorporating personalized training data, allowing models to generate images
with high identity preservation.

2.4 Gaps and Contributions

While existing methods have advanced the fields of diffusion-based 121 transla-
tion, fine-tuning, and quantization, challenges remain in achieving high-quality
image generation with reduced computational costs. Our study addresses these
gaps by introducing a novel approach that leverages a fully synthetic paired
dataset derived from baseline and distilled versions of a base model. By train-
ing an image-to-image translation head in a supervised manner, our method
enhances the output quality of a baseline generator to match that of more
computationally intensive models. This strategy eliminates the need for man-
ual annotations or real reference photos, offering a cost-effective solution for
photorealistic portrait generation.

In summary, our approach contributes to the existing body of work by pro-
viding an efficient framework that combines supervised learning and image-to-
image translation to improve the quality of diffusion models without incurring
significant computational expenses.
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3 Dataset

The work presents a novel approach to generating a diverse dataset of portraits.
Its main idea was to acquire almost identical pairs of images, semantically co-
herent and distinguished only by details such as a more natural skin texture and
a better-depicted beard or hair. Thanks to this technique, there was no need
for an outsourced dataset, as we used it to facilitate the assembly of 280,000
portraits — corresponding to 140,000 image pairs.

3.1 Preparation of the dataset

For the purpose of preparing the dataset, we used FLUX.1-schnell and FLUX.1-
dev. To begin with, we generated 10,000 samples using the prompt “A professional
business portrait” with a resolution of 512x512 pixels. However, we observed a
lack of diversity in the generated images, as the dataset consisted of mostly
young, slim, and generally flawless people, with additional bias towards stereo-
typical white men.

Fig. 3: Samples of images created during our research. (a) presents samples cre-
ated using base prompt and (b) samples generated with prompt containing full
names

In the following phase, to increase the diversity of the collection, we ap-
plied prompt engineering by adding to the prompts supplemental names and
surnames. For preparing the names, we utilized the IMDb Actors and Movies
database. By using a subset of this collection, we generated close to 140,000
images with FLUX.1-schnell with the prompt “A professional portrait of [FULL
NAME]”, where each name corresponded to the individual actor in the IMDb
database. We hypothesize that the model, even if not trained to properly depict
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specific individuals based on name, may associate names with diverse cultures.
Samples of both approaches are shown in Figure 3

Subsequently, using the FLUX.1-dev model, we produced target images in 121
mode with the identical predefined prompts. Beyond higher quality, the resulting
samples presented improved realism. Using this approach, a dataset of paired
images was acquired, consisting of 280,000 images. The pipeline is presented in
Figure 5.

3.2 Analysis of Dataset Diversity

As mentioned previously, we have increased the diversity of portraits by using
prompt engineering. The analysis considered facial attributes such as gender, age,
and ethnicity. To perform it, we used a framework provided by the DeepFace
library [26]. Results shown in Table 1 demonstrate that the prompt engineering
technique led to increased equality in perceived gender occurrences and increased
participation of previously underrepresented racial groups, especially Black and
Indian. Random samples are presented using t-SNE in Figure 4.

Table 1: Distribution of attributes — perceived gender, age, and dominant eth-
nicity — in sets based following the baseline prompt and enriched prompt.

P. Dominant Ethnicity
Perceived Gender P. Age Asian : Black : Indian
Prompt M:F 18-30 : 31-50 : 50+| Latino : Middle Eastern : White
Baseline 0.73 : 0.27 0.61:0.39:0.0 |0.12:0.01:0.01:0.26:0.02:0.59
Enhanced 0.60 : 0.40 0.40 : 0.58 : 0.02 | 0.10: 0.05: 0.04 : 0.08 : 0.02 : 0.7
Baseline prompt Enhanced prompt

40
Perceived race and gender

@® asian man
asian woman

@® black man
black woman

® indian man

indian woman

@ latino hispanic man
latino hispanic woman
middle eastern man

middle eastern woman
40 . 3 . @® white man
white woman

-40 -20 0 20 -40 -20 0 20 40

Fig.4: t-SNE visualization of face embeddings. Representations were acquired
using the ArcFace model [6].
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4 Architecture

4ﬁ our model }——» T

FLUX schnell image T+ FLUXdeY ——= image
L{l prompt "proffessional partrait of ..." }J

Fig. 5: Pipeline of our solution, including the integration of FLUX.1-schnell and
our image-to-image model.

4.1 Supervised Pairwise Approach

Our initial approach to model design was based on a U-Net architecture in an 121
fashion, taking an image generated by FLUX.1-schnell as input and transforming
it into an image generated by FLUX.1-dev.

The base U-Net architecture was extended with residual connections, which
improve gradient flow and training stability, and CBAM (Convolutional Block
Attention Module) blocks, which allow the model to focus more effectively on
important image features. The network had a depth of six layers, enabling it to
capture local and global dependencies within the image.

BNRelu 7 [ Linear |
BN Relu | Linear |
cBAM | [ Max | [ Mean |
J L—» Concat <—J
L Add
Sigm

Fig. 6: Single block of our image-to-image U-Net model.

The loss function was formulated as the sum of two components: a gradi-
ent loss computed between the input and output images and a perceptual loss
— LPIPS (Learned Perceptual Image Patch Similarity) measured between the
target and generated images. Formally, the function was defined as:

L=GRAD(z,z)+ LPIPS(y, %) (1)

where x represents the input image, y the target image, and z the image
generated by our model. The learning rate was set at 5 x 107°, ensuring stable
and effective training.
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Figure 5 illustrates the general pipeline of our method, including the integra-
tion of FLUX.1-schnell and our image-to-image model. The architecture of our
image-to-image model is shown in Figure 6. It highlights the detailed design of
a U-Net block, residual connections, and the CBAM attention mechanism.

4.2 Unsupervised Non-Pairwise Approach

In addition to the supervised U-Net-based techniques outlined previously, we
also explore unsupervised non-pairwise methods for image-to-image translation.
Unlike supervised approaches, which require paired training samples, these tech-
niques rely on two separate collections of images — one set per domain — with-
out needing explicit one-to-one correspondences. In our case, we define domain
A as portraits generated by FLUX.1-schnell, while domain B is comprised of
images produced by FLUX.1-dev.

A leading example of such non-pairwise translation is CycleGAN [33],
whose core design features two generators: (1) G that converts images from
domain A to domain B, and (2) F that handles the reverse mapping from B
back to A. Each generator is trained in tandem with a discriminator: (1) Da
that learns to differentiate real A-domain images from generated ones, (2) Dp
that discerns real B-domain images from synthesized outputs.

A distinguishing element of CycleGAN is the cycle consistency loss, ensuring
that an image transformed to the opposite domain and then back again remains
close to the original. Formally:

£cycle(GvF) = EQJNA[HF(G(m)) —.’L'H] + EyNB[HG(F(y)) _yH] (2>

This term prevents the networks from altering content arbitrarily to achieve a
plausible look in the target domain.

CycleGAN combines the above term with adversarial objectives for both
generators:

ACtotal = EGAN (G7 DB) + EGAN(F, DA) + Acycle . £cycle7 (3>

where Acycle is a key hyperparameter balancing fidelity to the original image
against realism in the transformed domain.

To further refine the translation quality, we consider ESA-CycleGAN [30],
which integrates an Enhanced Spatial Attention (ESA) module into each genera-
tor. This module amplifies important regions of the image through: (1) channel
reduction and spatial pooling, (2) convolutional analysis of the downsampled
features, (3) bilinear upsampling to restore original dimensions, (4) element-
wise multiplication to spotlight key structures.

These attention-based enhancements help preserve fine details, particularly
in complex or texture-rich images. Empirical evaluations suggest that ESA-
CycleGAN improves structural similarity (SSIM) scores and mitigates common
artifacts associated with plain CycleGAN. The following sections provide a de-
tailed comparison between the two models, highlighting where the attention-
driven approach yields the greatest gains.
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5 Experiments

5.1 Supervised Pairwise Training

We trained a U-Net-like architecture described in 4.1. The training was per-
formed on a fraction (1%) of the dataset with 512x512 input size. This approach
allowed us to quickly run multiple tests with different losses or architectural
modifications to compare their achieved improvements.

All training was performed on a single NVIDIA A100 GPU with early stop-
ping to 10 epochs on validation loss. Single training duration was between 20
and 60 minutes, depending on the parameters.

We sampled probes and performed human evaluations to evaluate the model’s
effectiveness and measure improvement. We found out that using standard met-
rics for image quality, like Structural Similarity Index (SSIM) and Peak Signal-
to-Noise Ratio (PSNR), does not return reliable values and returns the same
values for blurry and sharp images.

To avoid blurry images, we used a combined loss function that measures the
structural difference with the input image and the perceptual difference with the
target image. Comparing structural difference was crucial, since without it, the
model was generating blurry images, “smoothing” it when trying to recreate a
better image. To address this, we employed Gradient Loss, although we observed
that L1 loss produced similar results in practice.

Our experiments with U-net architecture did not produce acceptable results.
Even though quality and photo-realism increased, there were visible artifacts
produced by the model. We observed net-like patterns in hairlines and beards,
particularly noticeable on light or grey hair. These artifacts negatively impacted
the overall realism of the generated images. Example outputs from this pairwise-
trained model are shown in the right sides, bottom row of Figure 7.

5.2 Unsupervised Non-pairwise Training

In this experiment, we trained and tested CycleGAN-based approaches intro-
duced in 4.2. This included a classic CycleGAN and its modification, ESA-
CycleGAN.

Initial trainings were run on a small fraction (0.5% to 2%) of the dataset with
256 %256 input image size. This allowed us to quickly examine different values of
hyperparameters, such as lambda cycle, learning rate, or batch size. The second
training phase involved a smaller set of hyperparameters combinations, a 20%
subset of the entire dataset, and 512x512 input size. We did not rerun training
on 100% of the data since we were already satisfied with the outputs from this
phase.

All training experiments were conducted on an HPC cluster with 16 NVIDIA
A100 GPUs distributed evenly across four nodes. A final run in this setup took
12 hours to complete 190 epochs.

We compare each training’s best CycleGAN loss to select the best setup. We
also note SSIM between the input image (SSIM’s reference) and CycleGAN’s
full cycle output (SSIM’s target).
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Table 2: CycleGAN results. Table 3: ESA-CycleGAN results.
LR s 2x107* | 3x 1074 LR jps
)\cyc )\cyc
L [SSIM| £ [SSIM| £ |SSIM L [|SSIM
10/0.96| 0.96 |0.98| 0.95 [1.59| 0.68 10(1.22| 0.92
5/0.85| 0.95 |1.02| 0.95 [1.44| 0.75 5/0.77| 0.96
2|0.72| 0.95 |0.90| 0.96 [1.36| 0.80 2/0.61| 0.95

Tables 2 and 3 present the results from the final training runs. The lowest
GAN loss was observed for the ESA-CycleGAN variant with A.y. = 2. SSIM
proved useful for preliminary sanity checks, as values significantly below 0.9
indicated poor-quality results. However, it rapidly converged to approximately
0.95 in higher-quality runs, limiting its effectiveness for more fine-grained per-
formance comparisons.

Fig. 7: Left sides: example input images from FLUX.1-schnell. Right sides,
top row: outputs from our non-pairwise model based on ESA-CycleGAN. Right
sides, bottom row: outputs from our pairwise model based on U-Net.

Representative outputs of the non-pairwise trained model using ESA-CycleGAN
are shown in the right sides, top row of Figure 7, demonstrating its effectiveness
in enhancing photo-realism. We also include an example of a suboptimal result
(top right), where visible artifacts can still occur — such as a ghost edge through
the right eye and strong artifacts on the gold chain on the chest.

5.3 Computational Complexity Assessment

In this experiment, we evaluate the hypothesis that integrating our model pre-
serves the efficiency benefits of a computationally cheaper distilled backbone. To
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this end, we run base FLUX.1-dev and FLUX.1-schnell. Then, FLUX.1-schnell
is run with an additional 12] head — in this case, its ESA-CycleGAN variant —
with the same configuration. We repeat the procedure for multiple image sizes.

T
—o— FLUX.1-dev

2
o 6 || = FLUX.1-schnell i
£ —e— FLUX.1-schnell + 121 head
[}
= 4 :
(]
3
R
w7 |
<
0
128x 128 256x 256 512x512
Image size

Fig.8: Comparison of average inference time [s] for different pipelines.

Figure 8 highlights the efficiency of our I2I head, demonstrating a significantly
lower computational overhead compared to diffusion-based backbones, FLUX.1-
dev and FLUX.1-schnell. At a resolution of 512x512, our I2I head achieves a
processing speed of 11.2 images per second, whereas FLUX.1-schnell generates
only 0.25 images per second. This results in our proposed pipeline achieving an
average speedup of 82% over the standalone FLUX.1-dev.

5.4 Quality Assessment

To assess how our enhancement model brings the images closer to what the
reference model would output, we calculate Fréchet inception distance (FID)
[9] twice — once with FLUX.1-schnell as reference, and once with FLUX.1-dev
as reference. We aim at maximizing the distance from the source dataset to
schnell images while minimizing the distance to reference dev images. To this
end, we introduce a FIDg; ¢y metric, which is simply a subtraction of FIDge,
from FIDgcpnen- We compare different variations of enhanced FLUX.1-schnell:
(1) pairwise trained 121 head (ours), (2) non-pairwise trained 12I head (ours),
(3) flux-lora-realism [14] adaptation available at the Huggingface platform.
Results are presented in the Table 4.

We also employed an additional non-reference metric, namely CLIP-IQA [29].
It works by evaluating the overall quality of the images without comparing them
directly to a reference dataset.

Our non-pairwise method produces images perceptually closer to those gener-
ated by base FLUX.1-dev than to those from base FLUX.1-schnell. In contrast,
the pairwise-trained model yields outputs that exhibit similar perceptual dis-
tances to both reference sets. Notably, the LoRA-based approach results in a
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Table 4: Quality comparison of different approaches to 121 enhancement.

Model FID.chneit |FIDgey |FIDg;r ;| CLIP-IQA
FLUX.1-schnell - 0.37 - 0.35
FLUX.1-dev 0.37 - - 0.36
LoRA Realism 0.32 0.59 -0.27 0.34
Ours (pairwise) 0.54 0.53 0.01 0.34
Ours (non-pairwise)|  0.75 0.34 | 0.41 0.35

negative FIDg; ¢ ¢, indicating that its outputs are perceptually closer to FLUX.1-
schnell without adaptation than to FLUX.1-dev. Our secondary metric, CLIP-
IQA, proved ineffective for quality assessment, as it produced similar scores
regardless of the target. More critically, it fails to reflect the superior quality of
FLUX.1-dev, with score differences falling within a reasonable error margin.

Importantly, the trends captured by FIDg;f; align well with our perceptual
evaluation, reinforcing its reliability as a quality measure.

6 Discussion

The study establishes a cost-efficient method to improve portrait photos, testing
paired and unpaired approaches. We show that a lightweight 121 enhancement
head can be used to bring the outputs of a smaller, distilled diffusion model
closer to the general look and feel of a larger, full-scale base model — while
not diminishing the computational save. Unlike existing methods, like Realism
LoRA, our model works completely agnostic to the generation method and can
be applied at any time later.

The results achieved with CycleGAN and ESA-CycleGAN backbone demon-
strate that pairing photos was not necessary to improve realism — indeed, non-
pairwise training delivered even better results. The samples obtained with this
approach contained fewer artifacts and featured enhanced details with noticeable
detail enhancement.

For the U-Net approach, the presence of net-like pattern artifacts was par-
ticularly challenging. The effectiveness of this technique was further hindered by
imperfections in the dataset. The images produced by the 121 model would con-
tain slightly different features, such as modified backgrounds, jewelry, or clothing,
among others. CycleGAN approach also produces some artifacts, such as ghost
edges, although they occur less frequently and they are only visible upon close
inspection and appear at a lower rate.

While our best model works without pairwise training, we recognize the
potential value of our novel approach to dataset construction. The presented
pipeline and prompt engineering technique allow controllable distribution of
perceived race, gender, and age of subjects, paving the path towards diverse,
unbiased synthetic datasets. In future work, the study can be continued by ex-
tending the exploration of the methodology as well as expanding the dataset by
utilizing other generative models as well (e.g., Stable Diffusion 3.5 Large).
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